CS 5522: Artificial Intelligence II
Reinforcement Learning

Instructor: Alan Ritter
Ohio State University

[These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]
Reinforcement Learning
Basic idea:
- Receive feedback in the form of **rewards**
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!
Example: Learning to Walk

- Initial
- A Learning Trial
- After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Initial

[Video: AIBO WALK - initial]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]

Initial

[Video: AIBO WALK - initial]
Example: Learning to Walk

Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK - training]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Video: AIBO WALK – training]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK - finished]
Example: Learning to Walk

[Kohl and Stone, ICRA 2004]

Finished

[Video: AIBO WALK - finished]
Example: Toddler Robot

[Video: TODDLER - 40s]

[Tedrake, Zhang and Seung, 2005]
Example: Toddler Robot

[Video: TODDLER - 40s]
Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]
The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project]
Video of Demo Crawler Bot
Video of Demo Crawler Bot
Video of Demo Crawler Bot
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
- Still looking for a policy \(\pi(s) \)

- New twist: don’t know \(T \) or \(R \)
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$

- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)
Offline (MDPs) vs. Online (RL)

Offline Solution
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Model-Based Learning
Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy

\[\pi \]

Assume: \(\gamma = 1 \)
Example: Model-Based Learning

Assume: $\gamma = 1$

Input Policy

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10
Example: Model-Based Learning

Input Policy
\(\pi\)

\[
\begin{array}{ccc}
B & C & D \\
\uparrow & \uparrow & \uparrow \\
E & A & \\
\end{array}
\]

Assume: \(\gamma = 1\)

Observed Episodes (Training)

<table>
<thead>
<tr>
<th>Episode 1</th>
<th>Episode 2</th>
<th>Episode 3</th>
<th>Episode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, east, C, -1</td>
<td>B, east, C, -1</td>
<td>E, north, C, -1</td>
<td>E, north, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
<td>C, east, A, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
<td>A, exit, x, -10</td>
</tr>
</tbody>
</table>

Learned Model

\(\hat{T}(s, a, s')\)

- \(T(B, \text{east}, C) = 1.00\)
- \(T(C, \text{east}, D) = 0.75\)
- \(T(C, \text{east}, A) = 0.25\)

\(\hat{R}(s, a, s')\)

- \(R(B, \text{east}, C) = -1\)
- \(R(C, \text{east}, D) = -1\)
- \(R(D, \text{exit}, x) = +10\)
Example: Expected Age

Goal: Compute expected age of cse5522 students
Example: Expected Age

Goal: Compute expected age of cse5522 students

Known $P(A)$
Example: Expected Age

Goal: Compute expected age of cse5522 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
</table>

\[E[A] = \sum_a P(a) \cdot a \]
Example: Expected Age

Goal: Compute expected age of cse5522 students

\[
E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \ldots
\]
Example: Expected Age

Goal: Compute expected age of cse5522 students

Without $P(A)$, instead collect samples $[a_1, a_2, \ldots a_N]$

$$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots$$

Known $P(A)$
Example: Expected Age

Goal: Compute expected age of cse5522 students

\[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples [a_1, a_2, ... a_N]

Unknown P(A): “Model Based”
Example: Expected Age

Goal: Compute expected age of cse5522 students

Known P(A)

\[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Unknown P(A): “Model Based”

\[\hat{P}(a) = \frac{\text{num}(a)}{N} \]
Example: Expected Age

Goal: Compute expected age of cse5522 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots]</td>
</tr>
</tbody>
</table>

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

<table>
<thead>
<tr>
<th>Unknown P(A): “Model Based”</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\hat{P}(a) = \frac{\text{num}(a)}{N}]</td>
</tr>
<tr>
<td>[E[A] \approx \sum_a \hat{P}(a) \cdot a]</td>
</tr>
</tbody>
</table>
Example: Expected Age

Goal: Compute expected age of cse5522 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \ldots]</td>
</tr>
</tbody>
</table>

