
Distributional Word Clustering in Parallel

Alan L. Ritter James W. Hearne Philip A. Nelson

Computer Science Computer Science Computer Science

Western Washington University Western Washington University Western Washington University

Bellingham, WA 98225 Bellingham, WA 98225 Bellingham, WA 98225

ritter.alan@gmail.com James.Hearne@cs.wwu.edu phil@cs.wwu.edu

Abstract

We discuss various methods which have been ap-
plied to grouping words into syntactic and semantic
categories, primarily how they deal with the problems
of sparsity and computational complexity. We then
present a method of distributional clustering, and dis-
cuss the parallelization of the most computationally
intensive part of this process.

1 Introduction

There are many reasons to group words into syn-
tactic or semantic categories from purely distributional
information. For example, tagging words whose part-
of-speech properties are not known[12], improving the
performance of n-gram models[2] and exploratory data
analysis. In addition, distributional clustering is of in-
terest to researchers in the field of Cognitive Science
wherein the question of what role distributional infor-
mation plays in language acquisition is a hotly debated
topic[10].

Previous research in this area has avoided using a
simple hierarchical complete-link clustering algorithm,
due to the time complexity involved. Instead most
approaches have used flat clustering algorithms to deal
with this problem.

We implement bottom-up hierarchical clustering
using a complete-link similarity measure between clus-
ters. For a similarity measure between words the Kull-
back Leibler (KL) divergence is used over context dis-
tributions, while utilizing any clustering information
we have obtained from previous iterations. This is sim-
ilar to what is done by Clark[4] and Finch/Chater[10].
We then discuss the parallelization of the most com-
putationally expensive part of this algorithm, namely
computing the difference measure between each pair
of unique words using the KL divergence.

2 Related Work

There is a small literature sharing the basic pre-
supposition of the present project, namely, that the
immediate surroundings of a lexical item provides
enough information to meaningfully categorize it in
an unsupervised way and without explicit training.

The general approach is motivated both by three
considerations, (1) the economic advantage of reduc-
ing the effort of categorization (2) the need to under-
stand languages that are not well understood and for
which no tagged corpora exist and (3) the desire to en-
gage is clustering without the bias of preexisting lex-
ical categories. Typically, the identification of lexical
categories (which may or may not converge with con-
ventional parts of speech) proceeds in two parts. For
each pair of words a measure of the similarity of its
textual context is computed. Even with rather large
corpora, the ratio of vocabulary to the size of the cor-
pus is small enough that the exact repetition of lexical
contexts is relatively rare. Some method must be used
to compensate for the lack of sufficient evidence for
example the resulting similarity clusters can be used,
as it is in the current approach, to cluster the words.
Contributions to this literature are distinguished pri-
marily by the similarity measures assumed and how
they handle the problem of data sparseness.

Clark[4] clusters over the context distribution of
immediately left and right words using an iterative flat
clustering algorithm. Pereira[9] uses a parser to cluster
nouns according to their distribution as direct objects
of verbs. Schütze[11] uses the two immediately left and
right words as context. Singular value decomposition
is then performed on the resulting matrix to reduce the
time required to cluster. Finch and Chater[10] extend
the idea of distributional word clustering to discover
and cluster phrasal categories as well as words.

Importantly, the literature has not addressed the
matter of parallelization. Because the learning tech-
nique requires large corpora for its meaningful appli-
cation, decomposing the algorithm into data indepen-
dent processes that can be executed simultaneously is
crucial to its practical application.

1

3 Hierarchical Clustering

Bottom-up hierarchical clustering algorithms
start with one cluster for each item in the data set,
and repeatedly merge the two most similar clusters
until there is only one left. This produces a tree-like
structure in which the relative similarity of pairs of
clusters can be determined. For a more detailed de-
scription see Manning and Schütze[6] or Frakes and
Baeza-Yates[1].

The main advantage of hierarchical clustering is
that more information is recorded in the tree structure
than in flat clusters alone. Once the tree structure
has been created it can easily be converted into flat
clusters, so one can experiment with different numbers
of flat clusters, cutoff points or prunings.

