
CS 5522: Artificial Intelligence II  
Hidden Markov Models

Instructor: Alan Ritter 

Ohio State University 
[These slides were adapted from CS188 Intro to AI at UC Berkeley.  All materials available at http://ai.berkeley.edu.]



Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]
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▪ Product rule 

▪ Chain rule 

▪ X, Y independent if and only if: 

▪ X and Y are conditionally independent given Z if and only if:



Hidden Markov Models



Hidden Markov Models

▪ Markov chains not so useful for most agents 
▪ Need observations to update your beliefs 

▪ Hidden Markov models (HMMs) 
▪ Underlying Markov chain over states X 
▪ You observe outputs (effects) at each time step
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Example: Weather HMM

Umbrellat-1 Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

▪ An HMM is defined by: 
▪ Initial distribution: 
▪ Transitions: 
▪ Emissions:
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Example: Ghostbusters HMM
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sometimes move in a random direction or 
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Example: Ghostbusters HMM

▪ P(X1) = uniform

▪ P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

▪ P(Rij|X) = same sensor model as before:  
red means close, green means far away.
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Joint Distribution of an HMM

▪ Joint distribution: 

▪ More generally: 

▪ Questions to be resolved: 
▪ Does this indeed define a joint distribution? 
▪ Can every joint distribution be factored this way, or are we making some assumptions 

about the joint distribution by using this factorization?
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▪ From the chain rule, every joint distribution over                                   can be 
written as: 

▪ Assuming that 
  

     
gives us the expression posited on the previous slide: 
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Chain Rule and HMMs

▪ From the chain rule, every joint distribution over                              can be 
written as: 

▪ Assuming that for all t:  
▪ State independent of all past states and all past evidence given the previous state, i.e.:  

▪ Evidence is independent of all past states and all past evidence given the current state, i.e.: 
     

      gives us the expression posited on the earlier slide: 
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Implied Conditional Independencies

▪ Many implied conditional independencies, e.g., 

▪ To prove them 
▪ Approach 1: follow similar (algebraic) approach to what we did in the Markov 

models lecture 
▪ Approach 2: directly from the graph structure (3 lectures from now) 

▪ Intuition: If path between U and V goes through W, then
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[Some fineprint later]



Real HMM Examples

▪ Speech recognition HMMs: 
▪ Observations are acoustic signals (continuous valued) 
▪ States are specific positions in specific words (so, tens of thousands) 

▪ Machine translation HMMs: 
▪ Observations are words (tens of thousands) 
▪ States are translation options 

▪ Robot tracking: 
▪ Observations are range readings (continuous) 
▪ States are positions on a map (continuous)



Filtering / Monitoring

▪ Filtering, or monitoring, is the task of tracking the 
distribution Bt(X) = Pt(Xt | e1, …, et) (the belief state) over 
time 

▪ We start with B1(X) in an initial setting, usually uniform 

▪ As time passes, or we get observations, we update B(X) 

▪ The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program



Example: Robot Localization

t=0 
Sensor model: can read in which directions there is a wall, never 

more than 1 mistake 
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer
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Passage of Time

▪ Assume we have current belief P(X | evidence to date)

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions
▪ With the “B” notation, we have to be careful about what time step t the belief is about, and 

what evidence it includes

X2X1

▪ Or compactly:
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(Transition model: ghosts usually go clockwise)
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Observation
▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in:

▪ Or, compactly:

E1

X1

▪ Basic idea: beliefs 
“reweighted” by likelihood of 
evidence 

▪ Unlike passage of time, we 
have to renormalize 



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Example: Weather HMM

Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5 
B(-r)  = 0.5

B’(+r) = 0.5 
B’(-r)  = 0.5

B(+r) = 0.818 
B(-r)  = 0.182

B’(+r) = 0.627 
B’(-r)  = 0.373

B(+r) = 0.883 
B(-r)  = 0.117
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The Forward Algorithm
▪ We are given evidence at each time and want to know 

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…
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Online Belief Updates

▪ Every time step, we start with current P(X | evidence) 
▪ We update for time: 

▪ We update for evidence: 

▪ The forward algorithm does both at once (and doesn’t normalize)
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[Demo: Pacman – Sonar – No Beliefs(L14D1)]
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Next Time: Particle Filtering and Applications of HMMs