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

<table>
<thead>
<tr>
<th>Unknown P(A): “Model Based”</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\hat{P}(a) = \frac{\text{num}(a)}{N}]</td>
</tr>
<tr>
<td>[E[A] \approx \sum_{a} \hat{P}(a) \cdot a]</td>
</tr>
</tbody>
</table>

Why does this work? Because eventually you learn the right model.
Example: Expected Age

Goal: Compute expected age of cse5522 students

Known P(A)

\[
E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots
\]

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Unknown P(A): “Model Based”

\[
\hat{P}(a) = \frac{\text{num}(a)}{N}
\]

\[
E[A] \approx \sum_a \hat{P}(a) \cdot a
\]

Unknown P(A): “Model Free”

Why does this work? Because eventually you learn the right model.
Example: Expected Age

Goal: Compute expected age of cse5522 students

Known P(A)

\[E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots \]

Without P(A), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Unknown P(A): “Model Based”

\[\hat{P}(a) = \frac{\text{num}(a)}{N} \]

\[E[A] \approx \sum_a \hat{P}(a) \cdot a \]

Unknown P(A): “Model Free”

\[E[A] \approx \frac{1}{N} \sum_i a_i \]

Why does this work? Because eventually you learn the right model.
Example: Expected Age

Goal: Compute expected age of cse5522 students

Known P(A)

\[
E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots
\]

Without P(A), instead collect samples \([a_1, a_2, \ldots a_N]\)

Unknown P(A): “Model Based”

\[
\hat{P}(a) = \frac{\text{num}(a)}{N}
\]

\[
E[A] \approx \sum_a \hat{P}(a) \cdot a
\]

Unknown P(A): “Model Free”

\[
E[A] \approx \frac{1}{N} \sum_i a_i
\]

Why does this work? Because eventually you learn the right model.

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning
Passive Reinforcement Learning
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- **Goal:** Compute values for each state under π

- **Idea:** Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

- This is called direct evaluation
Example: Direct Evaluation

Input Policy π

Output Values

Assume: $\gamma = 1$
Example: Direct Evaluation

Input Policy π Observed Episodes (Training) Output Values

Assume: $\gamma = 1$
Example: Direct Evaluation

Assume: $\gamma = 1$

Input Policy π

Observed Episodes (Training)

Output Values

Episode 1

B, east, C, -1
C, east, D, -1
D, exit, x, +10
Example: Direct Evaluation

Assume: $\gamma = 1$

Input Policy π

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>△</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observed Episodes (Training)

Episode 1

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 2

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Output Values
Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

<table>
<thead>
<tr>
<th>Episode 1</th>
<th>Episode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, east, C, -1</td>
<td>B, east, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>C, east, D, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>D, exit, x, +10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Episode 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, north, C, -1</td>
</tr>
<tr>
<td>C, east, D, -1</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
</tr>
</tbody>
</table>

Assume: $\gamma = 1$
Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

Assume: $\gamma = 1$
Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Episode 1

- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2

- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3

- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4

- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

Assume: $\gamma = 1$
Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

-10

+8

+4

+10

-2
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn
Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate** V **for a fixed policy:**
 - Each round, replace V with a one-step-look-ahead layer over V
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate** V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^\pi(s) = 0$$
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate V for a fixed policy:**
 - Each round, replace V with a one-step-look-ahead layer over V

\[
V_0^\pi(s) = 0
\]

\[
V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\]
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate V for a fixed policy:**
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^\pi(s) = 0$$

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

\[V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')] \]
We want to improve our estimate of \(V \) by computing these averages:

\[
V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\]

Idea: Take samples of outcomes \(s' \) (by doing the action!) and average
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

 $$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V^\pi_{k+1}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi_k(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V^\pi_k(s'_1)$$
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:
 \[V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')] \]

