CS 5522: Artificial Intelligence II

Hidden Markov Models

Instructor: Alan Ritter
Ohio State University

[These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]
Pacman - Sonar (P4)
Video of Demo Pacman - Sonar (no beliefs)
Video of Demo Pacman - Sonar (no beliefs)
Video of Demo Pacman - Sonar (no beliefs)
Probability Recap
Probability Recap

- Conditional probability
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]
- Product rule
Probability Recap

- Conditional probability
 $$P(x|y) = \frac{P(x, y)}{P(y)}$$

- Product rule

- Chain rule
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]
- Product rule
 \[P(x, y) = P(x|y)P(y) \]
- Chain rule
Probability Recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
Probability Recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x,y)}{P(y)} \]

- **Product rule**
 \[P(x,y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- **X, Y independent if and only if:**
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x,y)}{P(y)} \]

- Product rule
 \[P(x,y) = P(x|y)P(y) \]

- Chain rule
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- X, Y independent if and only if:

- X and Y are conditionally independent given Z if and only if:
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- Product rule
 \[P(x, y) = P(x|y)P(y) \]

- Chain rule
 \[P(X_1, X_2, \ldots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- X, Y independent if and only if: \(\forall x, y : P(x, y) = P(x)P(y) \)

- X and Y are conditionally independent given Z if and only if:
Probability Recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(X_1, X_2, \ldots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- **X, Y independent if and only if:** \(\forall x, y : P(x, y) = P(x)P(y) \)

- **X and Y are conditionally independent given Z if and only if:**
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- Product rule
 \[P(x, y) = P(x|y)P(y) \]

- Chain rule
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- X, Y independent if and only if: \(\forall x, y : P(x, y) = P(x)P(y) \)

- X and Y are conditionally independent given Z if and only if: \(X \perp Y|Z \)
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
Hidden Markov Models
Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs

- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \ldots$

$E_1 \rightarrow E_2 \rightarrow E_3 \rightarrow E_4 \rightarrow \ldots$
Example: Weather HMM

- An HMM is defined by:
 - Initial distribution: \(P(X_1) \)
 - Transitions: \(P(X_t \mid X_{t-1}) \)
 - Emissions: \(P(E_t \mid X_t) \)
Example: Weather HMM

- An HMM is defined by:
 - Initial distribution: \(P(X_1) \)
 - Transitions: \(P(X_t \mid X_{t-1}) \)
 - Emissions: \(P(E_t \mid X_t) \)

<table>
<thead>
<tr>
<th>(R_t)</th>
<th>(R_{t+1})</th>
<th>(P(R_{t+1} \mid R_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+r</td>
<td>0.7</td>
</tr>
<tr>
<td>+r</td>
<td>-r</td>
<td>0.3</td>
</tr>
<tr>
<td>-r</td>
<td>+r</td>
<td>0.3</td>
</tr>
<tr>
<td>-r</td>
<td>-r</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Example: Weather HMM

An HMM is defined by:
- Initial distribution: $P(X_1)$
- Transitions: $P(X_t | X_{t-1})$
- Emissions: $P(E_t | X_t)$

| R_t | R_{t+1} | $P(R_{t+1} | R_t)$ |
|-------|-----------|---------------------|
| +r | +r | 0.7 |
| +r | -r | 0.3 |
| -r | +r | 0.3 |
| -r | -r | 0.7 |

| R_t | U_t | $P(U_t | R_t)$ |
|-------|-------|----------------|
| +r | +u | 0.9 |
| +r | -u | 0.1 |
| -r | +u | 0.2 |
| -r | -u | 0.8 |
Example: Ghostbusters HMM

- $P(X_1) = \text{uniform}$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
</tr>
</tbody>
</table>

$P(X_1)$
Example: Ghostbusters HMM

- $P(X_1) = \text{uniform}$
- $P(X|X') = \text{usually move clockwise, but sometimes move in a random direction or stay in place}$
Example: Ghostbusters HMM

- \(P(X_1) = \text{uniform} \)

- \(P(X|X') = \text{usually move clockwise, but sometimes move in a random direction or stay in place} \)
Example: Ghostbusters HMM

- \(P(X_1) = \text{uniform} \)

- \(P(X|X') = \) usually move clockwise, but sometimes move in a random direction or stay in place

- \(P(R_{ij} | X) = \) same sensor model as before: red means close, green means far away.

