## CS 5522: Artificial Intelligence II

### Bayes' Nets: Inference



Instructor: Alan Ritter

Ohio State University

## Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
  - A collection of distributions over X, one for each combination of parents' values  $P(X|a_1 \dots a_n)$



- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$







| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -e | 0.998 |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |



| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | ę  | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |



P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a



| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -e | 0.998 |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |



| P(+b, -e, +a, -j, +m) =                 |
|-----------------------------------------|
| P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) = |

| В  | E  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | ę  | +a | 0.94     |
| +b | ę  | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |



P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a



| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -е | 0.998 |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |



| P(+b, -e, +a, -j, +m) =                 |
|-----------------------------------------|
| P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) = |

| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | ę  | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |



P(J|A)

0.9

0.1

0.05

0.95

+a

+a

-a

-a



| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -е | 0.998 |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |



| P(+b, -e, +a, -j, +m) =                                |
|--------------------------------------------------------|
| P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =                |
| $0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$ |

| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | ę  | +a | 0.94     |
| +b | ę  | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |

### Bayes' Nets

- Representation
- Conditional Independences
  - Probabilistic Inference
    - Enumeration (exact, exponential complexity)
    - Variable elimination (exact, worst-case exponential complexity, often better)
    - Probabilistic inference is NP-complete
    - Sampling (approximate)
  - Learning Bayes' Nets from Data

 Inference: calculating some useful quantity from a joint probability distribution







 Inference: calculating some useful quantity from a joint probability distribution • Examples:







 Inference: calculating some useful quantity from a joint probability distribution

- Examples:
  - Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$







 Inference: calculating some useful quantity from a joint probability distribution

#### • Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$







 Inference: calculating some useful quantity from a joint probability distribution

#### • Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$







 Inference: calculating some useful quantity from a joint probability distribution

#### • Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$







 Inference: calculating some useful quantity from a joint probability distribution

#### • Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$







#### General case:

#### General case:

Evidence variables:  $E_1 \dots E_k = e_1 \dots e_k$  Query\* variable: Q Hidden variables:  $H_1 \dots H_r$ 

We want:

\* Works fine with multiple query variables, too

varial
$$P(Q|e_1\dots e_k)$$

#### General case:

Evidence variables:  $E_1 \dots E_k = e_1 \dots e_k$  Query\* variable: Q Hidden variables:  $H_1 \dots H_r$ 

We want:

\* Works fine with multiple query variables, too

 $P(Q|e_1 \dots e_k)$ 

 Step 1: Select the entries consistent with the evidence

|            | ×  | P(x) |        |
|------------|----|------|--------|
| . <b>A</b> | -3 | 0.05 |        |
| TA         | -1 | 0.25 | 3      |
| 76"        | 5  | 0.07 |        |
|            | 1  | 0.2  |        |
|            | 5  | 0.01 | 2/0.15 |
|            |    |      |        |

General case:

Evidence variables:  $E_1 \dots E_k = e_1 \dots e_k$  Query\* variable: Q All variables Hidden variables:  $H_1 \dots H_r$ 

We want:

\* Works fine with multiple query variables, too

 $P(Q|e_1 \dots e_k)$ 

Step 1: Select the entries consistent with the evidence



Step 2: Sum out H to get joint of Query and evidence



#### General case:

Evidence variables:  $E_1 \dots E_k = e_1 \dots e_k$  Query\* variable: Q All variables Hidden variables:  $H_1 \dots H_r$ 

We want:

\* Works fine with multiple query variables, too

 $P(Q|e_1 \dots e_k)$ 

Step 1: Select the entries consistent with the evidence

|    | ×  | P(x) |        |
|----|----|------|--------|
| A  | -3 | 0.05 |        |
| TA | -1 | 0.25 | 3      |
|    |    | 0.07 | 7      |
|    | 1  | 0.2  |        |
|    | 5  | 0.01 | 2/0.15 |
|    |    |      |        |

Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

#### General case:

Evidence variables:  $E_1 \dots E_k = e_1 \dots e_k$  Query\* variable: Q All variables Hidden variables:  $H_1 \dots H_r$ 

We want:

\* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 1: Select the entries consistent with the evidence



Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

#### General case:

Evidence variables:  $E_1 \dots E_k = e_1 \dots e_k$  Query\* variable: Q All variables Hidden variables:  $H_1 \dots H_r$ 

 $P(Q|e_1 \dots e_k)$ 

We want:

Step 1: Select the entries consistent with the evidence



Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

\* Works fine with

multiple query

variables, too

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

example: 
$$P(B \mid +j,+m)$$



- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

example:  $P(B \mid +j,+m) \propto_B P(B,+j,+m)$ 



- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

example: 
$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$



- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

example: 
$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

$$= \sum P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$



- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

$$= \sum P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$



$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$



 $P(Antilock|observed\ variables) = ?$ 



- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables



- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!





- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables



- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration



- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables



- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration



- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables



- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration



- Why is inference by enumeration so slow?
  - You join up the whole joint distribution before you sum out the hidden variables



- Idea: interleave joining and marginalizing!
  - Called "Variable Elimination"
  - Still NP-hard, but usually much faster than inference by enumeration



## Factor Zoo



#### Factor Zoo I

- Joint distribution: P(X,Y)
  - Entries P(x,y) for all x, y
  - Sums to 1



- Joint distribution: P(X,Y)
  - Entries P(x,y) for all x, y
  - Sums to 1

### P(T, W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



- Joint distribution: P(X,Y)
  - Entries P(x,y) for all x, y
  - Sums to 1

- Selected joint: P(x,Y)
  - A slice of the joint distribution
  - Entries P(x,y) for fixed x, all y
  - Sums to P(x)

#### P(T,W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



- Joint distribution: P(X,Y)
  - Entries P(x,y) for all x, y
  - Sums to 1

- Selected joint: P(x,Y)
  - A slice of the joint distribution
  - Entries P(x,y) for fixed x, all y
  - Sums to P(x)

### P(T, W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

#### P(cold, W)

| Τ    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



- Joint distribution: P(X,Y)
  - Entries P(x,y) for all x, y
  - Sums to 1

- Selected joint: P(x,Y)
  - A slice of the joint distribution
  - Entries P(x,y) for fixed x, all y
  - Sums to P(x)
- Number of capitals = dimensionality of the table

#### P(T, W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

#### P(cold, W)

| H    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



- Single conditional: P(Y | x)
  - Entries P(y | x) for fixed x, a
  - Sums to 1



- Single conditional: P(Y | x)
  - Entries P(y | x) for fixed x, a
  - Sums to 1



| Т    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

- Single conditional: P(Y | x)
  - Entries P(y | x) for fixed x, a
  - Sums to 1



| Т    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

- Family of conditionals:
  - P(X | Y)
    - Multiple conditionals
    - Entries P(x | y) for all x, y
    - Sums to |Y|

- Single conditional: P(Y | x)
  - Entries P(y | x) for fixed x, a
  - Sums to 1



| Η    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

- Family of conditionals:
  P(X | Y)
  - Multiple conditionals
  - Entries P(x | y) for all x, y
  - Sums to |Y|



- Single conditional: P(Y | x)
  - Entries P(y | x) for fixed x, a
  - Sums to 1



#### P(W|cold)

| Η    | W    | Р   |
|------|------|-----|
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

- Family of conditionals:
  - P(X | Y)
    - Multiple conditionals
    - Entries P(x | y) for all x, y
    - Sums to |Y|



#### P(W|T)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 8.0 |
| hot  | rain | 0.2 |
| cold | sun  | 0.4 |
| cold | rain | 0.6 |

P(W|hot)

- Specified family: P(y | X)
  - Entries P(y | x) for fixed y, but for all x
  - Sums to ... who knows!

#### P(rain|T)

| Т    | W    | Р   |
|------|------|-----|
| hot  | rain | 0.2 |
| cold | rain | 0.6 |



- Specified family: P(y | X)
  - Entries P(y | x) for fixed y, but for all x
  - Sums to ... who knows!

#### P(rain|T)

| Т    | W    | Р   |                                           |
|------|------|-----|-------------------------------------------|
| hot  | rain | 0.2 | $rac{1}{2} P(rain hot)$                   |
| cold | rain | 0.6 | $\left  \frac{1}{r} P(rain cold) \right $ |



# Factor Zoo Summary









## Factor Zoo Summary

- In general, when we write  $P(Y_1 ... Y_N \mid X_1 ... X_M)$ 
  - It is a "factor," a multi-dimensional array
  - Its values are  $P(y_1 ... y_N \mid x_1 ... x_M)$
  - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array









#### Random Variables

• R: Raining

■ T: Traffic

L: Late for class!



#### Random Variables

• R: Raining

■ T: Traffic

L: Late for class!



| P | ( | I | ?` | ١ |
|---|---|---|----|---|
| _ | ` | _ | ~  | , |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

#### Random Variables

• R: Raining

**T:** Traffic

L: Late for class!



| ?) |
|----|
|    |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

P(T|R)

| - · · - |    |     |  |
|---------|----|-----|--|
| +r      | +t | 0.8 |  |
| +r      | -t | 0.2 |  |
| -r      | +t | 0.1 |  |
| -r      | -t | 0.9 |  |

#### Random Variables

• R: Raining

T: Traffic

L: Late for class!



| P( | R) |
|----|----|
|----|----|

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

#### P(T|R)

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +t | +[ | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -L | 0.9 |

#### Random Variables

• R: Raining

T: Traffic

L: Late for class!

