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Instructor: Alan Ritter
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[These slides were adapted from CS188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]



Probability Recap

Conditional probability P(zly) = P(z,y)
P(y)
Product rule P(z,y) = P(z|ly)P(y)

Chain rule P(X1,Xo,...Xn) P(X1)P(X5|X1)P(X3|X1, X5). ..

mn
I P(X51 X, .., Xi—1)
i=1

X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if: X 1LY |Z
Vz,y,z 1 P(z,ylz) = P(z]z)P(y|?)



Bayes’ Nets

= A Bayes’ net is an
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
» Inference: given a fixed BN, what is P(X | e)?
» Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?



Bayes’ Net Semantics

» Adirected, acyclic graph, one node per random
variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each
combination of parents’ values P(X|ay...an)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(x1,2z2,...2n) = || P(z;|parents(X;))
1=1




Example: Alarm Network

B | P(B)
+b | 0.001
-b 1 0.999
Al J |PUIA) 0
+a | +]j 0.9
+a | -j 0.1
-a | +j | 0.05
-a j 0.95
P(Ibv ealaa_ja—l_m):

E | P(E)

+e | 0.002

-e | 0.998

A M | P(MIA)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

B | E | A | PAI|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999
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Example: Alarm Network

B | P(B) e G E | P(E)

+b | 0.001 +e | 0.002

b |0.999 e [0.998
Al J |PUIA) 0 Al M |PMIA)
+a | +] 0.9 JIUE 0.7 B | E | A | P(AIB,E)
+a | -] 0.1 ta | -m 0.3 tb | +e | +a 0.95
-a | +j | 0.05 -a | +m | 0.01 thlvel-a] 00
-a _j 0.95 -a -m 0.99 +b -€ +a 0.94

+tb | -e | -a 0.06

. -b | +e | +a 0.29
| I _ -
P( i b, €, Ta, ],—I—m) — T 7
b
b

P(+b)P(—e)P(+a| + b,—e)P(—j| + a)P(+m|+ a) = e | +a| 0.001
0.001 x 0.998 x 0.94 x 0.1 x 0.7 €| -a| 0999




Q

» Causal direction

P(R)

Example: Traffic

1/4

3/4

3/4

1/4

P(T, R)

+r +t | 3/16
+r -t 1/16
-r +t | 6/16
-r -t 6/16

1/2

1/2
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= Reverse causality? /T"’*j




Example: Reverse Traffic

= Reverse causality?

{




Example: Reverse Traffic

= Reverse causality? /4ﬁ \

P(T)
+t [ 9/16
-t |7/16

P(R|T)

+t +r 1/3
-r 2/3

-t +r 1/7
-r 6/7




Example: Reverse Traffic

= Reverse causality? -

e

L)

/r))’_
f “‘ ,' |

—~

/ / e _5

P(T)
+t [9/16
-t 7/16 }?(QP,}{)
P(R‘T) +r +t 3/16
+r -t 1/16
+t +r 1/3
-r +t [6/16
-r 2/3
-r -t 6/16
-t +r 1/7
-r 6/7




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
» Often easier to think about
» Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

» E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not
causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(x;|wy, ... x;—1) = P(x;|parents(X;))



Size of a Bayes’ Net




Size of a Bayes’ Net

= How big is a joint distribution
over N Boolean variables?

72N
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= How big is a joint distribution
over N Boolean variables?

72N

= How big is an N-node net if nodes
have up to k parents?

O(N * 2k+1)




Size of a Bayes’ Net

= How big is a joint distribution = Both give you the power to calculate
over N Boolean variables?
P(X]_, .X2, - o . X-n)

72N

= How big is an N-node net if nodes
have up to k parents?

O(N * 2k+1) = Also faster to answer queries (coming)

= BNs: Huge space savings!

= Also easier to elicit local CPTs




Bayes’ Nets

/Representation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data



Conditional Independence

= X and Y are independent if
Ve,y P(z,y) = P(z)P(y) ---- X1Y
= X and Y are conditionally independent given Z

Vz,y,z P(z,y|z) = P(z|2)P(ylz) —--> X 1Y|[Z
» (Conditional) independence is a property of a distribution

= Example: Alarm AL Fire|Smoke




Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(xz;|lzy - x;_1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

» They can be read off the graph

= Important for modeling: understand assumptions

made when choosing a Bayes net graph



Example

ORORORO

= Conditional independence assumptions directly from simplifications in chain
rule:

» Additional implied conditional independence assumptions?



Independence in a BN

= Important question about a BN:
= Are two nodes independent given certain evidence?
= If yes, can prove using algebra (tedious in general)
= If no, can prove with a counter example
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= Important question about a BN:

= Are two nodes independent given certain evidence?
If yes, can prove using algebra (tedious in general)
If no, can prove with a counter example

NoSoso

Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)



Independence in a BN

= Important question about a BN:

= Are two nodes independent given certain evidence?
If yes, can prove using algebra (tedious in general)
If no, can prove with a counter example

NoSoso

Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?



