Our Status in CSE 5522

= We’re done with Part | Search and Planning!

= Part Il: Probabilistic Reasoning
= Diaghosis

Speech recognition

Tracking objects

Robot mapping

Genetics

Error correcting codes

... lots more!

= Part lll: Machine Learning
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[These slides were adapted from CS5188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]



Today

= Probability

« Random Variables

Joint and Marginal Distributions
Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule
Inference

Independence

= You’ll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows
certain things about the state of the world (e.g.,
sensor readings or symptoms)

= Unobserved variables: Agent needs to reason
about other aspects (e.g. where an object is or
what disease is present)

= Model: Agent knows something about how the
known variables relate to the unknown variables

= Probabilistic reasoning gives us a framework
for managing our beliefs and knowledge



Random Variables

= Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R =Is it raining?

= T =1Is it hot or cold?

= D = How long will it take to drive to work?
» L =Where is the ghost?

= We denote random variables with capital letters




Random Variables

= Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R =Is it raining?

T = Is it hot or cold?

D = How long will it take to drive to work?
L = Where is the ghost?

= We denote random variables with capital letters

= Random variables have domains

= Rin {true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, )

= L in possible locations, maybe {(0,0), (0,1), ...}




Probability Distributions

Associate a probability with each value

= Temperature: = Weather:




Probability Distributions

Associate a probability with each value

= Temperature: = Weather:

P(T) | /

T P @ /
hot 0.5 @0
cold | 0.5 5




Probability Distributions

= Associate a probability with each value

= Temperature:

P(T)
T P
hot | 0.5
cold | 0.5

= Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor | 0.0




Probability Distributions

= Unobserved random variables have distributions

P(T) P(W)

T P w P
hot | 0.5 sun 0.6
cold | 0.5 rain 0.1

fog 0.3
meteor | 0.0

= Adistribution is a TABLE of probabilities of values
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Probability Distributions

= Unobserved random variables have distributions

P(T) P(W)

T P w P
hot | 0.5 sun 0.6
cold | 0.5 rain 0.1

fog 0.3
meteor | 0.0

= Adistribution is a TABLE of probabilities of values

= A probability (lower case value) is a single number

P(W = rain) = 0.1
= Must have: ( rain) and ZP(X =z)=1
xXr

Ve P(X =x) >0



Probability Distributions

Unobserved random variables have distributions Shorthand notation:
P(T) P(W) |
T | P W P P(hot) = P(T = hot),
hot | 0.5 0.6
> ik P(cold) = P(T = cold),
cold | 0.5 rain 0.1
fog 0.3 P(rain) = P(W = rain),
meteor | 0.0
A distribution is a TABLE of probabilities of values OK if all domain entries are unique
A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =x) >0

and Y P(X=uz)=1



Joint Distributions

= A joint distribution over a set of random variables: X1, X2,...Xn
specifies a real number for each assignment (or outcome):



Joint Distributions

= A joint distribution over a set of random variables: X1, X2,...Xn
specifies a real number for each assignment (or outcome):
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P(xz1,z5,...20)



Joint Distributions

= A joint distribution over a set of random variables: X1, X2,...Xn
specifies a real number for each assignment (or outcome):

P(X1=z21,Xo=xo,...Xn = xn)

P(xz1,z5,...20)

P(T, W)

T W P
hot | sun | 0.4
hot | rain | 0.1

cold | sun | 0.2
cold | rain | 0.3




Joint Distributions

= A joint distribution over a set of random variables: X1, X2,...Xn
specifies a real number for each assignment (or outcome):

P(X1=z21,Xo=xo,...Xn = xn)

P(xq,x5,...2n)

= Must obey: P(:Ul, Loy .. CEn) Z 0

Z P(x1,20,...2n) =1

(iBl,CCQ,...CU-n)

P(T, W)

T W P
hot | sun | 0.4
hot | rain | 0.1

cold | sun | 0.2
cold | rain | 0.3




Joint Distributions

= A joint distribution over a set of random variables: X1, X2, .
specifies a real number for each assignment (or outcome):

P(X1=z21,Xo=xo,...Xn = xn)
P(xz1,z5,...20)

= Must obey: P(CU]_p Loy .. Zl?n) Z 0

Z P(x1,20,...2n) =1
(131:332,....177),)

= Size of distribution if n variables with domain sizes d?