P(L) = ?



| P( | R)  |
|----|-----|
| +r | 0.1 |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| P | (T  | $ R\rangle$ |
|---|-----|-------------|
| _ | ( - | 1 2 7       |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -L | 0.9 |

#### Random Variables

R: Raining

T: Traffic

L: Late for class!





| P | (R) |
|---|-----|
|   | Λ,  |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

#### P(T|R)

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +t | +[         | 0.3 |
|----|------------|-----|
| +t | -          | 0.7 |
| -t | +l         | 0.1 |
| -t | <b>-</b> L | 0.9 |

#### Random Variables

R: Raining

T: Traffic

L: Late for class!





| $I \left( I \mid I \iota \right)$ |    |     |  |
|-----------------------------------|----|-----|--|
| +r                                | +t | 0.8 |  |
| +r                                | -t | 0.2 |  |
| -r                                | +t | 0.1 |  |
| -r                                | -t | 0.9 |  |

| I(D I) |    |     |
|--------|----|-----|
| +t     | +L | 0.3 |
| +t     | -  | 0.7 |
| -t     | +  | 0.1 |
| -t     | -l | 0.9 |

P(L|T)

- Track objects called factors
- Initial factors are local CPTs (one per node)



- Track objects called factors
- Initial factors are local CPTs (one per node)

| P | ( | R) |  |
|---|---|----|--|
|   | _ | -  |  |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| D | T   | $ D\rangle$ |
|---|-----|-------------|
| 1 | ( 1 | $\mu \nu$   |

| +t | 0.8 |
|----|-----|
| -t | 0.2 |
| +t | 0.1 |
| -t | 0.9 |
|    | -t  |

P(L|T)

| +t | +l | 0.3 |
|----|----|-----|
| +t | -l | 0.7 |
| -t | +l | 0.1 |
| -t | -  | 0.9 |



- Track objects called factors
- Initial factors are local CPTs (one per node)

| P(R) |     |
|------|-----|
| +r   | 0.1 |
| -r   | 0.9 |
|      |     |

| 1 (1   10) |    |     |
|------------|----|-----|
| +r         | +t | 0.8 |
| +r         | -t | 0.2 |
| -r         | +t | 0.1 |
| -r         | -t | 0,9 |

P(T|R)

| _ (- | <b>-</b>   - | ,   |
|------|--------------|-----|
| +t   | +l           | 0.3 |
| +t   | [            | 0.7 |
| -t   | +            | 0.1 |
| -t   | -l           | 0.9 |

P(L|T)

- Any known values are selected
  - ullet E.g. if we know  $L=+\ell$  , the initial factors are



- Track objects called factors
- Initial factors are local CPTs (one per node)

| P() | R)  |
|-----|-----|
| +r  | 0.1 |

| P(T I | て) |
|-------|----|
|-------|----|

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -  | 0.9 |

- Any known values are selected
  - ullet E.g. if we know  $L=+\ell$  , the initial factors are

| P(R) |     |  |
|------|-----|--|
| +r   | 0.1 |  |
| -r   | 0.9 |  |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

$$P(+\ell|T)$$

| `  | ' ' |     |
|----|-----|-----|
| +t | +L  | 0.3 |
| -t | +   | 0.1 |



- Track objects called factors
- Initial factors are local CPTs (one per node)



| 1 (1   10) |    |     |
|------------|----|-----|
| +r         | +t | 0.8 |
| +r         | -t | 0.2 |
| -r         | +t | 0.1 |
| 3          | +  | 0   |

P(T|R)

- Any known values are selected
  - ullet E.g. if we know  $L=+\ell$  , the initial factors are

| P(R)     |     |  |
|----------|-----|--|
| +r       | 0.1 |  |
| -r       | 0.9 |  |
| <u> </u> | 0.7 |  |

| 1 (1   10) |    |     |
|------------|----|-----|
| +r         | +t | 0.8 |
| +r         | -t | 0.2 |
| -r         | +t | 0.1 |
| -r         | -t | 0.9 |

P(T|R)

$$P(+\ell|T)$$
+t +l 0.3
-t +l 0.1



 Procedure: Join all factors, then eliminate all hidden variables

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved

Example: Join on R



| P(T R) |    |              |
|--------|----|--------------|
| +r     | +t | 0.8          |
| +r     | -t | 0.2          |
| -r     | +t | 0.1          |
| _r     | _t | $\cap \circ$ |

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved
- Example: Join on R





- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



Example: Join on R



- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



Example: Join on R



Computation for each entry: pointwise products

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



Example: Join on R



Computation for each entry: pointwise products

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$

- First basic operation: joining factors
- Combining factors:
  - Just like a database join
  - Get all factors over the joining variable
  - Build a new factor over the union of the variables involved



Example: Join on R



Computation for each entry: pointwise products

$$\forall r, t : P(r,t) = P(r) \cdot P(t|r)$$









| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| P | T | $ R\rangle$ |
|---|---|-------------|
| 1 | L | $I \cup I$  |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| D | 1 | T | T | 7) |
|---|---|---|---|----|
| 1 |   | L | L | 1  |