[Diagram showing the transition between states and sensor readings for Ghostbusters HMM]

\[
\begin{array}{c|c|c|c}
X_1 & X_2 & X_3 & X_4 \\
\hline
R_{i,j} & R_{i,j} & R_{i,j} & R_{i,j} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
P(X_1) & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
P(X|X'=\langle1,2\rangle) & \frac{1}{6} & \frac{1}{6} & \frac{1}{2} \\
0 & 1/6 & 0 \\
0 & 0 & 0 \\
\end{array}
\]
Video of Demo Ghostbusters - Circular Dynamics -- HMM
Video of Demo Ghostbusters - Circular Dynamics -- HMM
Video of Demo Ghostbusters - Circular Dynamics -- HMM
Joint Distribution of an HMM

- Joint distribution:
 \[P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3) \]

- More generally:
 \[P(X_1, E_1, \ldots, X_T, E_T) = P(X_1)P(E_1|X_1) \prod_{t=2}^{T} P(X_t|X_{t-1})P(E_t|X_t) \]

- Questions to be resolved:
 - Does this indeed define a joint distribution?
 - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?
From the chain rule, every joint distribution over $X_1, E_1, X_2, E_2, X_3, E_3$ can be written as:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1, E_1)P(E_2|X_1, E_1, X_2)P(X_3|X_1, E_1, X_2, E_2)P(E_3|X_1, E_1, X_2, E_2, X_3)$$

Assuming that

$X_2 \perp E_1 \mid X_1, \quad E_2 \perp X_1, E_1 \mid X_2, \quad X_3 \perp X_1, E_1, E_2 \mid X_2, \quad E_3 \perp X_1, E_1, X_2, E_2 \mid X_3$

gives us the expression posited on the previous slide:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$$
Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_1, E_1, \ldots, X_T, E_T$ can be written as:
 \[P(X_1, E_1, \ldots, X_T, E_T) = P(X_1)P(E_1|X_1) \prod_{t=2}^{T} P(X_t|X_1, E_1, \ldots, X_{t-1}, E_{t-1})P(E_t|X_1, E_1, \ldots, X_{t-1}, E_{t-1}, X_t) \]

- Assuming that for all t:
 - State independent of all past states and all past evidence given the previous state, i.e.:
 \[X_t \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1} \]
 - Evidence is independent of all past states and all past evidence given the current state, i.e.:
 \[E_t \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_t \]

gives us the expression posited on the earlier slide:
\[P(X_1, E_1, \ldots, X_T, E_T) = P(X_1)P(E_1|X_1) \prod_{t=2}^{T} P(X_t|X_{t-1})P(E_t|X_t) \]
Many implied conditional independencies, e.g.,

\[E_1 \perp X_2, E_2, X_3, E_3 \mid X_1 \]

To prove them

- Approach 1: follow similar (algebraic) approach to what we did in the Markov models lecture
- Approach 2: directly from the graph structure (3 lectures from now)
 - Intuition: If path between U and V goes through W, then \(U \perp V \mid W \)

[Some fineprint later]
Real HMM Examples

- **Speech recognition HMMs:**
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)

- **Machine translation HMMs:**
 - Observations are words (tens of thousands)
 - States are translation options

- **Robot tracking:**
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)
Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_t(X) = P_t(X_t | e_1, ..., e_t)$ (the belief state) over time.

- We start with $B_1(X)$ in an initial setting, usually uniform.

- As time passes, or we get observations, we update $B(X)$.

