CS 5522: Artificial Intelligence |l

Search

Instructor: Alan Ritter

Ohio State University
[These slides were adapted from CS5188 Intro to Al at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
» Depth-First Search
» Breadth-First Search

= Uniform-Cost Search

Agents that Plan

Reflex Agents

= Reflex agents:

» Choose action based on current percept
(and maybe memory)

» May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

= Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Pydev - Echipse

Video of Demo Reflex Optimal

Pydev - Echipse

Video of Demo Reflex Optimal

Pydev - Echipse

Video of Demo Reflex Odd

Pydev - [chipse T =

SCORE: 0

Video of Demo Reflex Odd

Pydev - [chipse T =

SCORE: 0

Video of Demo Reflex Odd

Pydev - [chipse T =

SCORE: 0

Planning Agents

= Planning agents:
= Ask “what if”

» Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves
in response to actions

» Must formulate a goal (test)
» Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

[Demo: replanning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Replanning

Pydey - [chpse ~ i 513_!

4§ SCORE: 0

Video of Demo Replanning

Pydey - [chpse ~ i 513_!

4§ SCORE: 0

Video of Demo Replanning

Pydey - [chpse ~ i 513_!

4§ SCORE: 0

Video of Demo Mastermind

Biix |

SCORE: 0

Video of Demo Mastermind

Biix |

SCORE: 0

Video of Demo Mastermind

Biix |

SCORE: 0

Search Problems

Search Problems

= A search problem consists of:

Search Problems

= A search problem consists of:

oo 11 1-T- 1.1

Search Problems

= A search problem consists of:

asae sce | 1 I I

= A successor function
(with actions, costs)

Search Problems

= A search problem consists of:

asae sce | 1 I I

“N”, 1.0

/

\
“E”, 1.0

= A successor function
(with actions, costs)

Search Problems

= A search problem consists of:

asare s |15 I D

“N”, 1.0

/

\
“E”, 1.0

= Astart state and a goal test

= A successor function
(with actions, costs)

Search Problems

= A search problem consists of:

asae sce | 1 I I

. qu, 1.0
= A successor function o
(with actions, costs)

\
“E”, 1.0

= Astart state and a goal test

= Asolution is a sequence of actions (a plan)
which transforms the start state to a goal state

Search Problems Are Models

Search Problems Are Models

Example: Traveling in Romania

lasi

92

Sibiu g9 [Fagaras

[} Vaslui

MjHirsova

Dobreta []

Eforie

Example: Traveling in Romania

= State space:
= (Cities

Sibiu g9 [Fagaras

[} Vaslui

MjHirsova

Dobreta []

Eforie

Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

MjHirsova

Eforie

Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad

Example: Traveling in Romania

State space:
= Cities
Successor function:

= Roads: Go to adjacent city with
cost = distance

Start state:
= Arad

N Goal test:
= |s state == Bucharest?

[} Vaslui

Eforie

Example: Traveling in Romania

State space:
= Cities
Successor function:

= Roads: Go to adjacent city with
cost = distance

Start state:
= Arad

N Goal test:
= |s state == Bucharest?

[} Vaslui

Eforie

Solution?

What'’s in a State Space?

The world state includes every last detail of the environment

What'’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details heeded for planning (abstraction)

What'’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details heeded for planning (abstraction)

= Problem: Pathing
» States: (Xx,y) location

= Actions: NSEW

= Successor: update location
only

= Goal test: is (x,y)=END

What'’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details heeded for planning (abstraction)

= Problem: Eat-All-Dots

= Problem: Pathing
» States: (Xx,y) location

= Actions: NSEW

= Successor: update location
only

= Goal test: is (x,y)=END

States: {(x,y), dot
booleans}

Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4
» States for pathing?

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4
» States for pathing?
120

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4
= States for pathing?
120
« States for eat-all-dots?

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(239)x(122)x4
= States for pathing?
120
« States for eat-all-dots?
120x(239)

Quiz: Safe Passage

. ¢ o o o @ o+ o o

* *
€ - -

= Problem: eat all dots while keeping the ghosts perma-scared

Quiz: Safe Passage

. ¢ o o o @ o+ o o

* *
€ - -

= Problem: eat all dots while keeping the ghosts perma-scared
= What does the state space have to specify?

Quiz: Safe Passage

. ¢ o o o @ o+ o o

* L J

€ - -

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?
» (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

» State space graph: A mathematical
representation of a search problem

State Space Graphs

» State space graph: A mathematical
representation of a search problem

State Space Graphs

» State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations

State Space Graphs

» State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

State Space Graphs

» State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only
one)

State Space Graphs

| |
» State space graph: A mathematical n — — '
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only /
\
/

one)

= In a state space graph, each state occurs
only once!

State Space Graphs

» State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only
one)

= In a state space graph, each state occurs
only once!