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

#### Join R





| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| $\boldsymbol{D}$ | I   | $ T\rangle$ |
|------------------|-----|-------------|
| 1                | (L) | 1           |

| +t | +          | 0.3 |
|----|------------|-----|
| +t | -          | 0.7 |
| -t | +[         | 0.1 |
| -t | <b>-</b> [ | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

#### Join R





| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| P | (L) | $ T\rangle$ |
|---|-----|-------------|
| _ | (   |             |

| +t | + | 0.3 |
|----|---|-----|
| +t | - | 0.7 |
| -t | + | 0.1 |
| -t | - | 0.9 |

| D | 1 | <b>T</b> . | T | 1 |
|---|---|------------|---|---|
|   | ( | L          | 1 | ) |

| +t | +l       | 0.3 |
|----|----------|-----|
| +t | -        | 0.7 |
| -t | +        | 0.1 |
| -t | <u> </u> | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

Join R P(R,T)

### P(T|R)



| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| D | ( T | T | 7 |
|---|-----|---|---|
| 1 | (L) | L | , |

| +t | +l         | 0.3 |
|----|------------|-----|
| +t | -          | 0.7 |
| -t | +[         | 0.1 |
| -t | - <b>L</b> | 0.9 |

| $\Box$ | 1 | T |   | 1 |
|--------|---|---|---|---|
|        | ( | L | L | ) |

| +t | +l       | 0.3 |
|----|----------|-----|
| +t | <u> </u> | 0.7 |
| -t | +[       | 0.1 |
| -t | -l       | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

### Join R

| P | ( | R | , | T | ') |
|---|---|---|---|---|----|
|   |   |   |   |   |    |





|   | +r | +t     | 0.08 |
|---|----|--------|------|
| > | +r | -t     | 0.02 |
|   | -r | +<br>t | 0.09 |
|   | -r | -t     | 0.81 |

#### P(L|T)

| +t | +[ | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +  | 0.1 |
| -t | -l | 0.9 |

#### P(L|T)

| +t | +        | 0.3 |
|----|----------|-----|
| +t | -        | 0.7 |
| -t | +l       | 0.1 |
| -t | <u> </u> | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

#### Join R

| D | ( 1 | $\mathbf{Q}$ | T | ٦) |
|---|-----|--------------|---|----|
| 1 | ( 1 | ι,           | 1 | J  |

| P(T R) |    | R)  |  |
|--------|----|-----|--|
| r      | +t | 0.8 |  |

| +r | 7+     | 0.08 |
|----|--------|------|
| +r | -t     | 0.02 |
| -r | +<br>t | 0.09 |
| -r | -t     | 0.81 |

| +r | -t | 0.02 |   |
|----|----|------|---|
| -r | +t | 0.09 |   |
| -r | -t | 0.81 | R |
|    |    |      |   |
|    |    |      | • |
|    |    |      |   |

| P | (L         | $ T\rangle$ |
|---|------------|-------------|
| _ | <b>\</b> — |             |

+t |0.1

+r

+r

| +t | +[ | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

### P(L|T)

| +t | +[ | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

### Join R

| P | ( | I | ${ m ?},$ | T | (י |
|---|---|---|-----------|---|----|
|   | • |   | - /       |   | •  |



| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

### Join T



| P(T | R) |
|-----|----|
|-----|----|

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| P | (L | $ T\rangle$ |
|---|----|-------------|
|   | •  |             |

| +t | +          | 0.3 |
|----|------------|-----|
| +t | -          | 0.7 |
| ţ. | +          | 0.1 |
| -t | <b>-</b> [ | 0.9 |

| D | ( | T | T | ٦) |
|---|---|---|---|----|
| L | / | L | 1 | J  |

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -l | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

P(T|R)

### Join R

| $D_{l}$ |     | D  | T | 7) |
|---------|-----|----|---|----|
| I       | ( 1 | ι, | 1 |    |

Joi

*R*, *T* 

| +r | +t     | 0.08 |
|----|--------|------|
| +r | -t     | 0.02 |
| ŗ  | +<br>t | 0.09 |
| -r | -t     | 0.81 |

Join T



P(R,T,L)

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

P(L|T)

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -l | 0.9 |

P(L|T)

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -l | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

### Join R



#### Join T



| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



#### P(R,T,L)

| +r | +t | +[ | 0.024 |
|----|----|----|-------|
| +r | +t | -l | 0.056 |
| +r | -t | +[ | 0.002 |
| +r | -t | -l | 0.018 |
| -r | +t | +[ | 0.027 |
| -r | +t | -l | 0.063 |
| -r | -t | +[ | 0.081 |
| -r | -t | -l | 0.729 |

