
CS 5522: Artificial Intelligence II  
Search

Instructor: Alan Ritter

Ohio State University
[These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods
▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

Agents that Plan

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept

(and maybe memory)
▪ May have memory or a model of the world’s

current state
▪ Do not consider the future consequences of

their actions
▪ Consider how the world IS

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Video of Demo Reflex Optimal

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Video of Demo Reflex Odd

Video of Demo Reflex Odd

Planning Agents

▪ Planning agents:
▪ Ask “what if”
▪ Decisions based on (hypothesized)

consequences of actions
▪ Must have a model of how the world evolves

in response to actions
▪ Must formulate a goal (test)
▪ Consider how the world WOULD BE

▪ Optimal vs. complete planning

▪ Planning vs. replanning

[Demo: replanning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Replanning

Video of Demo Replanning

Video of Demo Replanning

Video of Demo Mastermind

Video of Demo Mastermind

Video of Demo Mastermind

Search Problems

Search Problems

▪ A search problem consists of:

Search Problems

▪ A search problem consists of:

▪ A state space

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

“N”, 1.0

“E”, 1.0

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

“N”, 1.0

“E”, 1.0

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Search Problems Are Models

Example: Traveling in Romania

Example: Traveling in Romania

▪ State space:
▪ Cities

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

▪ Start state:
▪ Arad

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?

What’s in a State Space?

The world state includes every last detail of the environment

What’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location
▪ Actions: NSEW
▪ Successor: update location

only
▪ Goal test: is (x,y)=END

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location
▪ Actions: NSEW
▪ Successor: update location

only
▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot

booleans}
▪ Actions: NSEW
▪ Successor: update location

and possibly a dot boolean
▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many
▪ World states?

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many
▪ World states?
 120x(230)x(122)x4

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many
▪ World states?
 120x(230)x(122)x4
▪ States for pathing?

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many
▪ World states?
 120x(230)x(122)x4
▪ States for pathing?
 120

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many
▪ World states?
 120x(230)x(122)x4
▪ States for pathing?
 120
▪ States for eat-all-dots?

State Space Sizes?

▪ World state:
▪ Agent positions: 120
▪ Food count: 30
▪ Ghost positions: 12
▪ Agent facing: NSEW 

▪ How many
▪ World states?
 120x(230)x(122)x4
▪ States for pathing?
 120
▪ States for eat-all-dots?
 120x(230)

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared
▪ What does the state space have to specify?

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared
▪ What does the state space have to specify?

▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)
▪ The goal test is a set of goal nodes (maybe only

one)

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)
▪ The goal test is a set of goal nodes (maybe only

one)

▪ In a state space graph, each state occurs
only once!

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)
▪ The goal test is a set of goal nodes (maybe only

one)

▪ In a state space graph, each state occurs
only once!

▪ We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations
▪ Arcs represent successors (action results)
▪ The goal test is a set of goal nodes (maybe only

one)

▪ In a search graph, each state occurs only
once!

▪ We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny search graph for a tiny
search problem

Search Trees

Search Trees

This is now / start

Search Trees

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Search Trees

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes
▪ The start state is the root node
▪ Children correspond to successors
▪ Nodes show states, but correspond to PLANS that achieve those states
▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as

little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

Tree Search

Search Example: Romania

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)
▪ Maintain a fringe of partial plans under consideration
▪ Try to expand as few tree nodes as possible

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)
▪ Maintain a fringe of partial plans under consideration
▪ Try to expand as few tree nodes as possible

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)
▪ Maintain a fringe of partial plans under consideration
▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

b
Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

b
aStrategy: expand a

deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

c
Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

c
Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d
e

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r
h

d
e

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rp
h

d
e

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

d
e

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r
h

d
e

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d
e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

…
b

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

…
b

1 node

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

…
b

1 node
b nodes

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

…
b

1 node
b nodes

b2 nodes

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth

…
b

1 node
b nodes

b2 nodes

m tiers

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth
▪ solutions at various depths

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth
▪ solutions at various depths

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth
▪ solutions at various depths

▪ Number of nodes in entire tree?

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?
▪ Optimal: Guaranteed to find the least cost path?
▪ Time complexity?
▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor
▪ m is the maximum depth
▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent

cycles (more later)

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent

cycles (more later)

▪ Is it optimal?

Depth-First Search (DFS) Properties

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent

cycles (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
Fringe is a FIFO
queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?

…
b

1 node
b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?

…
b

1 node
b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?

…
b

1 node
b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?

…
b

1 node
b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?

…
b

1 node
b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution …
b

1 node
b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest

solution
▪ Let depth of shallowest solution be s
▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Quiz: DFS vs BFS

Quiz: DFS vs BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Video of Demo Maze Water DFS/BFS (part 2)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no

solution…

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no

solution…
▪ Run a DFS with depth limit 2. If no

solution…

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no

solution…
▪ Run a DFS with depth limit 2. If no

solution…
▪ Run a DFS with depth limit 3. …..

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no

solution…
▪ Run a DFS with depth limit 2. If no

solution…
▪ Run a DFS with depth limit 3. …..

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no

solution…
▪ Run a DFS with depth limit 2. If no

solution…
▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with
BFS’s time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no

solution…
▪ Run a DFS with depth limit 2. If no

solution…
▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?
▪ Generally most work happens in the lowest

level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

16

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

▪ Is it optimal?

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!
▪ If that solution costs C* and arcs cost at least ε , then the

“effective depth” is roughly C*/ε
▪ Takes time O(bC*/ε) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/ε)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ε “tiers”
c ≤ 3

c ≤ 2

c ≤ 1

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

▪ We’ll fix that soon!

Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Empty UCS

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

The One Queue

▪ All these search algorithms are
the same except for fringe
strategies
▪ Conceptually, all fringes are priority

queues (i.e. collections of nodes
with attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using
stacks and queues

▪ Can even code one implementation
that takes a variable queuing object

Search and Models

▪ Search operates over
models of the world
▪ The agent doesn’t

actually try all the
plans out in the real
world!

▪ Planning is all “in
simulation”

▪ Your search is only as
good as your models…

Search and Models

▪ Search operates over
models of the world
▪ The agent doesn’t

actually try all the
plans out in the real
world!

▪ Planning is all “in
simulation”

▪ Your search is only as
good as your models…

Search Gone Wrong?

Search Gone Wrong?

Search Gone Wrong?

Search Gone Wrong?