= We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

State Space Graphs

» State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

= The goal test is a set of goal nodes (maybe only
one)

= In a search graph, each state occurs only
once!

Tiny search graph for a tiny
search problem

= We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

Search Trees

Search Trees

' _ This is now / start

Search Trees

' _ This is now / start
N, 10— — “E", 1.0
u ! _ Possible futures

Search Trees

' _ This is now / start
“N,y w‘o
u ! _ Possible futures
I I

Search Trees

' _ This is now / start
“N’y “E”, 1.0
u ! _ Possible futures
N N

= Asearch tree:
= A “what if” tree of plans and their outcomes
The start state is the root node
Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

o 7
=

/

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand - and
we construct as
little as possible.

/ Search Tree \

S
/ \\
d e P
/\\ / N\ -
c e h r q
[/7 \ / \ I
a h r p q f
/1 \ | ' \
p q f q c G
7\
9 ¢ G a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

118 M Vaslui

Hirsova

[JMehadia e _— Urziceni
86

Dobreta [

Eforie

Searching with a Search Tree

= Search:
= Expand out potential plans (tree nodes)
» Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

Searching with a Search Tree

= Search:
= Expand out potential plans (tree nodes)
» Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

Searching with a Search Tree

Arad

gm"////////AT;é;;\\\\\‘iﬁmb»

CArad > CFagaras > COradea D oy Viesd)

= Search:
= Expand out potential plans (tree nodes)
» Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

» Important ideas:
»= Fringe
= Expansion
»= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search
O ©

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

®
d e P

T~ N
b C e h r
| | N RN |
a a h r p q f

N | N

p q f q ¢ G

| PN !

q G a

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

®
©
@ N
b C e h r
| | N RN |
a a h r p q f
PN | | N
p q f q ¢ G
| PN !
q G a

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
= Optimal: Guaranteed to find the least cost path?

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
= Optimal: Guaranteed to find the least cost path?
= Time complexity?

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Cartoon of search tree:

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Cartoon of search tree:

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

Space complexity?

Cartoon of search tree:

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?
Space complexity?

Cartoon of search tree:
»= b is the branching factor

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?
Space complexity?

1 node

Cartoon of search tree:
»= b is the branching factor

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?
Space complexity?

1 node

b nodes

Cartoon of search tree:
»= b is the branching factor

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

= Space complexity? 1 node
b nodes
= Cartoon of search tree: b2 nodes

»= b is the branching factor

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?
Space complexity?

-

1 node

b nodes

Cartoon of search tree: b2 nodes

= b is the branching factor m tiers <
= m is the maximum depth

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

= Space complexity? : 1 node
b nodes
= Cartoon of search tree: b2 nodes
= b is the branching factor m tiers <
= m is the maximum depth
b™ nodes

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

-

= Space complexity? 1 node
b nodes
= Cartoon of search tree: b2 nodes
»= b is the branching factor m tiers <
= m is the maximum depth
= solutions at various depths
b™ nodes

Search Algorithm Properties

= Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

-

= Space complexity? 1 node
b nodes
= Cartoon of search tree: b2 nodes
»= b is the branching factor m tiers <
= m is the maximum depth
= solutions at various depths
b™ nodes

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity? y

Space complexity? 1 node
b nodes
Cartoon of search tree: b2 nodes
»= b is the branching factor m tiers <
= m is the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity? y

Space complexity? 1 node
b nodes
Cartoon of search tree: b2 nodes
»= b is the branching factor m tiers <
= m is the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b2+...b"=0(b™

Depth-First Search (DFS) Properties

= What nodes DFS expand?

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?

» Some left prefix of the tree.

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?
» Some left prefix of the tree.
= Could process the whole tree!

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?
» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?
» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

= How much space does the fringe take?

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?
» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?
» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)

= Is it complete?

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?
» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)

= Is it complete?

= m could be infinite, so only if we prevent
cycles (more later)

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Depth-First Search (DFS) Properties

= What nodes DFS expand?
» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

1 node
b nodes

b2 nodes

= How much space does the fringe take? m tiers <
= Only has siblings on path to root, so O(bm)

= Is it complete?

= m could be infinite, so only if we prevent
cycles (more later)

b™ nodes

= Is it optimal?

Depth-First Search (DFS) Properties

= What nodes DFS expand?

» Some left prefix of the tree.
= Could process the whole tree!
» If mis finite, takes time O(b™)

= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)

= Is it complete?

