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Today

▪ Agents that Plan Ahead 

▪ Search Problems 

▪ Uninformed Search Methods 
▪ Depth-First Search 

▪ Breadth-First Search 

▪ Uniform-Cost Search



Agents that Plan



Reflex Agents

▪ Reflex agents: 
▪ Choose action based on current percept 

(and maybe memory) 
▪ May have memory or a model of the world’s 

current state 
▪ Do not consider the future consequences of 

their actions 
▪ Consider how the world IS 

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]
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Planning Agents

▪ Planning agents: 
▪ Ask “what if” 
▪ Decisions based on (hypothesized) 

consequences of actions 
▪ Must have a model of how the world evolves 

in response to actions 
▪ Must formulate a goal (test) 
▪ Consider how the world WOULD BE 

▪ Optimal vs. complete planning 

▪ Planning vs. replanning

[Demo: replanning (L2D3)]
[Demo: mastermind (L2D4)]
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Video of Demo Replanning
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Video of Demo Mastermind
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Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) 
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0
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Example: Traveling in Romania

▪ State space: 
▪ Cities

▪ Successor function: 
▪ Roads: Go to adjacent city with 

cost = distance

▪ Start state: 
▪ Arad

▪ Goal test: 
▪ Is state == Bucharest? 

▪ Solution?
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What’s in a State Space?

▪ Problem: Pathing 
▪ States: (x,y) location 
▪ Actions: NSEW 
▪ Successor: update location 

only 
▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots 
▪ States: {(x,y), dot 

booleans} 
▪ Actions: NSEW 
▪ Successor: update location 

and possibly a dot boolean 
▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)
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State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many
▪ World states?
 120x(230)x(122)x4
▪ States for pathing?
 120
▪ States for eat-all-dots?
 120x(230)
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Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared
▪ What does the state space have to specify?

▪ (agent position, dot booleans, power pellet booleans, remaining scared time)
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State Space Graphs

▪ State space graph: A mathematical 
representation of a search problem 
▪ Nodes are (abstracted) world configurations 
▪ Arcs represent successors (action results) 
▪ The goal test is a set of goal nodes (maybe only 

one) 

▪ In a search graph, each state occurs only 
once! 

▪ We can rarely build this full graph in 
memory (it’s too big), but it’s a useful idea
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Tiny search graph for a tiny 
search problem
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Search Trees

▪ A search tree: 
▪ A “what if” tree of plans and their outcomes 
▪ The start state is the root node 
▪ Children correspond to successors 
▪ Nodes show states, but correspond to PLANS that achieve those states 
▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



State Space Graphs vs. Search Trees
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We construct both 
on demand – and 
we construct as 

little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph
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Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: 

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?



Tree Search



Search Example: Romania
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▪ Search: 
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General Tree Search

▪ Important ideas: 
▪ Fringe 
▪ Expansion 
▪ Exploration strategy 

▪ Main question: which fringe nodes to explore?



Example: Tree Search
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Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth
▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes
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Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent 

cycles (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, 

regardless of depth or cost
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Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest 

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes
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Quiz: DFS vs BFS

▪ When will BFS outperform DFS? 

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]
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Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with 
BFS’s time / shallow-solution advantages
▪ Run a DFS with depth limit 1.  If no 

solution…
▪ Run a DFS with depth limit 2.  If no 

solution…
▪ Run a DFS with depth limit 3.  …..

▪ Isn’t that wastefully redundant?
▪ Generally most work happens in the lowest 

level searched, so not so bad!



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. 
It does not find the least-cost path.  We will now cover 
a similar algorithm which does find the least-cost path.  
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Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the 

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

▪ Is it optimal?
▪ Yes!  (Proof next lecture via A*)
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c ≤ 1
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Uniform Cost Issues

▪ Remember: UCS explores increasing cost 
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)] 
[Demo: maze with deep/shallow 
water DFS/BFS/UCS (L2D7)]
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Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 
3)



The One Queue

▪ All these search algorithms are 
the same except for fringe 
strategies 
▪ Conceptually, all fringes are priority 

queues (i.e. collections of nodes 
with attached priorities) 

▪ Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using 
stacks and queues 

▪ Can even code one implementation 
that takes a variable queuing object
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