The main thing that characterizes the various hi-
erarchical clustering algorithms is how the distance be-
tween clusters is measured. There are 3 main classes,
(1) Single Link, (2) Complete Link and (3) Group Av-
erage. Of these complete link produces the best global
cluster quality, but is also the most computationally
intensive, taking time O(n2 log n) in the number of ob-
jects to be clustered. Because the complete-link mea-
sure produces the best quality clusters, this is what we
use.

4 Distance Measure

Before we can begin hierarchical clustering, we
need a distance measure between pairs of words. For
this purpose, we choose the Kullback Leibler diver-
gence, which is a measure of the difference between
two probability distributions p and q, and is defined
as follows:

KL(p, q) =
∑

x∈X

p(x) log
p(x)

q(x)

The probability distribution of each unique context in
the text is used to compare pairs of words, and we
experimented with several different types of context.
For instance, consider the sentence in figure 1. If we

I do not think, however, that this re-

port has come too late.

Figure 1: A sample sentence from the corpus

are to take the context to be the immediately left and
right words, then report in the above sentence would
have the context 〈this, has〉.

P =

p0,0 p0,1 . . . p0,m−1

p1,0

. p1,m−1

...
.

...
pn−1,0 pn−1,1 . . . pn−1,m−1

Figure 2: The probability matrix

4.1 Probability Matrix

Our first goal is to construct an n×m matrix, P,
of the probabilities of each unique context given each
unique word as illustrated in figure 2. Here n is the
number of unique words in the text, and m the number
of occurring unique contexts. Note that if the context
consists of only a single word then n = m, but if the
context includes more than one word, m is typically
much larger than n.

For each word in the text, wi, we count the num-
ber of times it occurs in each context, C(wjwiwk) and
use these frequencies to estimate the probability of
each context given the word:

pi,j = P (
−→
Cj |wi)

= P (〈wk, wl〉|wi)

≈
C(wkwiwl)

C(wi)

Since the calculation of Kullback-Leibler Divergence
will not permit zeroes in P, the question arises as to
how to estimate this probability for contexts which
aren’t observed for a specific word. Our solution has
been to simply assign an arbitrarily small frequency 1

(1
1000

th
seems to work well in practice).

4.2 Word Difference Matrix

Once we have the matrix of probabilities, the next
step is to compute the difference between each pair of
unique words in the text. The n× n difference matrix
D can be computed as follows:

D = P × PT

where the multiplication operation of matrix multi-
plication is replaced with the pi,j log

pi,j

pj,k
operation

from the KL divergence equation. The time required
to compute D directly using matrix multiplication is
O(n2m) > O(n3).

This matrix is computed in advance because the
difference between each pair of words will be needed

1Another solution to this problem is to use Good-Turing
smoothing[4].

many times during the single-link bottom up hierar-
chical clustering algorithm. In practice computing D

is the most computationally expensive part of the clus-
tering, for two reasons:

1. The hierarchical clustering algorithm has com-
plexity O(n2 log n), while the computation of the
difference matrix is O(n2m) > O(n3).

2. The constant factors involved in the computation
of the word difference table are much larger than
those in the hierarchical clustering algorithm.
The computation of D involves a great deal of
floating point log operations, whereas the cluster-
ing algorithm can be implemented efficiently using
table look-ups.

5 Using Previous Clustering Informa-

tion

One of the main problems with direct distribu-
tional word clustering is that similar words can have
very different distributions for example ’a’ and ’an’
serve similar grammatical functions, but generally ap-
pear in different contexts[4]. Our solution has been to
use previous clustering information to deal with this
problem. This changes the concept of context to be
the left and right clusters, as opposed to the left and
right words. For example given the following clusters:

C1 = {this, these, those}

C2 = {has, was, had}

the context for report in figure 1 would now be
〈C1, C2〉. In this way words derived from report such
as the plural form, reports are more likely to have the
same context.