#### P(L|T)

| +t | +  | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |



| +t | +l       | 0.3 |
|----|----------|-----|
| +t | <u> </u> | 0.7 |
| -t | +        | 0.1 |
| -t | -        | 0.9 |











| +r | 0.1 |  |
|----|-----|--|
| -r | 0.9 |  |

### Join R





### R, T, L







| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



P(R, T, L)

| +r | +t | +[ | 0.024 |
|----|----|----|-------|
| +r | +t | -l | 0.056 |
| +r | -t | +[ | 0.002 |
| +r | -t | -l | 0.018 |
| -r | +t | +( | 0.027 |
| -r | +t | -l | 0.063 |
| -r | -t | +[ | 0.081 |
| -r | -t | -[ | 0.729 |

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |



| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -l | 0.9 |





- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:

| $\boldsymbol{D}$ |     | $\boldsymbol{P}$ | T | ٦) |
|------------------|-----|------------------|---|----|
| 1                | ( 1 | $\iota\iota$ ,   | 1 | )  |

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

 $\operatorname{sum} R$ 





- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:

| $\boldsymbol{D}$ | ( | I | ?        | T | ٦) |
|------------------|---|---|----------|---|----|
| 1                | / | 1 | $\iota,$ | 1 | )  |

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |







- Second basic operation: marginalization
- Take a factor and sum out a variable
  - Shrinks a factor to a smaller one
  - A projection operation
- Example:



| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

sum R



P(T)

| +t | 0.17 |
|----|------|
| -t | 0.83 |













Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



# Marginalizing Early (= Variable Elimination)



### Traffic Domain



$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$= \sum_t P(L|t) \sum_r P(r)P(t|r)$$
 Join on r Eliminate r

### Traffic Domain



$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$= \sum_t P(L|t) \sum_r P(r)P(t|r)$$
 Join on r Eliminate r



| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| $\widehat{R}$ | P(T R) |    |     |
|---------------|--------|----|-----|
| $\bigvee$     | +r     | +t | 0.8 |
| <b>\</b>      | +r     | -t | 0.2 |
| T             | -r     | +t | 0.1 |
| $\mathcal{C}$ | -r     | -t | 0.9 |
|               |        |    |     |

| P | (L | T | • |
|---|----|---|---|
|   | `  |   | , |

| +t | +[         | 0.3 |
|----|------------|-----|
| +t | -l         | 0.7 |
| -t | +[         | 0.1 |
| -t | <b>-</b> [ | 0.9 |







| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| P | (T) | R   |
|---|-----|-----|
| _ | ( - | ~~/ |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

P(L|T)

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +  | 0.1 |
| -t | -l | 0.9 |





Join R

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| P | (T) | R) |
|---|-----|----|
|   | `   |    |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

P(L|T)

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -l | 0.9 |

### P(R,T)

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



P(L|T)

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> l | 0.7 |
| -t | +l         | 0.1 |
| -t | -l         | 0.9 |





| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| D                | T | D            |
|------------------|---|--------------|
| $\boldsymbol{L}$ |   | $ IU\rangle$ |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

P(L|T)

| +t | +l         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> [ | 0.7 |
| -t | +l         | 0.1 |
| -t | -l         | 0.9 |

Join R P(R,T)

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



| D | ( T | T | 1 |
|---|-----|---|---|
| 1 | (L) | 1 | 1 |

| +t | + | 0.3 |
|----|---|-----|
| +t | - | 0.7 |
| -t | + | 0.1 |
| -t | - | 0.9 |

Sum out R





#### Join R

| D/  | D          | T  |  |
|-----|------------|----|--|
| Γ ( | $\Omega$ , | 1) |  |

| •   |   | 4     |   |
|-----|---|-------|---|
| Ш   | m | out   | K |
| · · |   | O G C |   |



| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

| $\neg$ |
|--------|
| •      |

| D | 1 | T | 7 | ` |  |
|---|---|---|---|---|--|
|   | ĺ | 1 |   | J |  |

| +t | 0.17 |
|----|------|
| -t | 0.83 |



| P(  | $I_{L}$                  | T | 7 |
|-----|--------------------------|---|---|
| 1 ( | $oldsymbol{\mathcal{L}}$ | 1 |   |

P(R)

0.1

0.9

| +t | +        | 0.3 |
|----|----------|-----|
| +t | <u> </u> | 0.7 |
| -t | +        | 0.1 |
| -t | -l       | 0.9 |



| 7  | <b>T</b> |          |   |
|----|----------|----------|---|
| P( | L        | $ m{I} $ | ) |

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -l | 0.9 |



P(L|T)

| +t | +[ | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +[ | 0.1 |
| -t | -ل | 0.9 |



0.1

0.9



| Join R | P(R,T) |
|--------|--------|
|--------|--------|

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
|    |    |      |

| -r | +t | 0.09 |
|----|----|------|
| -r | -t | 0.81 |

### P(T|R)

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

### P(L|T)

| +t | +l         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> [ | 0.7 |
| -t | +l         | 0.1 |
| -t | -l         | 0.9 |

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |



| _ |    |    |     |
|---|----|----|-----|
|   | +t | +  | 0.3 |
|   | +t | -  | 0.7 |
|   | -t | +l | 0.1 |
| Ī | -t | -l | 0.9 |