D-separation: Outline




D-separation: Outline

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering
such queries



Causal Chains

= This configuration is a “causal chain”

DI &

X: Low pressure Y: Rain Z: Traffic

P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!
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P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
A £/ ‘ WY independent of Z is sufficient to show this

T:) ////// "_! independence is not guaranteed.
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@
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X: Low pressure Y: Rain Z: Traffic

=

P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

« Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

X: Low pressure Y: Rain Z: Traffic

P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!
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« Example:
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= In numbers:
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P(x,y,z) = P(z)P(y|lz) P(z|y) P(+z | +y)=1,P(-Z|-y)=1
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Causal Chains

= This configuration is a “causal chain”
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X: Low pressure Y: Rain Z: Traffic

P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

292090

X: Low pressure Y: Rain Z: Traffic

P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

@ T L"%'J Pk = oy
5009 §0

X: Low pressure Y: Rain Z: Traffic

P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

™ T, Y, 2
Iy ing!‘ "”j P(zlz,y) = Pé(fb)

AR _ P(@)P(y|z) P(z]y)
+@9r+Q0 ~reru

X: Low pressure Y: Rain Z: Traffic — P(Z|y)

Yes!

)

@

AN

P(z,y,z) = P(z)P(y|z) P(z]y)



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

™ x. Y, 2
@ i L“é'fj P =0
7 M _ P@)P(ylz) P(zly)
600980 e

X: Low pressure Y: Rain Z: Traffic — P(Z|3/)

Yes!

P(x,y,2) = P(z)P(y|lz)P(z|y)
» Evidence along the chain “blocks”
the influence



Common Cause

= This configuration is a “common
cause”

Y: Project Project
Due!
due

hi N
g Y

S &

. Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)

X: Forums
busy

i



Common Cause

= This configuration is a “common » Guaranteed X independent of Z? No!
cause”
Y: Project \:oje;-t
due ve .

'y

.
P(z,y,z) = P(y)P(z|y)P(z|y)

X: Forums
busy

7: Lab full



Common Cause

= This configuration is a “common » Guaranteed X independent of Z? No!

cause” | )
Y: Project " Project | = One example set of CPTs for which X is not
due | Dwe! | independent of Z is sufficient to show this

independence is not guaranteed.

X: Forums |_ N F
B et | Z: Lab full
bUSy ) !," B§ g

| ==
P
I L

P(z,y,z) = P(y)P(z|y)P(z|y)
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« Example:
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Common Cause

= This configuration is a “common
cause”

Y: Project Project
Due!
due

hi N
g Y

S &

. Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)

X: Forums
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Common Cause

= This configuration is a “common » Guaranteed X and Z independent given
cause” Y?
Y: Project Project Plx. vy, z
due L P(Zl.’L’,’y) — ( y Y )

@ P(z,y)
F Yy
SS)

X: Forums - 2 .
busy - ’5? ! Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)



Common Cause

= This configuration is a “common » Guaranteed X and Z independent given
cause” Y?
Y: Project Project Plx. vy, z
due L P(Zl.’L’,’y) — ( y Y )

3 P(z,y)
8 _ P(y)P(z|y)P(z|y)
Y %‘\;L ~ Pu)PGIY)

@; = P(z|y)

X: Forums - Na .
oy - Z: Lab full Vos!

P(z,y,z) = P(y)P(z|y) P(z|y) = Observing the cause blocks influence
between effects.
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= Observing an effect activates influence
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The General Case

= General question: in a given BN, are two variables
independent (given evidence)?

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical c
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are conditionally independent Q
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Reachability

= Recipe: shade evidence nodes, look
for paths in the resulting graph
» Attempt 1: if two nodes are G G

connected by an undirected path
not blocked by a shaded node, they

are conditionally independent Q
| S N
= Almost works, but not quite —
= Where does it break? Lr:/\é ; ‘fﬂ"%

count as a link in a path unless

[T T ,
= Answer: the v-structure at T doesn’t Ay / [/ /| / FH ] /
“active” | ] //




Active / Inactive Paths

= Question: Are X and Y conditionally independent given Active Triples

evidence variables {Z}?

= Yes, if Xand Y “d-separated” by Z O—)O-)O
» Consider all (undirected) paths from X to Y

» No active paths = independence!

= A path is active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)

= Common cause A <~ B — C where B is unobserved
= Common effect (aka v-structure) O\ACDA/O
A — B < C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment

Inactive Triples

O-0-0
a0

O\U/O



D-Separation

O Quel‘yt XZ J_|_ Xj {Xklj 7an}?

= Check all (undirected!) paths betwX X;d

= If one or more active, then independence not guaranteed
Xi XX { Xk, ooy Xk, }

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X X { Xkyy ooy Xie, }
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= Variables:
= R: Raining
» T: Traffic
= D: Roof drips
» S: I’'m sad
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Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete
list of conditional independences that are
necessarily true of the form

X; AL XA {Xny, ooy X, )

= This list determines the set of probability
distributions that can be represented
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Topology Limits Distributions

(X LY, X1 ZY 1 Z,

(X 1L Z|Y)
XUZ|Y,XUY|ZY1LZ|X)

Given some graph topology
G, only certain joint
distributions can be @

encoded ® @ ®/®\®
The graph structure @%

guarantees certain

(conditional) independences

(There might be more g)'@
independence)

Adding arcs increases the

set of distributions, but has

{}
several costs &) QS%) QS%)
Full conditioning can
encode any distribution g)\ Eis Qg?{)v



Bayes Nets Representation Summary

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

D-separation gives precise conditional
independence guarantees from graph alone

A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution



Bayes’ Nets

ofRepresentation
JConditional Independences

= Probabilistic Inference
» Enumeration (exact, exponential complexity)
» Variable elimination (exact, worst-case
exponential complexity, often better)
» Probabilistic inference is NP-complete
= Sampling (approximate)

» Learning Bayes’ Nets from Data



