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Bayes’ Net Representation

» Adirected, acyclic graph, one node per random
variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each
combination of parents’ values P(Xlaq...an)

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,20,...zn) = || P(a;|parents(X;))
=1




Example: Alarm Network

B | P(B)
+b | 0.001
-b 1 0.999
Al J |PUIA) 0
+a | +]j 0.9
+a | -j 0.1
-a | +j | 0.05
-a j 0.95
P(Ibv ealaa_ja—l_m):

E | P(E)

+e | 0.002

-e | 0.998

A M | P(MIA)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

>
B | E | A | PAI|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999
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Example: Alarm Network

B | P(B) e G E | P(E)

+b | 0.001 +e |0.002

b |0.999 e |0.998 .
Al J |PUIA) 0 Al M |PMIA)
] 1 09 T T oo B | E | A | PAIBE)
+a | -] 0.1 ta | -m 0.3 tb | +e | +a 0.95
-a | +j | 0.05 -a | +m | 0.01 thlvel-a]l 0.0
-a _j 0.95 -a -m 0.99 +b - +a 0.94

+tb | -e | -a 0.06

. -b | +e | +a 0.29
| I _ -
P( i b, €, Ta, ],—I—m) — T 7
b
b

P(+b)P(—e)P(+a| + b,—e)P(—j| + a)P(+m|+ a) = e | +a| 0.001
0.001 x 0.998 x 0.94 x 0.1 x 0.7 €| -a| 0999




Bayes’ Nets

ofRepresentation
JConditional Independences

= Probabilistic Inference
» Enumeration (exact, exponential complexity)
» Variable elimination (exact, worst-case
exponential complexity, often better)
» Probabilistic inference is NP-complete
= Sampling (approximate)

» Learning Bayes’ Nets from Data
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Inference by Enumeration

= General case:
= Evidence variables:
= Query* variable: Q
= Hidden variables:

= Step 1: Select the
entries consistent
with the evidence

x T Peo
0.05

0.25

Eq...

Hy.

Ekzel...ek

.. H,

X1,X0,...Xn
All variables

Step 2: Sum out H to get
joint of Query and evidence

* Works fine with

= We want: multiple query
variables, too
P(Qles .. . ep)

= Step 3: Normalize

1
><_
A

Z =Y PQer e

P(Qler---ex) = %P(Qael ceeer)
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Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by
example:

(B |—|-j,—|—m) XB P(Ba_|_]7_|_m) 0
—ZP (B,e,a,+j,+m)
—ZP P(a|B,e)P(+j|a)P(+mla)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| +a)P(+m| +a) + P(B)P(—e)P(—a|B,—e)P(+j| — a)P(+m| — a)



Inference by Enumeration?

P(Antilock|observed variables) = 7
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« Joint distribution: P(X,Y)
= Entries P(x,y) for all x, y
= Sums to 1

= Selected joint: P(x,Y)
= Aslice of the joint distribution
= Entries P(x,y) for fixed x, all y
= Sums to P(x)
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= Sums to 1
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cold rain | 0.3
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Factor Zoo |

P(T,W)
T [ w [p

« Joint distribution: P(X,Y)

= Entries P(x,y) for all x, y
= Sums to 1

hot sun | 0.4
hot rain | 0.1
cold sun | 0.2

cold rain | 0.3

= Selected joint: P(x,Y)

= Aslice of the joint distribution
P(cold, W
= Entries P(x,y) for fixed x, all y ( W)
= Sums to P(x) T W P
cold sun | 0.2
= Number of capitals = cold | rain | 0.3
dimensionality of the table
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= Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, a
= Sums to 1

= Family of conditionals:
P(X 1Y)
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= Sums to |Y]
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Factor Zoo |l

= Single conditional: P(Y | x) P(W|cold)
= Entries P(y | x) for fixed x, a
= Sums to 1 T w P

cold sun | 0.4
cold rain | 0.6

P(W|T)
R

= Family of conditionals:
P(X 1Y)

= Multiple conditionals hot sun_| 0.8 L P(W|h0t)
: hot rain | 0.2
= Entries P(x | y) forall x, y :
= Sums to |Y| cold sun 0.4 i
cold rain | 0.6 P(W‘COld)




Factor Zoo lll

» Specified family: P(y | X)
» Entries P(y | x) for fixed y,
but for all x
= Sums to ... who knows!

P(rain|T)

T W P
hot rain | 0.2
cold rain | 0.6




Factor Zoo lll

» Specified family: P(y | X)

» Entries P(y | x) for fixed y,

but for all x

= Sums to ... who knows!

