Our Status in CSE 5522

- We're done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - In the second second
- Part III: Machine Learning

Instructor: Alan Ritter

Ohio State University

[These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Uncertainty

General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

- Associate a probability with each value
 - Temperature:

• Weather:

- Associate a probability with each value
 - Temperature:

• Weather:

- Associate a probability with each value
 - Temperature:

• Weather:

P(W)	
------	--

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Unobserved random variables have distributions

• A distribution is a TABLE of probabilities of values

Unobserved random variables have distributions

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

Unobserved random variables have distributions

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

P(W = rain) = 0.1

and

Unobserved random variables have distributions

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$\forall x \ P(X = x) \ge 0$$

P(W = rain) = 0.1

$$\sum_{x} P(X = x) = 1$$

Unobserved random variables have distributions

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

Must have:

$$\forall x \ P(X = x) \ge 0$$

P(W = rain) = 0.1

$\sum_{x} P(X = x) = 1$

Shorthand notation:

$$P(hot) = P(T = hot),$$
$$P(cold) = P(T = cold),$$
$$P(rain) = P(W = rain),$$

OK *if* all domain entries are unique

. . .

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

• A *joint distribution* over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Must obey:

Definition of
$$P(x_1, x_2, \dots, x_n) \ge 0$$

 $\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{x_1,x_2,\ldots,x_n} P(x_1,x_2,\ldots,x_n) = 1$$

• Size of distribution if n variables with domain sizes d?

\boldsymbol{D}	$(\tau$	7	W)
1	T	,	VV)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

Must obev:

$$P(x_1, x_2, \dots, x_n) \ge 0$$

$$\sum P(x_1, x_2, \dots, x_n) = 1$$

\sum	$P(x_1, x_2, \dots x_n) =$	= 1
$(x_1,x_2,\ldots x_n)$		

P(T,	W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0

Distribution over T,W

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

• An event is a set E of outcomes

$$P(E) = \sum_{(x_1 \dots x_n) \in E} P(x_1 \dots x_n)$$

 From a joint distribution, we can calculate the probability of any event

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

Quiz: Events

P(+x, +y) ?

P(X,Y)

Х	Y	Р
+X	+y	0.2
+X	-y	0.3
-X	+у	0.4
-X	-у	0.1

P(+x) ?

P(-y OR +x) ?

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding
 P(T)

P	(T	7	W)
1	(1	,	VV)

Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding
 P(T)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t,s)$$

Т	Р
hot	0.5
cold	0.5

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding P(T)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t,s)$$

`	,
Т	Р
hot	0.5
cold	0.5
cotu	0.5

P(W)

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding
 P(T)

P(T,W)

Н	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(t) = \sum_{s} P(t, s)$$

$$P(W)$$

$$P(W)$$

$$W \quad P$$

$$Sun \quad 0.6$$

$$rain \quad 0.4$$

D

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding
 P(T)

P(T,W)hot W Ρ cold $P(t) = \sum_{s} P(t,s)$ 0.4 hot sun 0.1 hot rain cold 0.2 sun W 0.3 cold rain sun $P(s) = \sum_{t} P(t, s)$ rain

Ρ

0.5

0.5

Ρ

0.6

0.4

P(W)

$P(X_1 = x_1) =$	$\sum P(X_1 =$	$= x_1, X_2$	$= x_2)$
	x_2		

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-x	-у	0.1

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

+X

-X

-X

-V

+y

-У

0.4

0.1

0.4

0.1

+y

-У

-X

-X

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

D(T T T)

$$P(W = s | T = c) = ???$$

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

Quiz: Conditional Probabilities

P(+x | +y) ?

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

P(-x | +y) ?

P(-y | +x) ?

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

7 .

ŀ	P(W T = hot)		
	W	Р	
	sun	0.8	
	rain	0.2	

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot)

W	Р
sun	0.8
rain	0.2

$$P(W|T = cold)$$

W	Р
sun	0.4
rain	0.6

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T)

Joint Distribution

Н	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(W|T=c)

$$P(W = s | T = c) =$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

= $\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.2}{0.2 + 0.3} = 0.4$ $P(W|T = c)$

Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

W

sun

rain

sun

rain

Т

hot

hot

cold

cold

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

$$P(W|T = c)$$

W

sun

rain

sun

rain

Т

hot

hot

cold

cold

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W | T = c)$$

$$P(W | T = c)$$

P(T,W)

W

sun

rain

sun

rain

Т

hot

hot

cold

cold

Ρ

0.4

0.1

0.2

0.3

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

= $\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.2}{0.2 + 0.3} = 0.4$ $P(W|T = c)$
 $P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