- The Kalman filter was invented in the 60’s and first implemented as a method of trajectory estimation for the Apollo program.
Example: Robot Localization

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.
Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake
Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely
b/c required 1 mistake
Example: Robot Localization
Example: Robot Localization

\[t=2 \]
Example: Robot Localization

Prob

0 1

t=3
Example: Robot Localization

$t=3$

Prob

0

1
Example: Robot Localization

\[t=4 \]

\[\text{Prob} \]

0

1
Example: Robot Localization

Prob

0 1

$t=4$
Example: Robot Localization

Prob

0 1

t=5
Inference: Base Cases

\[P(X_1|e_1) \]
Inference: Base Cases

\[P(X_1|e_1) \]

\[
P(x_1|e_1) = P(x_1, e_1)/P(e_1)
\]

\[
\propto_{x_1} P(x_1, e_1)
\]

\[
= P(x_1)P(e_1|x_1)
\]
Inference: Base Cases

\[P(X_1|e_1) \]

\[P(x_1|e_1) = \frac{P(x_1, e_1)}{P(e_1)} \]

\[\propto_{X_1} P(x_1, e_1) \]

\[= P(x_1)P(e_1|x_1) \]
Inference: Base Cases

\[P(X_1|e_1) \]

\[P(x_1|e_1) = \frac{P(x_1, e_1)}{P(e_1)} \]
\[\propto_{x_1} P(x_1, e_1) \]
\[= P(x_1)P(e_1|x_1) \]

\[P(X_2) \]

\[P(x_2) = \sum_{x_1} P(x_1, x_2) \]
\[= \sum_{x_1} P(x_1)P(x_2|x_1) \]
Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$

$$B(X_t) = P(X_t|e_{1:t})$$
Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$

 $$B(X_t) = P(X_t|e_{1:t})$$

- Then, after one time step passes:
Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$

 $$B(X_t) = P(X_t \mid e_{1:t})$$

- Then, after one time step passes:

 $$P(X_{t+1} \mid e_{1:t})$$
Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$
 \[
 B(X_t) = P(X_t \mid e_{1:t})
 \]
- Then, after one time step passes:
 \[
 P(X_{t+1} \mid e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t \mid e_{1:t})
 \]
Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$

 \[B(X_t) = P(X_t \mid e_{1:t}) \]

- Then, after one time step passes:

 \[
 P(X_{t+1} \mid e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t \mid e_{1:t})
 \]

 \[= \sum_{x_t} P(X_{t+1} \mid x_t, e_{1:t}) P(x_t \mid e_{1:t}) \]
Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$

 $B(X_t) = P(X_t|e_{1:t})$

- Then, after one time step passes:

 $$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

 $$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t})P(x_t|e_{1:t})$$

 $$= \sum_{x_t} P(X_{t+1}|x_t)P(x_t|e_{1:t})$$
Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$

$$B(X_t) = P(X_t|e_{1:t})$$

- Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t})P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t)P(x_t|e_{1:t})$$

- Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$
Passage of Time

- Assume we have current belief \(P(X \mid \text{evidence to date}) \)

\[
B(X_t) = P(X_t \mid e_{1:t})
\]

- Then, after one time step passes:

\[
P(X_{t+1} \mid e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t \mid e_{1:t})
\]

\[
= \sum_{x_t} P(X_{t+1} \mid x_t, e_{1:t}) P(x_t \mid e_{1:t})
\]

\[
= \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t \mid e_{1:t})
\]

- Or compactly:

\[
B'(X_{t+1}) = \sum_{x_t} P(X' \mid x_t) B(x_t)
\]

- Basic idea: beliefs get “pushed” through the transitions

 - With the “B” notation, we have to be careful about what time step \(t \) the belief is about, and what evidence it includes
As time passes, uncertainty “accumulates”

(Transition model: ghosts usually go clockwise)

\[T = 1 \]
As time passes, uncertainty “accumulates”

(Transition model: ghosts usually go clockwise)
Example: Passage of Time

- As time passes, uncertainty “accumulates”