P(rain|T)

T W P
hot rain | 0.2
cold rain | 0.6

|

P(rain|hot)
P(rain|cold)
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Factor Zoo Summary

» In general, when we write P(Y, ... Yy | X, ... X))

» [t is a “factor,” a multi-dimensional array

= Its values are P(y, ... Yy | X{ ... Xy)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from
the array

OCSAS N
SIS
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Example: Traffic Domain

= Random Variables
= R: Raining
» T: Traffic
»« |: Late for class!

7

P
®

P(R)

+r | 0.1

-r | 0.9

P(T|R)

+r +t

0.8

+r | -t

0.2

-r |+t

0.1
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Example: Traffic Domain

= Random Variables f(RO)A

= R: Raining @ r 0.9
= T: Traffic P(T|R)

s |: Late for class! or | +t | 0.8
+r -t | 0.2
-r +t | 0.1

P(L) _ 7 @ -r | -t | 0.9

P(L|T)

— Z P(ra t? L)
+t + | 0.3
r,t +t -l | 0.7
B -t + | 0.1
S P(r) () P e
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+r | -t +t | -l
-r | +t [ 0.1 -t | +l | 0.1
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» Track objects called factors
= |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 + | +t [ 0.8 + | +l | 0.3
x| 0.9 +r | -t [0.2 st | -1 07
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EALX t | -t |09
= Any known values are selected
= E.g. if we know L = +/£ , the initial factors are
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Inference by Enumeration: Procedural Outline

Track objects called factors
Initial factors are local CPTs (one per node)

P(R) P(T|R)  P(L|T)
+r 0.1 + | +t [ 0.8 + | +l | 0.3
-r 0.9 + | -t [0.2 + | -l 10.7

-r | +t [ 0.1 -t + [ 0.1

| -t]o9 t] -t [0.9
= Any known values are selected ’
= E.g. if we know L = +/£ | the initial factors are {
P(R) P(T|R)  P(+{T) ’
+r 0.1 +r | +t [ 0.8 +t | +l | 0.3
r | 0.9 #r | -t [0.2 -t | +l ] 0.1
-r | +t [ 0.1
To5 W

Procedure: Join all- faétors, then eliminate all hidden
variables
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= First basic operation: joining factors

= Combining factors:

» Just like a database join

» Get all factors over the joining variable

= Build a new factor over the union of the variables

involved

= Example: Join on R

7
G

P(R) x P(T|R)

+r

0.1

+r

0.8

0.9

+r

0.2

-r

0.1

-r

0.9

~ =
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= First basic operation: joining factors

= Combining factors:

» Just like a database join

» Get all factors over the joining variable

= Build a new factor over the union of the variables

involved

= Example: Join on R
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Operation 1: Join Factors

= First basic operation: joining factors

= Combining factors:
» Just like a database join

» Get all factors over the joining variable

= Build a new factor over the union of the variables

involved

= Example: Join on R
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= Computation for each entry: pointwise products
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Operation 1: Join Factors

= First basic operation: joining factors

= Combining factors:
= Just like a database join % “é___::'j
» Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example: Join on R

@ P(R) x P([T|R) =—> P(R,T)

+r | 0.1 +r | +t |0.8 +r | +t | 0.08
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Example: Multiple Joins f..”.

P(R) . . »-
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Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
= Shrinks a factor to a smaller one

» A projection operation

= Example:

P(R,T)

+r | +t | 0.08
+r | -t | 0.02
-r | +t | 0.09
-r | -t | 0.81
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Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
= Shrinks a factor to a smaller one

» A projection operation

= Example:

P(R,T) e
w]+t[o0s] SUM A (1)
+r | -t 1 0.02 |:> +t | 0.17
T

+t | 0.09 -t | 0.83
-r | -t | 0.81
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Multiple Elimination

> ®

P(R,T,L) | i o0%] Sum Sum




Thus Far: Multiple Join, Multiple Eliminate (= Inference by
Enumeratlon

[ -

Q f‘@
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Marginalizing Early (= Variable Elimination)
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» |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:
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» |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +l | 0.3
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» |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +l | 0.3
-r 0.9 +r | -t 0.2 +t -l [ 0.7

-r | +t | 0.1 -t + | 0.1
-r | -t 0.9 -t -l 0.9

» Computing P(L| 4+ r) , the initial factors become:

P(+r) P(T|+r)
+r 0.1 +r | +t 1 0.8
+r | -t 10.2
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» |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t | +l | 0.3
-r 0.9 +r | -t 0.2 +t -l [ 0.7