.o Xn

P(T, W)

T W P
hot | sun | 0.4
hot | rain | 0.1

cold | sun | 0.2
cold | rain | 0.3




Joint Distributions

= A joint distribution over a set of random variables: X1, X2, ..
specifies a real number for each assignment (or outcome):

P(X1=z21,Xo=xo,...Xn = xn)

P(xz1,z5,...20)

= Must obey: P(CU]_p Loy .. CEn) Z 0

Z P(x1,20,...2n) =1

(iBl,CCQ,...CU-n)

= Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

. Xn
P(T,W)
T W P
hot | sun | 0.4
hot | rain | 0.1
cold | sun | 0.2
cold | rain | 0.3




Probabilistic Models

o o . . . . D' t ob t, T,W
= A probabilistic model is a joint istribution over

distribution over a set of random
variables T W P
hot sun 0.4
= Probabilistic models: hot rain 0.1
= (Random) variables with domains
= Assignments are called outcomes cold sun 0.2
= Joint distributions: say whether cold rain 0.3
assignments (outcomes) are likely

= Normalized: sum to 1.0



Probabilistic Models

o o . . . . D' t ob t, T,W
= A probabilistic model is a joint istribution over

distribution over a set of random
variables T W P
hot sun 0.4
= Probabilistic models: hot rain 0.1
= (Random) variables with domains
= Assignments are called outcomes cold sun 0.2
= Joint distributions: say whether cold rain 0.3
assignments (outcomes) are likely

= Normalized: sum to 1.0

» |deally: only certain variables directly
interact



Events

= An event is a set E of outcomes

P(E) = > P(xy...zn)



Events

= An event is a set E of outcomes

P(E)Y= Y  P(zy...zn)
(1..xp)€EE
= From a joint distribution, we can
calculate the probability of any event



Events

= An event is a set E of outcomes

P(E) = >y P(x1...xn)
(1..xp)€EE

= From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?

= Probability that it’s hot?

= Probability that it’s hot OR sunny?

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




Events

= An event is a set E of outcomes

P(E) = > P(xy...zn)
(1..xp)€EE

= From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about are
partial assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3
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Events

= An event is a set E of outcomes

P(E) = > P(xy...zn)
(1..xp)€EE

= From a joint distribution, we can
calculate the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about are
partial assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




Quiz: Events



= P(+x, +y) ?

O P(+X) ?

« P(-y OR +X) ?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables

= Marginalization (summing out): Combine collapsed rows by
adding

P(T, W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by

adding P(T)

P(T, W)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by

adding P(T)
P(T, W) T P
! W ° ld 0.5
hot | sun | 0.4 P(t)y =) P(t,s) = :
S

hot rain 0.1

cold sun 0.2

cold rain 0.3




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by

adding P(T)

P(T, W) T P
! W ° ld 0.5
hot | sun | 0.4 P(t)y =) P(t,s) = :
hot | rain | 0.1 ? P(W)

cold sun 0.2

cold rain 0.3




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by

adding PTY
P(T,W) T P
————— hot 0.5
T W P

hot | sun 0.4 P(t) = Z P(t,s) cold | 0.5

hot | rain | 0.1 5 P(W)
cold sun 0.2 W >
cold | rain 0.3 —— un 0.6
P(s) = %:P(t, S) ——T 04




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by

adding PTY
P(T,W) T P
————— hot 0.5
T W P

hot | sun 0.4 P(t) = Z P(t,s) cold | 0.5

hot | rain | 0.1 5 P(W)
cold sun 0.2 W >
cold | rain 0.3 —— un 0.6
P(s) = %:P(t, S) ——T 04

P(X1=uz1) =) P(X1=u11,Xp =)




Quiz: Marginal Distributions

P(X,Y)

+X +y 0.2

+X -y 0.3




Quiz: Marginal Distributions

P(X)
P(X,Y)

+X +y 0.2

+X -y 0.3




Quiz: Marginal Distributions

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

P(z) =) P(x,y)
Y

P(X)

X P

+X

-X




Quiz: Marginal Distributions

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

P(z) =) P(x,y)
Y

P(X)

X P

+X

-X

P(Y)




