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Probabilistic Models

= Models describe how (a portion of) the world
works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
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= Models describe how (a portion of) the world
works

= Models are always simplifications
= May not account for every variable

= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
- George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information
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= Two variables are independent if:
Va,y : P(z,y) = P(z)P(y)

= This says that their joint distribution factors into a product two

simpler distributions

= Another form:

Vz,y : P(z|y) = P(x)

= We write:

X1Y

= Independence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?
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Example: Independence?

P1(T,W)

T w P
hot sun | 0.4
hot rain | 0.1

cold sun | 0.2
cold rain | 0.3

Py(T, W)

T W P
hot sun | 0.3
hot rain | 0.2

cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot | 0.5
cold | 0.5
P(W)
w P
sun | 0.6

rain | 0.4




Example: Independence

= N fair, independent coin flips:

P(X1) P(X2) P(Xp)
H |0.5 H |0.5 o H |0.5
T |0.5 T |0.5 T |0.5
N -
—

P(Xlz X2: = Xn)
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Conditional Independence

= P(Toothache, Cavity, Catch)

= If | have a cavity, the probability that the probe catches
in it doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

= The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

o gatch is conditionally independent of Toothache given
avity:
» P(Catch | Toothache, Cavity) = P(Catch | Cavity)

= Equivalent statements:
» P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily




Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments.
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Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments.

= X is conditionally independent of Y given Z X1UY|Z

if and only if:
Va,y,z . P(z,y|z) = P(z|z)P(ylz)

or, equivalently, if and only if
Va,y,z : P(z|z,y) = P(z]2)
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Conditional Independence and the Chain Rule

= Chain rule: P(Xl,XQ, .. Xn) = P(Xl)P(X2|X1)P(X3|X1,X2) e

= Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’nets / graphical models help us express conditional independence
assumptions
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on where the ghost is

= That means, the two sensors are
conditionally independent, given
the ghost position

= T: Top square is red
B: Bottom square is red
G: Ghost is in the top
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Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(BIG)
That means, the two sensors are T B G | P(T,B,G)
conditionally independent, given

the ghost position +t | +b | +g 0.16

+t | +b | -g 0.16
+t | -b | +¢g 0.24
+t | -b | -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(+g)=0.5 -t +b +g 0.04

P( -g)=0.5 -t | +b | -g 0.24

P(+t | +g )=0.8

E +E) I _gg)) =00214 -t | -b | +g 0.06
+b | + = (.

P( +b | -gg )) =0.8 -t | -b | -g | 0.06




Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(BIG)
That means, the two sensors are T B G | P(T,B,G)
conditionally independent, given

the ghost position +t | +b | +g 0.16

+t | +b | -g 0.16
+t | -b | +¢g 0.24
+t | -b | -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(+g)=0.5 -t +b +g 0.04

P( -g)=0.5 -t | +b | -g 0.24

P(+t | +g )=0.8

E +E) I _gg)) =00214 -t | -b | +g 0.06
+b | + = (.

P( +b | -gg )) =0.8 -t | -b | -g | 0.06




Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(BIG)
That means, the two sensors are T B G | P(T,B,G)
conditionally independent, given

the ghost position +t | +b | +g 0.16

+t | +b | -g 0.16
+t | -b | +¢g 0.24
+t | -b | -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(+g)=0.5 -t +b +g 0.04

P( -g)=0.5 -t | +b | -g 0.24

P(+t | +g )=0.8

E +E) I _gg)) =00214 -t | -b | +g 0.06
+b | + = (.

P( +b | -gg )) =0.8 -t | -b | -g | 0.06




Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(BIG)
That means, the two sensors are T B G | P(T,B,G)
conditionally independent, given

the ghost position +t | +b | +g 0.16

+t | +b | -g 0.16
+t | -b | +¢g 0.24
+t | -b | -g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(+g)=0.5 -t +b +g 0.04

P( -g)=0.5 -t | +b | -g 0.24

P(+t | +g )=0.8

E +E) I _gg)) =00214 -t | -b | +g 0.06
+b | + = (.

P( +b | -gg )) =0.8 -t | -b | -g | 0.06




Bayes’Nets: Big Picture




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution
tables as our probabilistic models:

= Unless there are only a few variables, the joint is WAY
too big to represent explicitly

= Hard to learn (estimate) anything empirically about
more than a few variables at a time




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution
tables as our probabilistic models:

= Unless there are only a few variables, the joint is WAY
too big to represent explicitly

= Hard to learn (estimate) anything empirically about
more than a few variables at a time

= Bayes’ nets: a technique for describing complex
joint distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

» Local interactions chain together to give global,
indirect interactions

= For about 10 min, we’ll be vague about how these
interactions are specified
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Example Bayes’ Net: Car

battery starter
ﬂat blockec broke

dead
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Graphical Model Notation

-
= Nodes: variables (with domains)

= Can be assighed (observed) or unassigned
(unobserved)