- Idea: Take samples of outcomes s' (by doing the action!) and average

 \[
 \text{sample}_1 = R(s, \pi(s), s_1') + \gamma V_k^\pi(s_1') \\
 \text{sample}_2 = R(s, \pi(s), s_2') + \gamma V_k^\pi(s_2')
 \]
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$

$$\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$

$$\ldots$$

$$\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$
$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$
$$\ldots$$
$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$
$$\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$
$$\ldots$$
$$\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i$$
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$\text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$

$$\text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$

$$\ldots$$

$$\text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i \text{sample}_i$$
Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$: \[sample = R(s, \pi(s), s') + \gamma V^\pi(s') \]
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$$
Temporal Difference Learning

- **Big idea: learn from every experience!**
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- **Temporal difference learning of values**
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

$$ sample = R(s, \pi(s), s') + \gamma V^\pi(s') $$

$$ V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample $$

$$ V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s)) $$
Exponential Moving Average

- Exponential moving average
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important:
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
 \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important:
 \[
 \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
 \]
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
 \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important:
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)
Exponential Moving Average

- Exponential moving average
 - The running interpolation update:
 \[\overline{x}_n = (1 - \alpha) \cdot \overline{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important:
 \[\overline{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = \frac{1}{2}$

States
Example: Temporal Difference Learning

States

Assume: $\gamma = 1, \alpha = 1/2$
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = \frac{1}{2}$
Example: Temporal Difference Learning

Assume: $\gamma = 1, \alpha = 1/2$

States:

```
A
B  C  D
E
```

Observed Transitions:

```
0  0  8
0  0
```

B, east, C, -2
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

States

\[
\begin{array}{cccc}
A & B & C & D \\
E & & & \\
\end{array}
\]

Observed Transitions

- B, east, C, -2

\[
\begin{array}{cccc}
0 & 0 & 8 & \\
0 & & & \\
\end{array}
\]
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$$
Example: Temporal Difference Learning

\[V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

Assume: \(\gamma = 1, \alpha = 1/2 \)

Observed Transitions

B, east, C, -2
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

\[
V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]
\]
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = \frac{1}{2}$

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$$
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = \frac{1}{2}$

$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[\pi(s) = \arg \max_a Q(s, a) \]

\[Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Active Reinforcement Learning

- **Full reinforcement learning: optimal policies (like value iteration)**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - **Goal:** learn the optimal policy / values

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...
Detour: Q-Value Iteration

- **Value iteration**: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

- But **Q-values** are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- **But Q-values are more useful, so compute them instead**
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]
Q-Learning

- Q-Learning: sample-based Q-value iteration

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]
Q-Learning

- Q-Learning: sample-based Q-value iteration

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go
Q-Learning

- Q-Learning: sample-based Q-value iteration

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go
Q-Learning

- **Q-Learning: sample-based Q-value iteration**

 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]

- **Learn Q(s,a) values as you go**
 - Receive a sample \((s,a,s',r)\)

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]
Q-Learning

- **Q-Learning:** sample-based Q-value iteration

\[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate \(Q(s, a) \)
Q-Learning

- **Q-Learning:** sample-based Q-value iteration

\[
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
\]

- **Learn \(Q(s,a)\) values as you go**
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate \(Q(s,a)\)
 - Consider your new sample estimate:

\[
sample = R(s,a,s') + \gamma \max_{a'} Q(s', a')
\]
Q-Learning

- **Q-Learning: sample-based Q-value iteration**

 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]

- **Learn Q(s,a) values as you go**
 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate \(Q(s, a)\)
 - Consider your new sample estimate:
 \[
 \text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a')
 \]
 - Incorporate the new estimate into a running average.
Q-Learning

- **Q-Learning: sample-based Q-value iteration**

 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

- **Learn Q(s,a) values as you go**
 - Receive a sample \((s, a, s', r)\)
 - Consider your old estimate \(Q(s, a)\)
 - Consider your new sample estimate:

 \[\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]

 - Incorporate the new estimate into a running average:

 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)\text{[sample]} \]
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Gridworld
Video of Demo Q-Learning -- Crawler
Video of Demo Q-Learning -- Crawler
Video of Demo Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)