= m could be infinite, so only if we prevent
cycles (more later)

= Is it optimal?
= No, it finds the “leftmost” solution,
regardless of depth or cost

m tiers <

1 node
b nodes

b2 nodes

b™ nodes

Breadth-First Search

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

®
d e p

P i N |
b o e h r q
| | RN N |
a a h r p q f

N | | N

p q f q C G

| PN |

q G a

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

®
@ (& ®
N |
b o e h r q
| | RN N |
a a h r p q f
N | | N
p q f q C G
| PN |
q G a

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

®
@ (& ®
N |
® G© (& h r q
I N N
a a h r p q f
N N
p q f qQq ¢ G
e |
q G a

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

1 node
b nodes

b2 nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

1 node
b nodes

b2 nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

1 node
b nodes

b2 nodes

/ \ b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

1 node
b nodes

b2 nodes

/ \ b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

1 node
b nodes

b2 nodes

()
A\
@)
b™ nodes
O

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest 1 node
solution b nodes
b2 nodes

()
A\
@)
b™ nodes
O

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

-
= Processes all nodes above shallowest 1 node
solution b nodes
n i s tiers
Let depth of shallowest solution be s < b2 nodes
N

()
A\
@)
b™ nodes
O

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

-
= Processes all nodes above shallowest 1 node
solution b nodes
n i s tiers
Let depth of shallowest solution be s < b2 nodes
_ bs nodes

)
N

O
b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution
» Let depth of shallowest solution be s

= Search takes time O(b%)

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution

» Let depth of shallowest solution be s
= Search takes time O(b%)

= How much space does the fringe take?

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution

» Let depth of shallowest solution be s
= Search takes time O(b%)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®)

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution

» Let depth of shallowest solution be s
= Search takes time O(b%)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®)

» Is it complete?

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution

» Let depth of shallowest solution be s s tiers
= Search takes time O(b%)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®)

» Is it complete?
= s must be finite if a solution exists, so yes!

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution

» Let depth of shallowest solution be s
= Search takes time O(b%)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®)

» Is it complete?
= s must be finite if a solution exists, so yes!

= Is it optimal?

S tiers

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

= Processes all nodes above shallowest
solution

» Let depth of shallowest solution be s s tiers
= Search takes time O(b%)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®)

» Is it complete?
= s must be finite if a solution exists, so yes!

= Is it optimal?
= Only if costs are all 1 (more on costs later)

<

1 node
b nodes

b2 nodes

bs nodes

b™ nodes

Quiz: DFS vs BFS

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

® O O Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 1)

® O O Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 1)

® O O Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 2)

® O O Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 2)

® O O Search Strategies Demo

Video of Demo Maze Water DFS/BFS (part 2)

® O O Search Strategies Demo

Iterative Deepening

» |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

Iterative Deepening

» |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

= Run a DFS with depth limit 1. If no
solution...

Iterative Deepening

» |dea: get DFS’s space advantage with

BFS’s time / shallow-solution advantages]
= Run a DFS with depth limit 1. If no ﬁ%

solution...
= Run a DFS with depth limit 2. If no
solution... O

Iterative Deepening

» |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages §]

= Run a DFS with depth limit 1. If no
solution...

= Run a DFS with depth limit 2. If no /[\
solution... O
= Run a DFS with depth limit 3.

Iterative Deepening

» |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

= Run a DFS with depth limit 1. If no
solution...

= Run a DFS with depth limit 2. If no

solution...
= Run a DFS with depth limit 3. /

Iterative Deepening

» |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

= Run a DFS with depth limit 1. If no
solution...

= Run a DFS with depth limit 2. If no

solution...
= Run a DFS with depth limit 3. /

= Isn’t that wastefully redundant?

Iterative Deepening

» |dea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

= Run a DFS with depth limit 1. If no
solution...

= Run a DFS with depth limit 2. If no

/

solution... /
= Run a DFS with depth limit 3. /

= Isn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

3
1 8
2.
s o)
9 3
START
1 4 2

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will nhow cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

d e p
I N |
b C e h r q
| | N N |
a a h r p q f
N | | RN
p q f q9 ¢ G
| PN |
q G a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
9 1
oK SR
Cc e h r q
I N
a h r p q f
N | N
p q f q9 ¢ G
| PN |
q G a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
9 1

7 Q@
Cc e h r (q@) 16
T N

a h r p q f

N | N

p q f q9 ¢ G

| PN |

q G a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
9 1
@ JOR
(b4 (c) (e)5 h r (q@) 16
| = AL
a a h r p q f
PN | SN
p q f q9 ¢ G
| PN |
q G a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
9 1
OE o e
®+ ©, @5 hoo @ 16
LN A
(@6 a h r p q f
A | PN
p q f q9 ¢ G
| PN |
q G a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
9 1
os @' @
b4 (c) (e)5 h r (q@) 16
RN A
@6 a W37 p q f
A | SR
p q f q9 ¢ G
| PN |
q G a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
9 1
os @' @
b4 (c) (e)5 h r (q@) 16
RN A
@6 a W37 p q f
A | SR
p q f q9 ¢ G
| PN |
q G a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
@ 3 ﬁg @1