A set of current global clusters is maintained,
which are used in the construction of the probability
matrix during each iteration2. Note that this means
the number of unique contexts gets smaller at each
iteration.

6 Parallelization

We focus our attention on calculating the word
difference matrix, D, in parallel because this is the
most computationally intensive part of the process.
Although the hierarchical clustering itself has a rel-
atively high complexity (O(n2 log n)), we avoid paral-
lelizing this part of the computation due to the diffi-

2In practice we did not find that doing more than 2 iterations
was beneficial

culties involved. While there exist cost optimal algo-
rithms for parallelizing complete-link hierarchical clus-
tering for the CRCW PRAM[8], it is generally believed
that optimal algorithms are not possible for the more
realistic Message-Passing architectures. It turns out
that this isn’t a problem in practice because of the
small constant factors involved in hierarchical cluster-
ing. In addition n in this setting is the number of
unique words in the text which does not grow linearly
in it’s length. Note also that number of unique con-
texts, m, in the O(n2m) time taken to compute D has
a growth rate closer to linear if more than one word of
context is used.

Because D can be computed via matrix multipli-
cation using addition and log

pi,j

pj,k
, it would seem nat-

ural to parallelize the computation using one of the
many known dense matrix multiplication algorithms
such as SUMMA[13], PSP[3] or those of Cannon or
Nelson[7]. These general algorithms, however don’t
meet the needs of this specific application for a num-
ber of reasons:

1. The probability matrix P, comfortably fits into
the memory (1GB) of currently available com-
modity computers. Algorithms such as Cannon’s
divide up the matrix into sub-matrices, thus al-
lowing larger matrix sizes to be computed.

2. P is in some sense “sparse”. Although there are
no zeroes in the matrix P, there are long runs of
the same value.

6.1 Run-Length encoding

Before discussing computing D in parallel we first
discuss a method of speeding up the sequential com-
putation, which is also used in the parallelization.

Because there are long “runs” of the same value
in the rows of the probability matrix, we can both
reduce the amount of space required to store P, and
the time needed to compute D by representing P using
a simple run-length encoding as illustrated in figure 3.
Each element of D = P× PT is computed as follows:

di,j =
m∑

k=0

(

pi,k log
pi,k

pj,k

)

So, by storing the rows of P using the run-length en-
coding it is possible to more efficiently calculate com-
mon runs between rows i and j. For instance suppos-
ing that row i has a run of the same values from k = 20
to k = 100, and row j has a run from k = 10 to k = 70,

A Row From the Matrix

〈1, 6, 3, 5, 2, 2, 2, 4, 3, 3, 3, 3, 5, 5〉

Run-Length Encoding

〈1, 6, 3, 5, 2
3
−→, 4, 3

4
−→, 5

2
−→〉

Figure 3: The Run-Length Encoding

we could compute di,j as follows:

di,j =

19∑

k=0

(

pi,k log
pi,k

pj,k

)

+ 50 × pi,20 log
pi,20

pj,20

+

m∑

k=70

(

pi,k log pi,k

pi,k

pj,k

)

and thus save 49 floating point divisions and log op-
erations. In practice the matrix is very sparse, so this
speeds things up a lot 3.

The speedup gained by using the run-length en-
coding varies based on the sparseness in a given part of
the matrix 4. In addition the sparseness varies based
on the type of context is used.

When using only a single word of context (the
immediately right or left word), the the run-length en-
coding gives us a speedup of approximately 20.

6.2 Data Distribution

For the purposes of hierarchical clustering we only
need a lower-triangular distance matrix, LD, because
only one distance measure between each pair of unique
words is required. In general KL(p, q) 6= KL(q, p), so
we define the individual elements of LD as follows:

ldi,j = di,j + dj,i = KL(pi, pj) + KL(pj , pi)

This incorporates both KL(p, q) and KL(q, p) into the
distance measure.