= Arcs: interactions @
» Indicate “direct influence” between variables
. {:ormally: encode conditional independence (more
ater)

Toothache @
= For now: imagine that arrows mean direct

causation (in general, they don’t!)
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» ® - ®

= No interactions between variables: absolute independence
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Example: Traffic

= Variables:

= R: It rains
= T: There is traffic

= Model 1: independence
= Why is an agent using model 2 better? @

= Model 2: rain causes traffic
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Example: Traffic Il

» Let’s build a causal graphical model! <
= Variables L/VQ W

. T: Traffic Wi

|

| i / Ny . O

IIIII

= R: [t rains

= L: Low pressure
= D: Roof drips

= B: Ballgame




Example: Traffic Il

» Let’s build a causal graphical model! |
= Variables KQW

R: It rains

L: Low pressure
D: Roof drips

B: Ballgame

C: Cavity

Wim e



Example: Alarm Network

7




Example: Alarm Network

= Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J: John calls
« E: Earthquake!

13




Bayes’ Net Semantics
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Bayes’ Net Semantics e,

= Aset of nodes, one per variable X

» Adirected, acyclic graph @ o

= A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values
P(Xlay...an)
= CPT: conditional probability table

» Description of a noisy “causal” process

A Bayes net = |
Probabilities

lopology (graph) + Local Conditional



Probabilities in BNs
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i=1
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= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(z1,x2,...xn) = || P(=z;|parents(X;))

1 =1
Toothache @

P(+cavity, 4+catch, -toothache)

« Example:
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= Why are we guaranteed that setting

n
P(xq1,20,...29n) = H P(x;|parents(X;))
i=1
results in a proper joint distribution?

= Chain rule (valid for all distributions): P( ) ﬁ P(x;] )
=1

= Assume conditional independences:
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Probabilities in BNs ¢

= Why are we guaranteed that setting

n
P(xq1,20,...29n) = H P(x;|parents(X;))
i=1
results in a proper joint distribution?

= Chain rule (valid for all distributions): P( ) ﬁ P(x;] )
=1

= Assume conditional independences:
P(x;|z1,...x;—1) = P(x;|parents(X;))
- Consequence:

n
P(z1,x2,...2n) = || P(x;|parents(X;))
‘—1
= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies




Example: Coin Flips

» ® - ®

P(X1) P(X5) P(Xn)
h |0.5 h |0.5 o h |0.5
t |0.5 t |0.5 t |0.5

P(h,h,t,h) =

Only distributions whose variables are absolutely independent
can be represented by a Bayes’ net with no arcs.



(=)

P(R)

+r

1/4

3/4

P(T|R)

+r

3/4

1/4

1/2

1/2

Example: Traffic

P(+4r,—t) =
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P(B)

0.001

Burglary

0.999

E

P(E)

+e

0.002

0.998




Example: Alarm Network

P(B)

0.001

Burglary

0.999

E | PE) IS
+e | 0.002 %gm.l\

-e 10.998 B {g
B | E| A | P(A|B,E)

+b | +e | +a 0.95

+b | +e | -a 0.05

+b | -e | +a 0.94

+b | -e | -a 0.06

-b | +e | +a 0.29

-b | +e | -a 0.71

-b | -e | +a 0.001

-b | -e | -a 0.999




Example: Alarm Network

B | P(B)
+b | 0.001 Burglary
-b |1 0.999

A | J | PUIA)

+a | +]j 0.9

+a | -j 0.1

-a | +j | 0.05

-a | -] 0.95

A | M [PM]A)
+a | +m 0.7
+a | -m 0.3
-a | +m | 0.01
-a | -m | 0.99

E | P(E)

+e | 0.002

-e [0.998

B E A | P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +te | -a 0.71
-b | -e | +a 0.001
b | -e| -a 0.999




Q

» Causal direction

P(R)

Example: Traffic

1/4

3/4

3/4

1/4

P(T, R)

+r +t | 3/16
+r -t 1/16
-r +t | 6/16
-r -t 6/16

1/2

1/2
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Example: Reverse Traffic

= Reverse causality? /4ﬁ \

P(T)
+t [ 9/16
-t |7/16

P(R|T)

+t +r 1/3
-r 2/3

-t +r 1/7
-r 6/7




Example: Reverse Traffic

= Reverse causality? -

e

L)

/r))’_
f “‘ ,' |

—~

/ / e _5

P(T)
+t [9/16
-t 7/16 }?(QP,}{)
P(R‘T) +r +t 3/16
+r -t 1/16
+t +r 1/3
-r +t [6/16
-r 2/3
-r -t 6/16
-t +r 1/7
-r 6/7




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
» Often easier to think about
» Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

» E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not
causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(x;|wy, ... x;—1) = P(x;|parents(X;))



Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution
= Today:
= First assembled BNs using an intuitive notion of
conditional independence as causality
= Then saw that key property is conditional
independence
= Main goal: answer queries about conditional
independence and influence >

= After that: how to answer numerical
queries (inference)



