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Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
» Depth-First Search
» Breadth-First Search

= Uniform-Cost Search




Agents that Plan




Reflex Agents

= Reflex agents:

» Choose action based on current percept
(and maybe memory)

» May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

= Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]
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Planning Agents

= Planning agents:
= Ask “what if”

» Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves
in response to actions

» Must formulate a goal (test)
» Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

[Demo: replanning (L2D3)]
[Demo: mastermind (L2D4)]
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Search Problems

= A search problem consists of:

asae sce | 1 I I

. qu, 1.0
= A successor function o
(with actions, costs)

\
“E”, 1.0

= Astart state and a goal test

= Asolution is a sequence of actions (a plan)
which transforms the start state to a goal state
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Example: Traveling in Romania

State space:
= Cities
Successor function:

= Roads: Go to adjacent city with
cost = distance

Start state:
= Arad

N Goal test:
= |s state == Bucharest?

[} Vaslui

Eforie

Solution?
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What'’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details heeded for planning (abstraction)

= Problem: Eat-All-Dots

= Problem: Pathing
» States: (Xx,y) location

= Actions: NSEW

= Successor: update location
only

= Goal test: is (x,y)=END

States: {(x,y), dot
booleans}

Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false
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State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4
= States for pathing?
120
« States for eat-all-dots?
120x(239)
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Quiz: Safe Passage
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= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?
» (agent position, dot booleans, power pellet booleans, remaining scared time)
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State Space Graphs

» State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only
one)

= In a search graph, each state occurs only
once!

Tiny search graph for a tiny
search problem

= We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea



Search Trees



Search Trees

' _ This is now / start



Search Trees

' _ This is now / start
N, 10— — “E", 1.0
u ! _ Possible futures



Search Trees

' _ This is now / start
“N,y w‘o
u ! _ Possible futures
I I



Search Trees

' _ This is now / start
“N’y “E”, 1.0
u ! _ Possible futures
N N

= Asearch tree:
= A “what if” tree of plans and their outcomes
The start state is the root node
Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree



State Space Graphs vs. Search Trees

/State Space Graph\

o 7
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Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand - and
we construct as
little as possible.
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Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!
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Searching with a Search Tree
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= Search:
= Expand out potential plans (tree nodes)
» Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible



General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

» Important ideas:
»= Fringe
= Expansion
»= Exploration strategy

= Main question: which fringe nodes to explore?




Example: Tree Search
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Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack
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Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity? y

Space complexity? 1 node
b nodes
Cartoon of search tree: b2 nodes
»= b is the branching factor m tiers <
= m is the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b2+...b"=0(b™
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Depth-First Search (DFS) Properties

= What nodes DFS expand?

» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)

= Is it complete?

= m could be infinite, so only if we prevent
cycles (more later)

= Is it optimal?
= No, it finds the “leftmost” solution,
regardless of depth or cost

m tiers <

1 node
b nodes

b2 nodes

b™ nodes
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Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution

» Let depth of shallowest solution be s s tiers
= Search takes time O(b%)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®)

» Is it complete?
= s must be finite if a solution exists, so yes!

= Is it optimal?
= Only if costs are all 1 (more on costs later)

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes
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Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]
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Iterative Deepening

» |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

= Run a DFS with depth limit 1. If no
solution...

= Run a DFS with depth limit 2. If no

/

solution... /
= Run a DFS with depth limit 3. ..... /

= Isn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!



Cost-Sensitive Search

3
1 8
2.
s o)
9 3
START
1 4 2

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will nhow cover
a similar algorithm which does find the least-cost path.
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Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours
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Uniform Cost Search (UCS) Properties

What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b“™¢) (exponential in effective depth)

C*e “tiers” <

How much space does the fringe take?
= Has roughly the last tier, so O(b¢™)

Is it complete?
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= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

Is it optimal?



Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4
= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b®"¢) (exponential in effective depth) C*/e "tiers” <

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢™)

= Is it complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

O

« Is it optimal?
» Yes! (Proof next lecture via A¥)
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= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!
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water DFS/BFS/UCS (L2D7)]
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Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction”

= No information about goal location
Goal

= We’'ll fix that soon!

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]
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Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
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The One Queue

= All these search algorithms are
the same except for fringe
strategies

= Conceptually, all fringes are priority
queues (i.e. collections of nodes
with attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using
stacks and queues

= Can even code one implementation
that takes a variable queuing object

LL@_ L_u D\l E\Es—ﬂl@l N Pﬂ




Search and Models

= Search operates over
models of the world

» The agent doesn’t
actually try all the
plans out in the real
world!

= Planning is all “in
simulation”

= Your search is only as
good as your models...
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