CS 5522: Artificial Intelligence |l
Hidden Markov Models

Instructor: Alan Ritter

Ohio State University
[These slides were adapted from CS5188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]
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Hidden Markov Models

= Markov chains not so useful for most agents
» Need observations to update your beliefs

= Hidden Markov models (HMMs)

» Underlying Markov chain over states X
= You observe outputs (effects) at each time step

(X, )---»
6666




Example: Weather HMM
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= An HMM is defined by:
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Example: Ghostbusters HMM

P(X;) = uniform

P(X|X’) = usually move clockwise, but
sometimes move in a random direction or
stay in place

P(R;;1X) = same sensor model as before:
red means close, green means far away.
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Joint Distribution of an HMM

RO
® 5 ®
= Joint distribution:

P(X1, Er, Xo, B2, X3, E3) = P(X1)P(E1|X1)P(Xa|X1)P(Es| X2) P(X3| Xo) P(E3| X5)

= More generally: T

P(X1,Er,..., X1, Br) = P(X1)P(E1|X1) | | P(Xe| Xi—1) P(E4| Xy)
= Questions to be resolved: =
= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions
about the joint distribution by using this factorization?



Chain Rule and HMMs @’@’@'
- ®0®®o

= From the chain rule, every joint distribution over X;, Fq, X5, E5, X3, E3 can be
written as:

P(X1, E1, Xo, By, X3, E3) =P(X1)P(E1|X1)P(X2| X1, E1)P(E2| X1, B, X3)
P(Xs3| X1, E1, Xo, E2)P(E3| X1, B, Xa, B, X3)
= Assuming that

X2 AL E1 | Xl, E2 AL Xl,El | XQ, X3 AL Xl,El,EQ | XQ, E3 AL Xl,El,XQ,EQ | X3

gives us the expression posited on the previous slide:

P(X1, Er, Xo, B2, X3, E3) = P(X1)P(E1|X1)P(Xa|X1)P(Es| X2) P(X3| Xo) P(E3| X5)



Chain Rule and HMMs @’@’@'
- ®0®®o

= From the chain rule, every joint distribution over X1, F1,..., X1, BT can be
written as: T
P(Xy,Ey,...,X7,BE7) = P(X1>P(E1|X1)HP(Xt‘leEla---;Xt—laEt—l)P(E”XlaEla---;Xt—laEt—laXt>
t=2

» Assuming that for all t:
» State independent of all past states and all past evidence given the previous state, i.e.:

Xt —J-I— Xl) El) .« o 7Xt—27 Et—27 Et—l | Xt—l

» Evidence is independent of all past states and all past evidence given the current state, i.e.:
Et AL Xl) E17 R 7Xt—27 Et—27 Xt—la Et—l ‘ Xt

gives us the expression posited on the earlier slide:

T
P(Xy, By, ..., Xq, Br) = P(X1)P(E1|X1) | [ P(Xi|Xi—1) P(E| X))

1t=2



Implied Conditional Independencies

66

= Many implied conditional independencies, e.g.,
By AL Xy, By, X3, B3 | Xy
= To prove them

= Approach 1: follow similar (algebraic) approach to what we did in the Markov
models lecture

= Approach 2: directly from the graph structure (3 lectures from now)
= Intuition: If path between U and V goes through W, then [7 || V/ ‘ W

[Some fineprint later]



Real HMM Examples

» Speech recognition HMMs:
» Observations are acoustic signals (continuous valued)
» States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options

= Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)



Filtering / Monitoring

= Filtering, or monitoring, is the task of tracking the
distribution B,(X) = P.(X; | e, ..., ) (the belief state) over

time
« We start with B,(X) in an initial setting, usually uniform

= As time passes, or we get observations, we update B(X)

= The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

B 0
Prob 0 1

t=0
Sensor model: can read in which directions there is a wall, never
more than 1 mistake

Motion model: may not execute action with small prob.
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P(X1le1)

P(z1le1) = P(x1,e1)/P(e1)
xx, P(x1,e1)

= P(z1)P(e1|x1)

@

A ©O®

P(X5)

P(z2) =) P(z1,z2)
T

=Y P(z1)P(z2|z1)
T
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Passage of Time

= Assume we have current belief P(X | evidence to date) @ @
_>
B(X) = P(Xtle1:t)

= Then, after one time step passes:

P(Xt—|—1|€1:t) — ZP(Xt+175Ct‘€1:t)

Tt

= ZP(Xt+1|CUt761:t)P(33t\61:t) = Or compactly:

(X P(X'
- ZP(XtJrl’xt)P(xt’@l:t) t+1) Z z) B

It

= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and
what evidence it includes
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Example: Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise

0
<0 . 01

T=2
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Observation

= Assume we have current belief P(X | previous evidence):

B'(Xi41) = P(X¢q1lers)

= Then, after evidence comes in:

P<Xt+1|€1:t+1) — P(Xt—|—176t—|—1|61:t)/P(€t—|—1‘61:t)
XX 41 P(Xt+1,€t+1\€1:t)

— P(€t+1 elztth—I—l)P(Xt-l—1|€1!t)

— Ple, 1| X P(X..+les.,) = Basicidea: beliefs
(€11 Xe41) P(Xepafert) “reweighted” by likelihood of

= Or, compactly: evidence

= Unlike passage of time, we
B(Xet1) ocxyy Pleta|Xop1) B/ (Xes1) have topreno%malize




Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

0.05 | 0.01 | 0.05 |<0.01|<0.01|<0.01

0.02 | 0.14 | 0.11 | 0.35 |<0.01|<0.01

0.07 | 0.03 | 0.05 |<0.01| 0.03 |<0.01
03 0

Before observation After observation

B(X) x P(e|X)B'(X)
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Example: Weather HMM

Umbrella,

o [T

Re | Rer | PRyl
R)
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0.7

Re | Uy | P(UIR))
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The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:)

= We can derive the following updates

P(zile1:) ocx P, e1:¢) —————

We can normalize as we go if we
want to have P(x|e) at each time
step, or just once at the end...
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Online Belief Updates

= Every time step, we start with current P(X | evidence)
= We update for time:

P(xtleq:1—1) = Z P(xi_qler:4—1) - P(xt|rs—1) @_>@

Tt—1

= We update for evidence: @

v

P(xiler:t) ocx P(ailer:i—1) - Pet|xt)

» The forward algorithm does both at once (and doesn’t normalize) ‘



Pacman - Sonar (P4)
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Video of Demo Pacman - Sonar (with beliefs
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Next Time: Particle Filtering and Applications of HMMs