@4 ©, @5 hoor @ 16
| RPN N
@6 a (13 (7 p q f

N | N

p g (K8 9 ¢ G

| PN ;

q G

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

(50
oK 20 @
®+ ©, @5 hooor @ 16
| N N
@6 a (13 (7 p q f
N | N
p g (D8 9 G

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

C*e “tiers” <

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

C*e “tiers” <

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

C*e “tiers” <

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

C*e “tiers” <

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?
= Processes all nhodes with cost less than cheapest solution! 4

C*e “tiers” <

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

C*e “tiers” <

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b“™¢) (exponential in effective depth)

C*e “tiers” <

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b®"¢) (exponential in effective depth) C*/e "tiers” <

= How much space does the fringe take?

O

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b®"¢) (exponential in effective depth) C*/e "tiers” <

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢™)

M)
N

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b®"¢) (exponential in effective depth) C*/e "tiers” <

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢™)

= Is it complete?

M)
N

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b®"¢) (exponential in effective depth) C*/e "tiers” <

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢™)

= Is it complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

M)
N

Uniform Cost Search (UCS) Properties

What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b“™¢) (exponential in effective depth)

C*e “tiers” <

How much space does the fringe take?
= Has roughly the last tier, so O(b¢™)

Is it complete?

M)
N

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

Is it optimal?

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nhodes with cost less than cheapest solution! 4
= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/

= Takes time O(b®"¢) (exponential in effective depth) C*/e "tiers” <

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢™)

= Is it complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

O

« Is it optimal?
» Yes! (Proof next lecture via A¥)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction”
= No information about goal location

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!

= The bad:

= Explores options in every “direction”

= No information about goal location
Goal

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction”

= No information about goal location
Goal

= We’'ll fix that soon!

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

® O O Search Strategies Demo

Video of Demo Empty UCS

® O O Search Strategies Demo

Video of Demo Empty UCS

® O O Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

— Search Strategies Demo S

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

— Search Strategies Demo S

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

— Search Strategies Demo S

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

‘® 00 Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

‘® 00 Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

‘® 00 Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

—— Search Strategies Demo L3

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

—— Search Strategies Demo L3

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

—— Search Strategies Demo L3

The One Queue

= All these search algorithms are
the same except for fringe
strategies

= Conceptually, all fringes are priority
queues (i.e. collections of nodes
with attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using
stacks and queues

= Can even code one implementation
that takes a variable queuing object

LL@_ L_u D\l E\Es—ﬂl@l N Pﬂ

Search and Models

= Search operates over
models of the world

» The agent doesn’t
actually try all the
plans out in the real
world!

= Planning is all “in
simulation”

= Your search is only as
good as your models...

Search and Models

= Search operates over
models of the world

» The agent doesn’t
actually try all the
plans out in the real
world!

= Planning is all “in
simulation”

= Your search is only as
good as your models...

Search Gone Wrong?

Search Gone Wrong?

7

—Lake View Ave o

_ Siver Ridge Ave
Hidalgo Ave g

5 2005 MapQuest.

Search Gone Wrong?

S MAPQVEST. -

\

0 Brier Ave
%1

.\g ‘ "
g | &
= S
@ 2
/@ K

ol 8

0094

anyy ﬁpee)‘o“bw 1

ony oBpiy JoneS

Ay MaIp e

e
c
poer}

—— e ; > |

3 Microsoft*
ARCTIC OCEAN Y MapPomt

ICELAND

r RUSSIA
ATLANTIC o
QCEAN A T"e’c
Telsingfors 3

Qo

z

Biatystok C:; BELARUS b

n? POLAHD S 'KW

! ’a -4 ©Wrociaw b

\h" .A‘\M

St I l
©\'
: eyl ‘o 44
Edinburg 0 g ini i a @
v, gt A
.I . d
: \j,**v ot :

G B‘@"‘\ %
oot [,-qfﬁuchagest-f
A b N
* SOUTH ——
L 500 1000 Legend
400 600
Start: Haugesund, Rogaland, Norway
End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

Search Gone Wrong?

[BPIH

ICELAND

NOOWN

el

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

» 2005 MapQ .com, Inc.

‘ RV

) e km 500 1000
o+ D~ egend
Y8 N, / m " 200" 4007 600 5

Tl

g

‘ <

+ S'“
3 ‘;
LEnd -
A 5 ;

o

) ‘:K

3

o

nga
BV&)(]O
fgw Vi m

aged Blal?’stoké" BELARUS,
.\$. --
; I|||1I POLAND %/~ KW@
78 Wroc}an

©

\h" A“m

-
Microsoft*

MapPomt

: RUSSIA

He k| Tver

esmg s C

Smrblensk@
us) By

UKRAINE

nrk. rwo/alltidrr16ro