In order to evenly balance the load distribution in
calculating the lower-triangular matrix LD among the
P processors we assign processor r rows r n

2P
through

3Sorting the columns of P by context frequency makes this
computation go even faster. This is because contexts with sim-
ilar frequency are next to each other, making longer runs more
likely.

4In general rows of P corresponding to the more frequent
words in the text are less sparse.

P0

P1 P1

P2 P2 P2

P2 P2 P2 P2

P1 P1 P1 P1 P1

P0 P0 P0 P0 P0 P0

Figure 4: Data distribution of LD for 3 processors

(r + 1) n
2P

− 1 and n− (r + 1) n
2P

through n− r n
2P

− 1.
This assigns a roughly equal portion of the individual
elements of LD to each CPU, and is illustrated in figure
4.

6.3 Computing LD in Parallel

The computation of LD is summarized in algo-
rithm 1. Each processor computes its assigned rows of

Algorithm 1 Calculate part of LD on processor r

//Compute the first set of rows assigned to r

for i = r n
2p

to (r + 1) n
2P

− 1 do

for j = 0 to i − 1 do

//Exploit the run-length encoding

ldi,j =
∑m

k=0

(

pik log pik

pjk

)

+
∑m

k=0

(

pjk log
pjk

pik

)

end for

end for

//Compute the second set of rows assigned to r

for i = n − (r + 1) n
2p

to n − r n
2P

− 1 do

for j = 0 to i − 1 do

//Exploit the run-length encoding

ldi,j =
∑m

k=0

(

pik log pik

pjk

)

+
∑m

k=0

(

pjk log
pjk

pik

)

end for

end for

LD, which are then collected on processor 0. At this
point complete-link bottom up hierarchical clustering
can be done in a reasonable amount of time.

The total time to compute LD on p processors
where n is the number of unique words in the text,

and m the number of unique contexts is O(n2m
p

), And
the time to communicate the results back to processor
0 is O(n2) (The size of LD) regardless of the number of
processors used. Finally, the time required for bottom
up hierarchical clustering on processor 0 is O(n2 log n),
thus the total time required is:

O(
n2m

p
)

︸ ︷︷ ︸

ComputeLD

+ O(n2 log n)
︸ ︷︷ ︸

Clustering

+ O(n2)
︸ ︷︷ ︸

Communication

= O(
n2m

p
)

because n is much smaller than m.

7 Results

We tested our methods on two very different cor-
pora; Golding’s translation of Ovid’s Metamorphosis,
and a collection of proceedings from European Union
Parliament[5]5. The Golding corpus consists of Old
English, and has a very narrative tone, whereas in Eu-
roparl the English is more modern, and there are more
interrogative, declarative and imperative sentences.

Table 1: Corpora

Length words contexts
Golding 163,772 14,310 104,081
Europarl[5] 2,656,126 29,202 687,591

Timings were collected on a cluster of 45 work-
stations connected via 10Mbit Ethernet with 3.2 GHz
Pentium IV processors running NetBSD and using us-
ing MPICH for communication.

7.1 Efficiency

The time taken to compute LD for the most fre-
quent 8,000 words along with experimental speedup
and efficiency is illustrated for both corpora in tables
2 and 3.

Note that for the Golding corpus it took about
567 seconds to do the sequential hierarchical cluster-
ing, which is about as long as it took to compute LD se-
quentially. The time needed to compute LD, however,
has a larger growth rate with respect to the length
of the corpus than does the time needed by the hi-
erarchical clustering algorithm. Thus the benefits of
parallelization are more apparent when working with
larger corpora, as illustrated in table 3.

Table 2: Timings from Golding

processors time (sec) speedup efficiency
1 706.1 1 1
2 371.2 1.902 0.9511
4 192.6 3.666 0.9165
8 104.1 6.783 0.8479
12 75.6 9.34 0.7783
16 61.1 11.6 0.7223
32 40.4 17.5 0.5462
45 34.3 20.6 0.4575

8 Summary

When clustering objects such as words it makes
sense to use a hierarchical representation, as it is con-

5Only a subset of the English translation was used.