(Transition model: ghosts usually go clockwise)
As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)
Assume we have current belief $P(X \mid \text{previous evidence})$:

$$B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t})$$
Observation

- Assume we have current belief \(P(X \mid \text{previous evidence}) \):
 \[
 B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t})
 \]
- Then, after evidence comes in:
Observation

- Assume we have current belief $P(X \mid \text{previous evidence})$:
 \[B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t}) \]
- Then, after evidence comes in:
 \[P(X_{t+1} \mid e_{1:t+1}) = \]
Assume we have current belief $P(X \mid \text{previous evidence})$:

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})}$$
Assume we have current belief $P(X \mid \text{previous evidence})$:

$$B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1} \mid e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1} \mid e_{1:t})}{P(e_{t+1} \mid e_{1:t})}$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1} \mid e_{1:t})$$
Observation

- Assume we have current belief $P(X \mid \text{previous evidence})$:

 $$ B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t}) $$

- Then, after evidence comes in:

 $$ P(X_{t+1} \mid e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1} \mid e_{1:t})}{P(e_{t+1} \mid e_{1:t})} $$

 $$ \propto P(X_{t+1}, e_{t+1} \mid e_{1:t}) $$

 $$ = P(e_{t+1} \mid e_{1:t}, X_{t+1}) P(X_{t+1} \mid e_{1:t}) $$
Assume we have current belief $P(X \mid \text{previous evidence})$:

$$B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1} \mid e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1} \mid e_{1:t})}{P(e_{t+1} \mid e_{1:t})}$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1} \mid e_{1:t})$$

$$= P(e_{t+1} \mid e_{1:t}, X_{t+1}) P(X_{t+1} \mid e_{1:t})$$

$$= P(e_{t+1} \mid X_{t+1}) P(X_{t+1} \mid e_{1:t})$$
Assume we have current belief $P(X \mid \text{previous evidence})$:

$$B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1} \mid e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1} \mid e_{1:t})}{P(e_{t+1} \mid e_{1:t})} \propto_{X_{t+1}} P(X_{t+1}, e_{t+1} \mid e_{1:t})$$

$$= P(e_{t+1} \mid e_{1:t}, X_{t+1})P(X_{t+1} \mid e_{1:t})$$

$$= P(e_{t+1} \mid X_{t+1})P(X_{t+1} \mid e_{1:t})$$

Or, compactly:
Observation

- Assume we have current belief \(P(X | \text{previous evidence}) \):
 \[
 B'(X_{t+1}) = P(X_{t+1} | e_{1:t})
 \]

- Then, after evidence comes in:
 \[
 P(X_{t+1} | e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1} | e_{1:t})}{P(e_{t+1} | e_{1:t})}
 \]
 \[
 \propto P(X_{t+1}, e_{t+1} | e_{1:t})
 \]
 \[
 = P(e_{t+1} | e_{1:t}, X_{t+1}) P(X_{t+1} | e_{1:t})
 \]
 \[
 = P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t})
 \]
- Or, compactly:
 \[
 B(X_{t+1}) \propto P(e_{t+1} | X_{t+1}) B'(X_{t+1})
 \]
Assume we have current belief $P(X \mid \text{previous evidence})$:

$$B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1} \mid e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1} \mid e_{1:t})}{P(e_{t+1} \mid e_{1:t})} \propto P(X_{t+1}, e_{t+1} \mid e_{1:t})$$

$$= P(e_{t+1} \mid e_{1:t}, X_{t+1}) P(X_{t+1} \mid e_{1:t})$$

$$= P(e_{t+1} \mid X_{t+1}) P(X_{t+1} \mid e_{1:t})$$

Or, compactly:

$$B(X_{t+1}) \propto P(e_{t+1} \mid X_{t+1}) B'(X_{t+1})$$

Basic idea: beliefs “reweighted” by likelihood of evidence

Unlike passage of time, we have to renormalize
Example: Observation

- As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation

After observation

\[B(X) \propto P(e|X)B'(X) \]
Example: Weather HMM

- \(B(+r) = 0.5 \)
 - \(B'(+r) = 0.5 \)
 - \(B(+r) = 0.818 \)
 - \(B'(+r) = 0.627 \)
 - \(B(+r) = 0.883 \)
- \(B(-r) = 0.5 \)
 - \(B'(-r) = 0.5 \)
 - \(B(-r) = 0.182 \)
 - \(B'(-r) = 0.373 \)
 - \(B(-r) = 0.117 \)
Example: Weather HMM

\[P(R_{t+1} | R_t) \]

\[\begin{array}{c|ccc}
 R_t & R_{t+1} & P(R_{t+1} | R_t) \\
 \hline
 +r & +r & 0.7 \\
 +r & -r & 0.3 \\
 -r & +r & 0.3 \\
 -r & -r & 0.7 \\
\end{array} \]
Example: Weather HMM

\[R_t \rightarrow R_{t+1} \rightarrow R_{t+2} \]

- \(B(+r) = 0.5 \)
- \(B(-r) = 0.5 \)

- \(B(+r) = 0.818 \)
- \(B(-r) = 0.182 \)

- \(B(+r) = 0.883 \)
- \(B(-r) = 0.117 \)

<table>
<thead>
<tr>
<th>(R_t)</th>
<th>(R_{t+1})</th>
<th>(P(R_{t+1} \mid R_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+r</td>
<td>0.7</td>
</tr>
<tr>
<td>+r</td>
<td>-r</td>
<td>0.3</td>
</tr>
<tr>
<td>-r</td>
<td>+r</td>
<td>0.3</td>
</tr>
<tr>
<td>-r</td>
<td>-r</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(R_t)</th>
<th>(U_t)</th>
<th>(P(U_t \mid R_t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+u</td>
<td>0.9</td>
</tr>
<tr>
<td>+r</td>
<td>-u</td>
<td>0.1</td>
</tr>
<tr>
<td>-r</td>
<td>+u</td>
<td>0.2</td>
</tr>
<tr>
<td>-r</td>
<td>-u</td>
<td>0.8</td>
</tr>
</tbody>
</table>
The Forward Algorithm

- We are given evidence at each time and want to know
 \[B_t(X) = P(X_t|e_{1:t}) \]

- We can derive the following updates
 \[P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t}) \]

 We can normalize as we go if we want to have \(P(x|e) \) at each time step, or just once at the end...
The Forward Algorithm

- We are given evidence at each time and want to know

\[B_t(X) = P(X_t|e_{1:t}) \]

- We can derive the following updates

\[
P(x_t|e_{1:t}) \propto \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})
\]

We can normalize as we go if we want to have \(P(x|e) \) at each time step, or just once at the end...
The Forward Algorithm

- We are given evidence at each time and want to know

\[B_t(X) = P(X_t|e_{1:t}) \]

- We can derive the following updates

\[
P(x_t|e_{1:t}) \propto \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})
\]

\[
= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)
\]

We can normalize as we go if we want to have \(P(x|e) \) at each time step, or just once at the end...
The Forward Algorithm

- We are given evidence at each time and want to know

\[B_t(X) = P(X_t|e_{1:t}) \]

- We can derive the following updates

\[
P(x_t|e_{1:t}) \propto \sum_{x_t} P(x_t, e_{1:t})
\]

\[
= \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})
\]

\[
= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t)
\]

\[
= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})
\]

We can normalize as we go if we want to have \(P(x|e) \) at each time step, or just once at the end...
Online Belief Updates

- Every time step, we start with current $P(X \mid \text{evidence})$
- We update for time:
 $$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$
- We update for evidence:
 $$P(x_t|e_{1:t}) \propto_{X} P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$
- The forward algorithm does both at once (and doesn’t normalize)
Pacman - Sonar (P4)
Video of Demo Pacman - Sonar (with beliefs)
Video of Demo Pacman - Sonar (with beliefs)
Video of Demo Pacman - Sonar (with beliefs)
Next Time: Particle Filtering and Applications of HMMs