-r | +t | 0.1 -t + | 0.1
-r | -t 0.9 -t -l 0.9

» Computing P(L| 4+ r) , the initial factors become:

P(—I-’r) P(T + r)  P(L|IT

0.1 +r 0.8 + | +l | 0.3
+r -t 0.2 +t -l | 0.7

-t | +l [ 0.1

-t -l 10.9




Evidence

» |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T) y N \
+r 0.1 +r | +t | 0.8 +t + [ 0.3 Q: !I
-r 0.9 +r | - 0.2 + -l |O.
T +i 0.1 : +l o.z i A &
-r | -t [0.9 -t -l 10.9

¢ L
» Computing P(L| 4+ r) , the initial factors become: ,&&Q’x

-
f
=

P(+r) P(I|+r)  P(LIT) R 0P —
o | 0.1 or | +t 0.8 +t | + ] 0.3 - 0# > ®© = S
er | -t 0.2 it | L [07 P Q0 == =
| L | 0.1 ':.,_,.
t ] - ]0.39 &@a —~—
Ll

= We eliminate all vars other than query + evidence
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= Result will be a selected joint of query and evidence
= E.g. for P(L | +r), we would end up with:
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= Result will be a selected joint of query and evidence
= E.g. for P(L | +r), we would end up with:
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+r | +l | 0.026
+r| -l | 0.074
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= Result will be a selected joint of query and evidence
= E.g. for P(L | +r), we would end up with:

P(+r,L)

+r | +l | 0.026
+r| -l | 0.074

= To get our answer, just normalize this!




Evidence ||

= Result will be a selected joint of query and evidence
= E.g. for P(L | +r), we would end up with:

P(+7°, L) Normalize

+r | +l | 0.026 :D
+r| -l | 0.074

= To get our answer, just normalize this!
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= Result will be a selected joint of query and evidence
= E.g. for P(L | +r), we would end up with:

P(+7°, L) Normalize P(L +7“)

+r | +1 | 0.026 :D + | 0.26
+r| -l | 0.074 -1 10.74

= To get our answer, just normalize this!




Evidence ||

= Result will be a selected joint of query and evidence
= E.g. for P(L | +r), we would end up with:

P(+7°, L) Normalize P(L +7“)

+r | +1 | 0.026 :D + | 0.26
+r| -l | 0.074 -1 10.74

= To get our answer, just normalize this!

= That’s it!



General Variable Elimination

Query:  P(Q|E1 = e1,... B = eg)

Start with initial factors:

» Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Pick a hidden variable H

= Join all factors mentioning H

» Eliminate (sum out) H

Join all remaining factors and normalize 1
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P(B|j,m) « P(B, j,m)

P(B)  P(E)  P(AB,E)

pP(jl4)  P(m|A)

Choose A
P(A|B, E)
P(j|A)
P(m|A)

j> P(j,m|B, E)
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P(B|j,m) « P(B, j,m)
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P(j]A) X > P(j,m,AlB,E) | ¥ > P(j,m|B, L)
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Example

P(B)

P(E) P(j,m|B, E)

Choose E
P(E)
P(j,m|B, E)

@ P(j,m, B|B)

@ P(j,m|B)




Example

P(B) P(E) P(j,m|B, E) o e
Choose E 0

P(E) j>1 P(j,m,E|B) [% > P(j,m|B) 0 @

P(j,m|B, E)
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Example

P(B)

P(E) P(j,m|B, E)

Choose E
P(E)

P(j,m|B, E)

@ P(j,m, B|B) @ P(j,m|B)

P(B) P(j,m|B)

Finish with
P(B)
P(j,m|B)

B

j>\ P(j,m, B)



Example

P(B)

P(E) P(j,m|B, E)

Choose E
P(E)

P(j,m|B, E)

@ P(j,m, B|B) @ P(j,m|B)

P(B) P(j,m|B)

Finish with
P(B)
P(j,m|B)

B

X > P(j4,m,B) |Normalize > P(B’], m)



Same Example in Equations

P(B|j,m) < P(B, j,m) O O

(42
P(B)  P(B)  P(AB,E)  P(jl4)  P(m|A)

P(B'j,ﬂ?) X P(B,],m)

__ Z P(B,j,m, e, a) marginal can be obtained from joint by summing out

e,a

Z P(B)P(e)P(a|B,e)P(j|la)P(m|a) use Bayes’ net joint distribution expression

= Y P(B)P()Y. PlalB.c)P(jla)P(mia)  USe X (72 =xy +xz

_ ZP(B)P(e)fl(B, e.im) joining on a, and then summing out gives f,
€
= P(B))_P(e)fi1(B,e,j,m) use X*(y+z) =Xy + Xz
€
= P(B)f>(B,j7,m) joining on e, and then summing out gives f,

All we are doing is exploiting uwy + Uwz + uxy + UXZ + VWY + VWZ + VXy +VXZ = (u+v)(w+Xx)(y+z) to improve computational
efficiency!