#### Sum out R



| D | 1 | T | 7 | ` |
|---|---|---|---|---|
| 1 | l | 1 |   | J |

Join T

| +t | 0.17 |
|----|------|
| -t | 0.83 |



| P( | L | T | ) |
|----|---|---|---|
| `  |   |   | _ |

| +t | +l | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +  | 0.1 |
| -t | -ل | 0.9 |



#### Join R

#### P(R,T)

Sum out R

### Join T



| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |





P(T)









| T        | -r | +t    | 0.       |
|----------|----|-------|----------|
|          | -r | -t    | 0.9      |
| <b>▼</b> | P( | (L I) | $\Gamma$ |

|    |    | _   | _ | _ \ | . — 1 – | _ |
|----|----|-----|---|-----|---------|---|
| +t | +  | 0.3 |   | . + | . 1     | Γ |
| +t | -l | 0.7 |   |     | +[      |   |
| -t | +[ | 0.1 |   |     |         |   |
| -t |    | 0.9 |   | -t  | +[      | _ |
|    |    |     |   | J-  | -l      | ľ |

| <b>D</b> / | _ |             |
|------------|---|-------------|
| P(         | L | $ T\rangle$ |

| +t | +L | 0.3 |
|----|----|-----|
| +t | -[ | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

| D(  | <b>T</b> . | T | <b>'</b> \ |
|-----|------------|---|------------|
| 1 ( | L          | 1 | J          |

| +t | +[ | 0.3 |
|----|----|-----|
| +t | -[ | 0.7 |
| -t | +l | 0.1 |
| -t | -[ | 0.9 |

| +t | +  | 0.051 |
|----|----|-------|
| +t | -  | 0.119 |
| -t | +l | 0.083 |
| -t | -l | 0.747 |



0.1

0.9



#### Join R P(R,T)

| +r | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
|    |    |      |

| +r | -τ | 0.02 |
|----|----|------|
| -r | +t | 0.09 |
| -r | -t | 0.81 |



| D                     | T   | $ T\rangle$ |
|-----------------------|-----|-------------|
| $\boldsymbol{\Gamma}$ | (L) | <b>1</b>    |

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> l | 0.7 |
| -t | +L         | 0.1 |
| -t | <b>-</b> l | 0.9 |

#### Sum out R



#### P(T)

| +t | 0.17 |
|----|------|
| -t | 0.83 |



### P(L|T)

| +t | +l         | 0.3 |
|----|------------|-----|
| +t | -          | 0.7 |
| -t | +l         | 0.1 |
| -t | <b>-</b> [ | 0.9 |

#### Join T





P(T,L)

| +t | +  | 0.051 |
|----|----|-------|
| +t | -  | 0.119 |
| -t | +[ | 0.083 |
| -t | -l | 0.747 |





+t

+t -t

+1 0.3



0.9

# 0.1

#### Join R

| D | I  | )  | T |   |
|---|----|----|---|---|
|   | (I | ι, | 1 | ) |

| +  | +t | 0.08 |
|----|----|------|
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |







| <b>JUI</b> |         |
|------------|---------|
|            |         |
|            | $^{-}>$ |
| '          |         |

Sum out T



| P | (T  | R) |
|---|-----|----|
| I | ( 1 | IU |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| P | (L       | T |
|---|----------|---|
| _ | <b>\</b> |   |

| +t | +[ | 0.3 |
|----|----|-----|
| +t | -  | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

|    | ٠  | 0.07 |
|----|----|------|
| -r | -t | 0.81 |
|    | R, | T    |



P(L|T)

| +t | +[  | 0.3 |
|----|-----|-----|
| +t | - [ | 0.7 |
| -t | +l  | 0.1 |
| -t | -l  | 0.9 |

| -t | 0.83 |
|----|------|
|    |      |

P(T)

0.17



| D        | 1   | T | T                  | 7 |
|----------|-----|---|--------------------|---|
| $\Gamma$ | ( . | L | $ \boldsymbol{L} $ | ) |

|    | _  |     |
|----|----|-----|
| +t | +  | 0.3 |
| +t | -  | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |



P(T,L)

| +t | +          | 0.051 |
|----|------------|-------|
| +t | -          | 0.119 |
| -t | +[         | 0.083 |
| -t | <b>-</b> L | 0.747 |



P(L)

| +[ | 0.134 |
|----|-------|
| -[ | 0.866 |

If evidence, start with factors that select that evidence



- If evidence, start with factors that select that evidence
  - No evidence uses these initial factors:

| P | ( | R)   |
|---|---|------|
| _ | • | _ ~/ |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| $\boldsymbol{p}$ | (T             | $ R\rangle$ |
|------------------|----------------|-------------|
| 1                | ( <del>1</del> | 167         |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

P(L|T)

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> - | 0.7 |
| -t | +L         | 0.1 |
| -t | -ل         | 0.9 |