Quiz: Marginal Distributions

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—>
P(z) =) P(z,y)
Y

—p
P(y) =) P(z,y)

P(X)




Conditional Probabilities

= Asimple relation between joint and conditional
probabilities
» In fact, this is taken as the definition of a conditional probability

P(a,b)
P(a,b)

P(b)

P(alb) =

P(a)




Conditional Probabilities

= Asimple relation between joint and conditional
probabilities
» In fact, this is taken as the definition of a conditional probability

P(a,b)
P(b)

P(alb) =

P(T,W) P(a)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Conditional Probabilities

= Asimple relation between joint and conditional
probabilities
» In fact, this is taken as the definition of a conditional probability

P(a,b)
P(b)

P(alb) =

P(T,W) P(a)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(W =s|T =c¢) =777




probabilities

Conditional Probabilities

= Asimple relation between joint and conditional

» In fact, this is taken as the definition of a conditional probability

Plalby = 2(@:?)
P(b)
P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(a)

s T=c¢) 02
PW=sr=c)=LW=8T=c) 02
P(T = ¢) 0.5

_——

=PW=s5,T=c)+P(W=nr,T =c)
=0.240.3 =0.5

= 0.4



Quiz: Conditional Probabilities

= P(+x | +y)?
P(X,Y)
X Y P
+X +y 0.2 s P(-x | +y)?
+X -y 0.3

= P(-y | +x)?



Conditional Distributions

= Conditional distributions are probability distributions
over some variables given fixed values of others

Conditional Distributions

Joint Distribution

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




= Conditional distributions are probability distributions
over some variables given fixed values of others

Conditional Distributions

P(W|T = hot)

Conditional Distributions

Joint Distribution

w P
sun 0.8
rain 0.2

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




Conditional Distributions

= Conditional distributions are probability distributions
over some variables given fixed values of others

Conditional Distributions

P(W|T = hot)

Joint Distribution

w P
sun 0.8
rain 0.2

P(W|T = cold)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6




= Conditional distributions are probability distributions
over some variables given fixed values of others

P(W|T)

Conditional Distributions

Conditional Distributions

Joint Distribution

- P(W|T = hot)
w P
sun 0.8
rain 0.2

P(W|T = cold)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

W P
sun 0.4
rain 0.6




Normalization Trick

P(T, W)

T | w | P P(W|T = ¢)

hot sun 0.4

hot rain 0.1 >

cold sun 0.2

cold rain 0.3




Normalization Trick

P(W =s|T =¢) =

P(T, W)

T | w | P P(W|T = ¢)

hot sun 0.4

hot rain 0.1 >

cold sun 0.2

cold rain 0.3




Normalization Trick

P(W=5|T=C):P(W=S,T=C)

P(T = ¢)
P(T, W)
: a P P(WI|T = c)
hot sun 0.4
hot rain 0.1 >
cold sun 0.2
cold rain 0.3




P(W =s|T =¢) =

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s,T = c¢)
P(T = ¢)
P(W =s,T =¢)

T PW=s5T=0)+P(W=rT=c)

P(W|T = ¢)



P(W =s|T =¢) =

P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s,T = c¢)
P(T = ¢)
P(W =s,T =¢)

PW =sT=c¢c)+P(W=nr,T =c)

0.2

= = 0.4
0.2+ 0.3

P(W|T = ¢)



P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s,T = c¢)
P(T = ¢)
P(W =s,T =¢)

P(W =s|T =¢) =

PW =sT=c¢c)+P(W=nr,T =c)

0.2

= = 0.4
0.2+ 0.3

P(W =r|T=c)=

P(W|T = ¢)



P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s|T =¢) =

P(W =r|T=c¢)=

P(W =3s,T = c¢)

P(T = c¢)

P(W =s,T =¢)

PW=sT=c)+P(W=nT=c)

0.2
= 0.4
0.2+ 0.3

P(W =r,T =c¢)

P(T = ¢)

P(W|T = ¢)



P(T, W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s,T = c¢)
P(T = ¢)
P(W =s,T =¢)

P(W =s|T =¢) =

T PW=sT=0c+P(W=rT=0c)

0.2

= = 0.4
0.2+ 0.3

P(W =r,T =c¢)
P(T = ¢)
P(W =nr,T =c)