Table 3: Timings from Europarl

processors time (sec) speedup efficiency
1 6330.4 1 1
2 3250.1 1.9478 0.97388
4 1618.2 3.9120 0.97800
8 791.7 7.996 0.9995
12 513.8 12.32 1.0267
16 386.5 16.38 1.0236
32 199.2 31.78 0.9931
45 143.7 44.05 0.9790

venient to experiment with cutoff points or prunings.
When working with words it is easy to make edu-
cated decisions about which clusterings make sense
and which do not.

The main reason cited for avoiding the use of
complete-link hierarchical clustering is the computa-
tional complexity required (O(n2 log n)) in the num-
ber of objects being clustered), in addition to the fact
that single-link clustering is not easily parallelized. In
the setting of distributional word clustering however,
the objects being clustered are words, and thus n, the
number of unique words does not grow linearly in the
length of the corpus, so there is little reason to avoid
hierarchical clustering in this setting.

The main computational obstacle in hierarchical
distributional word clustering is not the clustering al-
gorithm itself. Instead it is the initial calculation of the
difference measure between each unique pair of words.
This is because the number of unique contexts has a
larger growth rate than the number of unique words (if
more than one word is used as context). The computa-
tion of this difference matrix can easily be parallelized.

Great improvements can be made in the perfor-
mance of the calculation of LD by exploiting a simple
run-length encoding. Additionally as the size of the
corpus gets larger, parallelization becomes more ben-
eficial.

References

[1] Ricardo A. Baeza-Yates. Introduction to data
structures and algorithms related to information
retrieval. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1992.

[2] Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based n-gram models of natural language.
Comput. Linguist., 18(4):467–479, 1992.

[3] Bradford L. Chamberlain, E. Christopher Lewis,
and Lawrence Snyder. Problem space promotion

and its evaluation as a technique for efficient par-
allel computation. In ICS ’99: Proceedings of the
13th international conference on Supercomputing,
pages 311–318, New York, NY, USA, 1999. ACM
Press.

[4] Alexander Clark. Inducing syntactic categories by
context distribution clustering. In Proceedings of
the 2nd workshop on Learning language in logic
and the 4th conference on Computational natural
language learning, pages 91–94, Morristown, NJ,
USA, 2000. Association for Computational Lin-
guistics.

[5] Philipp Koehn. Europarl: A multilingual
corpus for evaluation of machine translation.
http://people.csail.mit.edu/koehn/publications/europarl/.

[6] Christopher D. Manning and Hinrich
Schütze. Foundations of statistical natural
language processing. MIT Press, Cambridge,
MA, USA, 1999.

[7] Philip A. Nelson. Hypercube matrix multiplica-
tion. Parallel Computing, 19(7):777–788, 1993.

[8] Clark F. Olson. Parallel algorithms for hierarchi-
cal clustering. Parallel Computing, 21(8):1313–
1325, 1995.

[9] Fernando C. N. Pereira, Naftali Tishby, and Lil-
lian Lee. Distributional clustering of english
words. In Meeting of the Association for Com-
putational Linguistics, pages 183–190, 1993.

[10] N. Chater S. Finch and M. Redington. Acquiring
syntactic information from distributional statis-
tics. UCL Press, 1995.

[11] Hinrich Schütze. Part-of-speech induction
from scratch. In Proceedings of the 31st annual
meeting on Association for Computational Lin-
guistics, pages 251–258, Morristown, NJ, USA,
1993. Association for Computational Linguistics.

[12] Hinrich Schütze. Distributional part-of-
speech tagging. In Proceedings of the seventh con-
ference on European chapter of the Association
for Computational Linguistics, pages 141–148,
San Francisco, CA, USA, 1995. Morgan Kauf-
mann Publishers Inc.

[13] Robert A. van de Geijn and Jerrell Watts.
Summa: Scalable universal matrix multiplication
algorithm. Technical report, Austin, TX, USA,
1995.