If evidence, start with factors that select that evidence

No evidence uses these initial factors:

| P | (I | R) |
|---|----|----|
|---|----|----|

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| $\boldsymbol{p}$ | (T             | $ R\rangle$ |
|------------------|----------------|-------------|
| 1                | ( <del>1</del> | 167         |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

$$(T|R)$$
  $P(L|T)$ 

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> - | 0.7 |
| -t | +          | 0.1 |
| -t | -ل         | 0.9 |

- Computing P(L|+r) , the initial factors become:



If evidence, start with factors that select that evidence

No evidence uses these initial factors:

| P | ( | I | $\{$ | ) |
|---|---|---|------|---|
|   |   |   |      |   |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| $\boldsymbol{p}$ | (T             | $ R\rangle$ |
|------------------|----------------|-------------|
| 1                | ( <del>1</del> | 167         |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> - | 0.7 |
| -t | +          | 0.1 |
| -t | -ل         | 0.9 |

ullet Computing P(L|+r) , the initial factors become:

$$\frac{P(+r)}{+r \mid 0.1}$$



If evidence, start with factors that select that evidence

No evidence uses these initial factors:

| P | ( | I | ${}^{2}$ | ) |
|---|---|---|----------|---|
|   | • |   |          | • |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| D | T   | D  |
|---|-----|----|
|   | ( 1 | IU |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> - | 0.7 |
| -t | +          | 0.1 |
| -t | -ل         | 0.9 |

ullet Computing P(L|+r) , the initial factors become:

$$P(+r)$$

$$P(+r)$$
  $P(T|+r)$ 

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |



If evidence, start with factors that select that evidence

No evidence uses these initial factors:

| P | ( | I | ? | ) |
|---|---|---|---|---|
|   | ` |   |   | _ |

| +r | 0.1 |
|----|-----|
| -r | 0.9 |

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |
| -r | +t | 0.1 |
| -r | -t | 0.9 |

$$P(T|R)$$
  $P(L|T)$ 

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | <b>-</b> - | 0.7 |
| -t | +L         | 0.1 |
| -t | [          | 0.9 |

• Computing P(L|+r) , the initial factors become:

$$P(+r)$$

$$P(+r)$$
  $P(T|+r)$   $P(L|T)$ 

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |

| +t | +L         | 0.3 |
|----|------------|-----|
| +t | 7          | 0.7 |
| -t | +          | 0.1 |
| -t | <b>-</b> - | 0.9 |



#### Evidence

If evidence, start with factors that select that evidence

No evidence uses these initial factors:

| P(R) |     |
|------|-----|
| +r   | 0.1 |
|      | 0.0 |

$$P(T|R)$$
  $P(L|T)$ 

| +t | +L       | 0.3 |
|----|----------|-----|
| +t | <b>~</b> | 0.7 |
| -t | +        | 0.1 |
| -t | -[       | 0.9 |

- Computing P(L|+r) , the initial factors become:

$$P(T|+r)$$

| +r | +t | 0.8 |
|----|----|-----|
| +r | -t | 0.2 |

| +t | +L | 0.3 |
|----|----|-----|
| +t | -[ | 0.7 |
| -t | +  | 0.1 |
| -t | -  | 0.9 |



We eliminate all vars other than query + evidence

Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:



Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:

$$P(+r,L)$$

| +r | + | 0.026 |
|----|---|-------|
| +r | - | 0.074 |



Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:

$$P(+r,L)$$

| +r | +[ | 0.026 |
|----|----|-------|
| +r | -  | 0.074 |



Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:

$$P(+r,L)$$
 Normalize  $+r$  +l 0.026  $+r$  -l 0.074



Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:





Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:







$$P(L|+r)$$

| +l         | 0.26 |
|------------|------|
| <b>-</b> [ | 0.74 |





#### General Variable Elimination

- Query:  $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
  - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
  - Pick a hidden variable H
  - Join all factors mentioning H
  - Eliminate (sum out) H
- Join all remaining factors and normalize





$$\cdot \cdot = \square \times \frac{1}{Z}$$

$$P(B|j,m) \propto P(B,j,m)$$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)



Choose A

$$P(B|j,m) \propto P(B,j,m)$$

P(E)

P(A|B,E)

P(j|A)

P(m|A)



#### Choose A

P(A|B,E)

P(j|A)

P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)



#### Choose A



$$P(B|j,m) \propto P(B,j,m)$$

P(E)

P(A|B,E)

P(j|A)

P(m|A)



#### Choose A



P(j, m, A|B, E)

$$P(B|j,m) \propto P(B,j,m)$$

P(E)

P(A|B,E)

P(j|A)

P(m|A)



#### Choose A



 $\nearrow$  P(j, m, A|B, E)  $\nearrow$ 



$$P(B|j,m) \propto P(B,j,m)$$



P(E)

P(A|B,E)

P(j|A)

P(m|A)



#### Choose A



P(j, m, A|B, E)  $\sum$  P(j, m|B, E)



$$P(B|j,m) \propto P(B,j,m)$$



P(E)