P(W =r|T=c¢)=

T PW=sT=0+PW=nT=c)

P(W|T = ¢)



P(W =s|T =¢) =

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =3s,T = c¢)

P(T = c¢)
P(W =s,T =¢)

0.2

02403

PW =s,T=c¢c)4+P(W=nr,T =c¢c)

P(W =r,T =c¢)

P(W =rT=c¢) = BT = o)

P(W =nr,T =c)

T PW=sT=0+PW=nT=c)

03
02403

0.6

P(W|T = ¢)



Normalization Trick

P(W =3s,T = c¢)

P(W =s|T =¢) =

P(T = ¢)
_ P(W =s,T =c)
P(T, W) T PW=sT=c)+P(W=rT=c)
0.2
T W P ~o02+03_ 2* P(W|T = ¢)
hot su.n 0.4 > W P
hot rain 0.1 sun 0.4
cold sun 0.2 rain | 0.6
P(W =rT = )

cold rain 0.3 P(W — 7‘|T — c) — ( P(TT;: C) C)

. PW =nr,T =c)
- PW=s,T=c)+PW=nrT=rc)

0.3
= = 0.6
0.240.3




Normalization Trick

P(W=sT=c)
P(T =c¢)
. P(W=sT=c)
T PW=sT=c)+PW=nrT=c)

0.2
0.2+4+0.3

P(W =s|T =¢) =

P(T,W)

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

PW=nrT=c)

P(T =¢)
_ P(W=nrT=c)
C PW=sT=c)+PW=rT=c)
03
02403

P(W=rT=c¢c)=

0.6




Normalization Trick

P(W=s,T=c)
P(T=c¢)
_ P(W=s,T =c)
T PW=sT=c)+PW=nrT=c)

0.2
= =04
0.2+4+0.3

P(W=sT=c¢c)=

P(T, W) SELECT the joint
probabilities
T W P matching the
hot sun 0.4 evidence
hot | rain | 0.1 —

cold sun 0.2

cold rain 0.3

PW=rT=c)

P(T =¢)
_ P(W=nr,T =c)
T PW=sT=c)+PW=rT=c)
03
02403

PW=rT=c¢c)=

0.6




Normalization Trick

P(W=sT=c)
P(T =c¢)
. P(W=sT=c)
T PW=sT=c)+PW=nrT=c)

P(W =s|T =¢) =

— 0.2 = 0.4
0.240.3
P(T, W) SELECT the joint
probabilities
T W P matching the ~ P(c, W)
hot | sun 0.4 evidence T 1 wilep
hot rain 0.1 - < cold! sun 10.2
cold | sun 0.2 cold| rain | 0.3
cold rain 0.3
P(W=rT=c¢c)= PW=rT=c)

P(T =¢)

_ P(W=nrT=c)

C PW=sT=c)+PW=rT=c)
03
02403

0.6




P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s|T =¢) =

P(W=sT=c)
P(T =c¢)
P(W=sT=c)
P(W=3s5T=c)+P(W=nr,T =c)
02 =04

~02+403

0.240.3
SELECT the joint NORMALIZE the
probabilities selection
matching the  P(c, W) (make it sum to
evidence - W > one)
ﬁ ﬁ
cold| sun | 0.2
cold| rain | 0.3
P(W=rT=c¢c)= PW=rT=c)

P(T =¢)
P(W=nrT=c)
P(WW=s5T=c)+P(W=r,T=c)
0.3

0.6



Normalization Trick

P(W=sT=c)
P(T =c¢)
. P(W=sT=c)
T PW=sT=c)+PW=nrT=c)
02 =04

P(W =s|T =¢) =

~ 02403
P(T,W) SELECT the joint NORMALIZE the
probabilities selection __

T W P matching the P(c, W) (make it sum to P(W|T = c)
hot | sun | 0.4 evidence [ T v [ p one) w [P
hot rain 0.1 > cold! sun 10.2 i sun | 0.4
cold | sun 0.2 cold| rain 10.3 rain | 0.6
cold rain 0.3

PW=rT=c¢c)= PW=nT=c)