Another Variable Elimination Example

Query: P(X3|Y1 = Y1, YQ = Y2, Y3 = yg)
Start by inserting evidence, which gives the following initial factors:

p(Z)p(X1|2)p(X2| Z)p(X3|Z)p(y1| X1)p(y2| X2)p(y3| X3)

Eliminate X, this introduces the factor fi(Z,y1) = >_, p(x1|Z2)p(y1]|z1), and
we are left with:

P(Z) f1(Z,y1)p(X2| Z)p(X5]Z)p(y2| X2)p(y3| X3)

Eliminate Xo, this introduces the factor fa(Z,y2) = >_,, p(72|Z)p(y2|r2), and
we are left with:

P(2) f1(Z,y1) fo(Z,y2)p(X3]| Z)p(y3| X3)

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(2, 1) f2(2, y2)p(X3|2),
and we are left:

p(yd‘Xd)v f3(y17y27X3)

No hidden variables left. Join the remaining factors to get:

fa(y1,v2,y3, X3) = P(y3|X3) f3(y1, y2, X3).

Normalizing over X3 gives P(X3|y1,y2,y3)-

Computational complexity critically
depends on the largest factor being
generated in this process. Size of
factor = number of entries in table.
In example above (assuming binary)
all factors generated are of size 2 ---
as they all only have one variable

(Z, Z, and X, respectively).



Variable Elimination Ordering

= For the query P(X,|y,,...,y,,) work through the following two different
orderings as done in previous slide: Z, X,, ..., X, and X, ..., X ,, Z. What is

ooy n_1,

the size of the maximum factor generated for each of the orderings?
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Variable Elimination Ordering

= For the query P(X,|y,,...,y,,) work through the following two different
orderings as done in previous slide: Z, X,, ..., X, and X, ..., X ,, Z. What is

ooy n_1,

the size of the maximum factor generated for each of the orderings?

= Answer: 2n+1 versus 22 (assuming binary)

= In general: the ordering can greatly affect efficiency.
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VE: Computational and Space Complexity

» The computational and space complexity of variable elimination is
determined by the largest factor

» The elimination ordering can greatly affect the size of the largest
factor.
= E.g., previous slide’s example 2n vs. 2

= Does there always exist an ordering that only results in small
factors?
= No!



Worst Case Complexity?

= CSP:
(z1VaoV-xs)A(—x1VesVzg) A(xeVxoVeg) A(-xsV-ozgVozs)A(xeVesVar ) AN(xgVasVeg) AN(—xsVagV-xr)AN(—xsVxgVar)

P(X;=0)=P(X;=1)=0.5
Y1 :X1 \/XQ\/ﬁX.'j

Ys = X5V Xg VX7

Yio=Y1AYs
Y7.8 = Y7 A Yg
Yiosa=Y12AY34

R V.o "
Y5678 =Y56/AYrs

Z =Y19234NY5678
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P(X;=0)=P(X;=1)=0.5
Y1 = X1 \/X2 V ﬁ)(3

/8 — ﬁ/X'g', V /Y(-; V X7
Yl_‘g =Y ANYs

Yrs = Y7 A Ye

Z =Y19234NY5678

= |If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.



Worst Case Complexity?

= CSP:

(z1VaoV-xs)A(—x1VesVzg) A(xeVxoVeg) A(-xsV-ozgVozs)A(xeVesVar ) AN(xgVasVeg) AN(—xsVagV-xr)AN(—xsVxgVar)

P(X;=0))=P(X;=1)=0.5
Y1 :X1 \/XQVﬁX.'j

Ys = = X5 V X V X

Yl_‘g =Y AYs

Yos =Y A YR

PR“TLs N

Z =Y19234NY5678

= |If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.



Polytrees

= A polytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
« Try it!!

» Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



Bayes’ Nets

& Representation
& Conditional Independences

= Probabilistic Inference

vEnumeration (exact, exponential complexity)

J Variable elimination (exact, worst-case
exponential complexity, often better)

Jlnference is NP-complete

= Sampling (approximate)

» Learning Bayes’ Nets from Data



