
CS 5522: Artificial Intelligence II  
Particle Filters and Applications of HMMs

Instructor: Alan Ritter 

Ohio State University 
[These slides were adapted from CS188 Intro to AI at UC Berkeley.  All materials available at http://ai.berkeley.edu.]
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[Demo: Ghostbusters Markov Model (L15D1)]



Video of Demo Ghostbusters Markov Model (Reminder)
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Video of Demo Ghostbusters Markov Model (Reminder)



Recap: Filtering
 

Elapse time: compute P( Xt | e1:t-1 )  
 
 
 
Observe: compute P( Xt | e1:t )
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[Demo: Ghostbusters Exact Filtering 
(L15D2)]
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Recap: Filtering
 

Elapse time: compute P( Xt | e1:t-1 )  
 
 
 
Observe: compute P( Xt | e1:t )
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Observe
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[Demo: Ghostbusters Exact Filtering 
(L15D2)]



Video of Ghostbusters Exact Filtering (Reminder)
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▪ E.g. X is continuous
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▪ Track samples of X, not all values
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▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact 
inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in 
practice

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles 
(samples) 
▪ Generally, N << |X| 
▪ Storing map from X to counts would defeat the point 

▪ P(x) approximated by number of particles with value x 
▪ So, many x may have P(x) = 0!  
▪ More particles, more accuracy 

▪ For now, all particles have a weight of 1

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model 

▪ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities 

▪ Here, most samples move clockwise, but some 
move in another direction or stay in place 

▪ This captures the passage of time 
▪ If enough samples, close to exact values before 

and after (consistent) 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)



▪ Slightly trickier: 

▪ Don’t sample observation, fix it 

▪ Similar to likelihood weighting, downweight 
samples based on the evidence 

▪ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact 
they now sum to (N times) an approximation 
of P(e))

Particle Filtering: Observe

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample 

▪ N times, we choose from our weighted 
sample distribution (i.e. draw with 
replacement) 

▪ This is equivalent to renormalizing the 
distribution 

▪ Now the update is complete for this time 
step, continue with the next one

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2)



Recap: Particle Filtering
▪ Particles: track samples of states rather than an explicit 

distribution

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

[Demos: ghostbusters particle filtering 
(L15D3,4,5)]
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Recap: Particle Filtering
▪ Particles: track samples of states rather than an explicit 

distribution
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Recap: Particle Filtering
▪ Particles: track samples of states rather than an explicit 

distribution

Particles: 
    (3,3) 
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[Demos: ghostbusters particle filtering 
(L15D3,4,5)]



Recap: Particle Filtering
▪ Particles: track samples of states rather than an explicit 

distribution

Particles: 
    (3,3) 
    (2,3) 
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Recap: Particle Filtering
▪ Particles: track samples of states rather than an explicit 

distribution
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Video of Demo – Moderate Number of Particles



Video of Demo – One Particle



Video of Demo – One Particle



Video of Demo – One Particle



Video of Demo – Huge Number of Particles



Video of Demo – Huge Number of Particles



Video of Demo – Huge Number of Particles



Robot Localization

▪ In robot localization: 
▪ We know the map, but not the robot’s position 
▪ Observations may be vectors of range finder readings 
▪ State space and readings are typically continuous 

(works basically like a very fine grid) and so we 
cannot store B(X) 

▪ Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

▪ SLAM: Simultaneous Localization And 
Mapping 
▪ We do not know the map or our location 
▪ State consists of position AND map! 
▪ Main techniques: Kalman filtering (Gaussian 

HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]
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Dynamic Bayes Nets (DBNs)

[Demo: pacman sonar ghost DBN model (L15D6)]



Dynamic Bayes Nets (DBNs)
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Dynamic Bayes Nets (DBNs)
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Dynamic Bayes Nets (DBNs)
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Dynamic Bayes Nets (DBNs)
▪ We want to track multiple variables over time, using 

multiple sources of evidence 

▪ Idea: Repeat a fixed Bayes net structure at each time 

▪ Variables from time t can condition on those from t-1 

▪ Dynamic Bayes nets are a generalization of HMMs
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[Demo: pacman sonar ghost DBN model (L15D6)]



Video of Demo Pacman Sonar Ghost DBN Model



Video of Demo Pacman Sonar Ghost DBN Model



Video of Demo Pacman Sonar Ghost DBN Model



DBN Particle Filters

▪ A particle is a complete sample for a time step 

▪ Initialize: Generate prior samples for the t=1 Bayes net 
▪ Example particle: G1

a = (3,3) G1
b = (5,3)  

▪ Elapse time: Sample a successor for each particle  

▪ Example successor: G2
a = (2,3) G2

b = (6,3) 

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned 
on the sample 
▪ Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b )  

▪ Resample: Select prior samples (tuples of values) in proportion to their likelihood



Most Likely Explanation



HMMs: MLE Queries

▪ HMMs defined by 
▪ States X 
▪ Observations E 
▪ Initial distribution: 
▪ Transitions: 
▪ Emissions: 

▪ New query: most likely explanation: 

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



State Trellis

▪ State trellis: graph of states and transitions over time 

▪ Each arc represents some transition 
▪ Each arc has weight 
▪ Each path is a sequence of states 
▪ The product of weights on a path is that sequence’s probability along with the 

evidence 
▪ Forward algorithm computes sums of paths, Viterbi computes best paths

sun

rain

sun

rain

sun

rain

sun

rain



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum)



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum)



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)



Speech Recognition



Digitizing Speech



Speech in an Hour

▪ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/



Speech in an Hour

▪ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

   s          p         ee          ch         l        a         b



Speech in an Hour

▪ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

   s          p         ee          ch         l        a         b

“l” to “a” 
transition:



Spectral Analysis

▪ Frequency gives pitch; amplitude gives volume 
▪ Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/

sec) 

▪ Fourier transform of wave displayed as a spectrogram 
▪ Darkness indicates energy at each frequency

             s             p            ee              ch           l          a            b
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Human ear figure: depion.blogspot.com

http://2.bp.blogspot.com/-9dwlRNvV338/TfyK_J8WGZI/AAAAAAAAARc/PKOCa_pwY4Y/s1600/the-human-ear.gif


Acoustic Feature Sequence

▪ Time slices are translated into acoustic feature vectors (~39 real 
numbers per slice) 

▪ These are the observations E, now we need the hidden states X
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Speech State Space

▪ HMM Specification 
▪ P(E|X) encodes which acoustic vectors are appropriate for each phoneme 

(each kind of sound) 
▪ P(X|X’) encodes how sounds can be strung together  

▪ State Space 
▪ We will have one state for each sound in each word 
▪ Mostly, states advance sound by sound 
▪ Build a little state graph for each word and chain them together to form the 

state space X



States in a Word



Transitions with a Bigram Model

Figure: Huang et al, p. 618



Transitions with a Bigram Model

Figure: Huang et al, p. 618

198015222 the first 
194623024 the same 
168504105 the following 
158562063 the world 
… 
14112454 the door 
---------------------------------
-- 
23135851162 the *
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Figure: Huang et al, p. 618
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168504105 the following 
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14112454 the door 
---------------------------------
-- 
23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s



Decoding

▪ Finding the words given the acoustics is an HMM inference problem 

▪ Which state sequence x1:T is most likely given the evidence e1:T? 

▪ From the sequence x, we can simply read off the words



Next Time: Bayes’ Nets!