P(A|B,E)

P(j|A)

P(m|A)



#### Choose A

P(m|A)



P(j, m, A|B, E)  $\sum$  P(j, m|B, E)



P(E)

P(j,m|B,E)

P(B)

P(E)

P(j,m|B,E)



Choose E

P(E) P(j,m|B,E)



P(j, m, E|B)  $\sum$  P(j, m|B)



P(B)

P(E)

P(j,m|B,E)



Choose E

P(E)

P(j,m|B,E)



P(j, m, E|B)  $\sum$  P(j, m|B)



P(B)

P(E)

P(j,m|B,E)



Choose E

P(j,m|B,E)



P(j, m, E|B)



P(j,m|B)

Finish with B



P(j, m, B)

P(B)

P(E)

P(j,m|B,E)



Choose E

P(j,m|B,E)





P(j,m,E|B)  $\sum$  P(j,m|B)

P(j,m|B)

Finish with B





# Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

P(B) P(E)

P(E) P(A|B,E)

P(j|A)

P(m|A)



$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{a}^{b} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$

$$= P(B)f_2(B,j,m)$$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

use 
$$x^*(y+z) = xy + xz$$

joining on a, and then summing out gives f<sub>1</sub>

use 
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f<sub>2</sub>

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

#### Another Variable Elimination Example

Query: 
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate  $X_1$ , this introduces the factor  $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$ , and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate  $X_2$ , this introduces the factor  $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$ , and we are left with:

$$p(Z)f_1(Z,y_1)f_2(Z,y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor  $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$ , and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over  $X_3$  gives  $P(X_3|y_1,y_2,y_3)$ .



# Variable Elimination Ordering

For the query  $P(X_n | y_1,...,y_n)$  work through the following two different orderings as done in previous slide:  $Z, X_1, ..., X_{n-1}$  and  $X_1, ..., X_{n-1}$ , Z. What is the size of the maximum factor generated for each of the orderings?



# Variable Elimination Ordering

For the query  $P(X_n | y_1,...,y_n)$  work through the following two different orderings as done in previous slide:  $Z, X_1, ..., X_{n-1}$  and  $X_1, ..., X_{n-1}$ , Z. What is the size of the maximum factor generated for each of the orderings?



Answer: 2<sup>n+1</sup> versus 2<sup>2</sup> (assuming binary)

# Variable Elimination Ordering

For the query  $P(X_n | y_1,...,y_n)$  work through the following two different orderings as done in previous slide:  $Z, X_1, ..., X_{n-1}$  and  $X_1, ..., X_{n-1}$ , Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2<sup>n+1</sup> versus 2<sup>2</sup> (assuming binary)
- In general: the ordering can greatly affect efficiency.

 The computational and space complexity of variable elimination is determined by the largest factor

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
  - E.g., previous slide's example 2<sup>n</sup> vs. 2

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
  - E.g., previous slide's example 2<sup>n</sup> vs. 2
- Does there always exist an ordering that only results in small factors?

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
  - E.g., previous slide's example 2<sup>n</sup> vs. 2
- Does there always exist an ordering that only results in small factors?
  - No!

# Worst Case Complexity?

#### CSP:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \lor (x_4 \lor x_6)$$

$$P(X_{i}=0) = P(X_{i}=1) = 0.5 \qquad X_{1} \qquad X_{2} \qquad X_{3} \qquad X_{4} \qquad X_{5} \qquad X_{6} \qquad X_{7}$$

$$Y_{1} = X_{1} \lor X_{2} \lor \neg X_{3} \qquad Y_{1} \qquad Y_{2} \qquad Y_{3} \qquad Y_{4} \qquad Y_{5} \qquad Y_{6} \qquad Y_{7} \qquad Y_{8}$$

$$Y_{1,2} = Y_{1} \land Y_{2} \qquad Y_{1,2} \qquad Y_{1,2} \land Y_{3,4} \qquad Y_{5,6,7,8} = Y_{5,6} \land Y_{7,8}$$

$$Y_{1,2,3,4} = Y_{1,2} \land Y_{3,4} \qquad Y_{5,6,7,8} \qquad Z = Y_{1,2,3,4} \land Y_{5,6,7,8}$$

## Worst Case Complexity?

#### CSP:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6$$



• If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

# Worst Case Complexity?

#### CSP:

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \lor (x_4 \lor x_6$$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

## Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
  - Try it!!
- Cut-set conditioning for Bayes' net inference
  - Choose set of variables such that if removed only a polytree remains
  - Exercise: Think about how the specifics would work out!

## Bayes' Nets

- ✓ Representation
- ✓ Conditional Independences
- Probabilistic Inference
  - Enumeration (exact, exponential complexity)
  - √Variable elimination (exact, worst-case exponential complexity, often better)
  - ✓Inference is NP-complete
  - Sampling (approximate)
- Learning Bayes' Nets from Data