P(T =¢)
_ P(W=nrT=c)
C PW=sT=c)+PW=rT=c)
03
02403

0.6




P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Normalization Trick

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

SELECT the joint NORMALIZE the
probabilities selection
matching the  P(c, W) (make it sum to

evidence T W > one)
ﬁ ﬁ
cold| sun | 0.2
cold| rain | 0.3
. P($17$2) . P(m17$2)
P(z1|z2) = =
P(x2) >oay P21, 72)

P(W|T = ¢)
W P
sun 0.4
rain | 0.6




Quiz: Normalization Trick

= P(X | Y=-y)?
P(X,Y) SELECT the joint
probabilities

X Y P matching the
+X +y 0.2 evidence

X v | 0.3 m—

-X +y 0.4

-X -y 0.1

NORMALIZE the
selection
(make it sum to
one)

>




To Normalize



To Normalize

= (Dictionary) To bring or restore to a normal condition



To Normalize

= (Dictionary) To bring or restore to

a hormal condition




To Normalize

= (Dictionary) To bring or restore to

a hormal condition

N

All entries sum to ONE




= (Dictionary) To bring or restore to

To Normalize

Procedure:

a hormal condition

N

All entries sum to ONE

= Step 1: Compute Z = sum over all entries

= Step 2: Divide every entry by Z



= (Dictionary) To bring or restore tola normal condition

= Procedure:

To Normalize

N

All entries sum to ONE

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1
W P
sun | 0.2

rain

0.3




= (Dictionary) To bring or restore to

= Procedure:

To Normalize

a hormal condition

N

All entries sum to ONE

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1
w P
sun 0.2
rain | 0.3

Normalize
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= (Dictionary) To bring or restore to

= Procedure:
= Step 1: Compute Z = sum over all entries

To Normalize

= Step 2: Divide every entry by Z

= Example 1
w P
sun 0.2
rain | 0.3

Normalize

_>
Z=0.5

a hormal condition

W P
sun 0.4
rain | 0.6

N

All entries sum to ONE

= Example 2
T w P
hot | sun 20
hot | rain 5
cold | sun 10
cold | rain 15




= (Dictionary) To bring or restore to

= Procedure:
= Step 1: Compute Z = sum over all entries

To Normalize

= Step 2: Divide every entry by Z

= Example 1
w P
sun 0.2
rain | 0.3

Normalize

_>
Z=0.5

a hormal condition

W P
sun 0.4
rain | 0.6

N

All entries sum to ONE

= Example 2
T w P
hot | sun 20
hot | rain 5
cold | sun 10
cold | rain 15

T W P
Normalize hot sun 0.4
> hot | rain | 0.1
2=30 cold | sun 0.2
cold | rain | 0.3




Probabilistic Inference

= Probabilistic inference: compute a desired
probability from other known probabilities (e.
conditional from joint)

= We generally compute conditional probabilitie

= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evide

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updat:
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Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
« Evidence variables: F1.--Ex=e1-..ex | x, X, . X, variables, too
. dery varl.able: Q All variables P(Q|61 e ek)
= Hidden variables:  H;...H,

= Step 1: Select the
entries consistent
with the evidence

x P>
0.05

0.25




Inference by Enumeration

= General case:

= Evidence variables: £1---

= Query* variable: Q

= Hidden variables: Hj.

= Step 1: Select the
entries consistent
with the evidence

x Poeo
0.05
0.25
0.07
02 |
S
0.01 | - W’
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Inference by Enumeration

= General case:
= Evidence variables:
= Query* variable: Q
= Hidden variables:

= Step 1: Select the
entries consistent
with the evidence

x T Peo
0.05

0.25

Eq...

Hy.

Ekzel...ek

.. H,

X1,X0,...Xn
All variables

Step 2: Sum out H to get
joint of Query and evidence

* Works fine with

= We want: multiple query
variables, too
P(Qles .. . ep)

= Step 3: Normalize

1
><_
A

Z =Y PQer e

P(Qler---ex) = %P(Qael ceeer)



Inference by Enumeration

= Obvious problems:
= Worst-case time complexity O(dn)

» Space complexity O(dn) to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the

joint

P(y)P(zly) = P(x,y) < ran="107

(- -



The Product Rule

P(y)P(x|y) = P(x,y)

= Example:

P(D|W) P(D,W)
P(W) D W | P

wet sun 0.1

R P
wun_ lo.8 dry | sun |0.9 <:>

rain | 0.2 wet rain | 0.7

dry rain | 0.3




The Product Rule

P(y)P(x|y) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W | P D W
R P wet sun | 0.1 wet sun
sun | 0.8 dy | sun |09 <:,l> dry | sun
rain | 0.2 wet rain | 0.7 wet rain
dry rain | 0.3 dry rain




= Example:

P(W)

R

P

sun

0.8

rain

0.2

The Product Rule

P(y)P(x|y) = P(x,y)

P(D|W)

D W P
wet sun | 0.1
dry sun | 0.9
wet rain | 0.7
dry rain | 0.3

P(D,W)

D W P
wet sun | 0.08
dry sun | 0.72
wet rain | 0.14
dry rain | 0.06




The Chain Rule

= More generally, can always write any joint distribution
as an incremental product of conditional distributions

P(z1,xp,23) = P(x1)P(z2|z1) P(23|z1,22)

P(xy,x2,...xn) = || P(zilzy .. 2-1)
i

= Why is this always true?



Bayes Rule
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|ly)P(y)= P(y|z)P(z)

= Dividing, we get:

P(yl|x)

Ply) |

P(x|y) =



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|ly)P(y)= P(y|z)P(z)

= Dividing, we get:

P(y|z)
P(y)

P(xly) = P(x)



http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
That’s my rule!
P(z,y) = P(z|ly)P(y)= P(y|z)P(z) N |

= Dividing, we get:

P(y|x)
P(y)

P(xly) = P(x)
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
That’s my rule!
P(z,y) = P(z|ly)P(y)= P(y|z)P(z) N |

= Dividing, we get:

Plaly) = T

= Why is this at all helpful?

P(x)
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(zly)P(y) = P(y|z) P(x)

That’s my rule! ]

= Dividing, we get:

Plaly) = T

= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

P(x)
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(zly)P(y) = P(y|z) P(x)

That’s my rule! ]

= Dividing, we get:

Plaly) = T

= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

P(x)

= |n the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P (effect|cause) P(cause)

P(causeleffect) = P(cffect)

P(+m) = 0.0001
P(+s| +m) = 0.8
P(+s| —m)=0.01

P(+s| +m)P(+m) P(+s| +m)P(+m) 0.8 x 0.0001

P = - =
(+m] + ) P(+5) P(+s| +m)P(+m) + P(+s| —m)P(—m) ~ 0.8 x 0.0001 + 0.01 x 0.999




Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P (effect|cause) P(cause)
P (effect)

P(causeleffect) =

= Example:
= M: meningitis, S: stiff neck
P(+m) =0.0001 | _
P(+s|+m) =08 r givens
P(+s| —m) =0.01_

P(+s| +m)P(+m) P(+s| +m)P(+m) 0.8 x 0.0001

P = - =
(+m] +5) P(+5) P(+s| + m)P(+m) + P(+s| —m)P(—m) ~ 0.8 x 0.0001 + 0.01 x 0.999




Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P (effect|cause) P(cause)

P(causeleffect) = P (effect)

= Example:
= M: meningitis, S: stiff neck
P(+m) =0.0001 | _
P(+s|+m) =08 r givens
P(+s| —m) =0.01_

P(+s| +m)P(+m) P(+s| +m)P(+m) B 0.8 x 0.0001
P(+s) ~ P(+s| +m)P(+m) 4+ P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small

P(4+m|+s) =



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P (effect|cause) P(cause)
P (effect)

P(causeleffect) =

= Example:
= M: meningitis, S: stiff neck
P(+m) =0.0001 | _
P(+s|+m) =08 r givens
P(+s| —m) =0.01_

(+s| +m)P(+m) P(+s| +m)P(+m) B 0.8 x 0.0001
P(+s) ~ P(+s| +m)P(+m) 4+ P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999

= Note: posterior probability of meningitis still very small

= Note: you should still get stiff necks checked out! Why?

P
P(4+m|+s) =



Quiz: Bayes’ Rule

. P(D|W)
» Given:
P(W) D W P
R P wet sun | 0.1
sun 108 dry sun | 0.9
rain | 0.2 wet rain | 0.7

dry rain | 0.3

= What is P(W | dry) ?



Next Time: Markov Models