= $\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.2}{0.2 + 0.3} = 0.4$ $P(W|T = c)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

$$\frac{W P}{Sun 0.4}$$

$$rain 0.6$$

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$

ECT the joint
probabilities
natching the
evidence
$$T W P$$

cold sun 0.2
cold rain 0.3

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

=
$$\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

=
$$\frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$
$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

Ρ

0.4

0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$
$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

• Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

P(X,Y)Х Ρ Y 0.2 +X +V 0.3 +X -V 0.4 +V -X 0.1 -X -V

SELECT the joint probabilities matching the evidence

• (Dictionary) To bring or restore to a normal condition

(Dictionary) To bring or restore to a normal condition

(Dictionary) To bring or restore to a normal condition

(Dictionary) To bring or restore to a normal condition

All entries sum to ONE

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z
(Dictionary) To bring or restore to a normal condition

All entries sum to ONE

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

W	Р
sun	0.2
rain	0.3

(Dictionary) To bring or restore to a normal condition

All entries sum to ONE

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

(Dictionary) To bring or restore to a normal condition

Ρ

0.4

0.6

All entries sum to ONE

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

Т	W	Р
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

(Dictionary) To bring or restore to a normal condition

All entries sum to ONE

Procedure:

- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z

• Example 1

	Р	W	Т
No	20	sun	hot
_	5	rain	hot
_ ∠=	10	sun	cold
	15	rain	cold

	Т	W	Р
ormalize	hot	sun	0.4
	hot	rain	0.1
= 50	cold	sun	0.2
	cold	rain	0.3

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e. conditional from joint)
- We generally compute conditional probabilitie
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evide
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be update

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query* variable: Q
 Hidden variables: $H_1 \dots H_r$ X₁, X₂, ... X_n
 All variables

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables

• We want:

* Works fine with *multiple query* variables, too

 $P(Q|e_1\dots e_k)$

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables

• We want:

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

Step 1: Select the entries consistent with the evidence

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables

We want:

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

Step 1: Select the entries consistent with the evidence Step 2: Sum out H to get joint of Query and evidence

General case:

- Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables

Step 1: Select the

entries consistent

We want:

* Works fine with *multiple query* variables, too

$$P(Q|e_1\ldots e_k)$$

Step 2: Sum out H to get joint of Query and evidence

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables

- We want:

* Works fine with *multiple query* variables, too

$$P(Q|e_1\ldots e_k)$$

Step 1: Select the entries consistent with the evidence

-3

- 1

5

Ø

Pas

0.05

0.25

0.2

0.01

0.07

Step 3: Normalize

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables

- We want:

* Works fine with *multiple query* variables, too

$$P(Q|e_1\ldots e_k)$$

Step 1: Select the entries consistent with the evidence

-3

- 1

5

Ø

Pas

0.05

0.25

0.2

0.01

0.07

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

Step 3: Normalize

 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

Obvious problems:

- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution

 Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 $(x|y) = \frac{P(x,y)}{P(y)}$

$$P(y)P(x|y) = P(x,y)$$

• Example:

P(D W)			
D	W	Ρ	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

P(D, W)

P(W)

sun

rain

0.8

0.2

$$P(y)P(x|y) = P(x,y)$$

• Example:

R

sun

rain

P(W)

Ρ

0.8

0.2

P(D W)			
D	W	Ρ	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

P((D	, W)
	•		-

D	W	Ρ
wet	sun	
dry	sun	
wet	rain	
dry	rain	

$$P(y)P(x|y) = P(x,y)$$

• Example:

P(W)

R

sun

rain

Ρ

0.8

0.2

P(D W)			
D	W	Ρ	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

P(D, W)

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

• Why is this always true?

• Two ways to factor a joint distribution over two variables:

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

• Why is this at all helpful?

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)

- Two ways to factor a joint distribution over two variables:
 - P(x,y) = P(x|y)P(y) = P(y|x)P(x)
- Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

P(+m) = 0.0001P(+s|+m) = 0.8P(+s|-m) = 0.01

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \begin{array}{c} \text{Example} \\ \text{givens} \end{array}$$

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \end{array} \ \begin{array}{c} \text{Example} \\ \text{givens} \end{array}$$

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$

• Note: posterior probability of meningitis still very small

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$\begin{array}{c} P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01 \end{array} \end{array} \ \ \begin{array}{c} \text{Example} \\ \text{givens} \end{array}$$

 $P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

P(D W)			
D	W	Ρ	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

What is P(W | dry) ?

Next Time: Markov Models