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Graphical Models 
•  Key Idea:  

–  Conditional independence assumptions useful   
–  but Naïve Bayes is extreme! 
–  Graphical models express sets of conditional 

independence assumptions via graph structure 
–  Graph structure plus associated parameters define 

joint probability distribution over set of variables 

•  Two types of graphical models: 
–  Directed graphs (aka Bayesian Networks) 
–  Undirected graphs (aka Markov Random Fields) 

10-601 



Graphical Models – Why Care? 
•  Among most important ML developments of the decade 
  
•  Graphical models allow combining: 

–  Prior knowledge in form of dependencies/independencies 
–  Prior knowledge in form of priors over parameters 
–  Observed training data 

•  Principled and ~general methods for 
–  Probabilistic inference 
–  Learning 

•  Useful in practice 
–  Diagnosis, help systems, text analysis, time series models, ... 



Conditional Independence   
Definition: X is conditionally independent of Y given Z, if the 

probability distribution governing X is independent of the value 
of Y, given the value of Z 

 
 
 

 
Which we often write  
 
 
 
E.g.,  
 
 
 
 



Marginal Independence  
Definition: X is marginally independent of Y if 
 
 
 
 
 

Equivalently, if  
 
 
 
 
 Equivalently, if  
 
 
 
 
 



Represent Joint Probability Distribution over Variables 



Describe network of dependencies 



Bayes Nets define Joint Probability Distribution 
in terms of this graph, plus parameters 

Benefits of Bayes Nets: 
•  Represent the full joint distribution in fewer 

parameters, using prior knowledge about 
dependencies 

•  Algorithms for inference and learning 



Bayesian Networks Definition 

A Bayes network represents the joint probability distribution 
over a collection of random variables 

 
A Bayes network is a directed acyclic graph and a set of 

conditional probability distributions (CPD’s) 
•  Each node denotes a random variable 
•  Edges denote dependencies 
•  For each node Xi its CPD defines P(Xi | Pa(Xi))
•  The joint distribution over all variables is defined to be 

Pa(X) = immediate parents of X in the graph 



Bayesian Network 

StormClouds 

Lightning Rain 

Thunder WindSurf 

Nodes = random variables 

A conditional probability distribution (CPD) 
is associated with each node N, defining   
P(N | Parents(N)) 

 

 

 

 

 

 

The joint distribution over all variables: 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 



Bayesian Network 

StormClouds 

Lightning Rain 

Thunder WindSurf 

What can we say about conditional 
independencies in a Bayes Net? 

One thing is this: 

Each node is conditionally independent of 
its non-descendents, given only its 
immediate parents. 

  
Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 



Some helpful terminology 

Parents = Pa(X) = immediate parents 

Antecedents = parents, parents of parents, ... 

Children = immediate children 

Descendents = children, children of children, ... 



Bayesian Networks 

•  CPD for each node Xi 
describes P(Xi | Pa(Xi)) 

 
Chain rule of probability says that in general: 

 
But in a Bayes net: 



StormClouds 

Lightning Rain 

Thunder WindSurf 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 

How Many Parameters? 

To define joint distribution in general? 

To define joint distribution for this Bayes Net? 



StormClouds 

Lightning Rain 

Thunder WindSurf 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 

Inference in Bayes Nets 

P(S=1, L=0, R=1, T=0, W=1)  = 



StormClouds 

Lightning Rain 

Thunder WindSurf 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 

Learning a Bayes Net 

Consider learning when graph structure is given, and data = { <s,l,r,t,w> } 

What is the MLE solution?  MAP? 



Algorithm for Constructing Bayes Network 
•  Choose an ordering over variables, e.g., X1, X2, ... Xn  
•  For i=1 to n 

–  Add Xi to the network 
–  Select parents Pa(Xi) as minimal subset of X1 ... Xi-1 such that  
 

Notice this choice of parents assures 
 (by chain rule) 

(by 
construction) 



Example 
•  Bird flu and Allegies both cause Nasal problems 
•  Nasal problems cause Sneezes and Headaches 



What is the Bayes Network for X1,…X4 with NO 
assumed conditional independencies? 



What is the Bayes Network for Naïve Bayes? 



Naïve Bayes  
(Same as Gaussian Mixture Model w/ Diagonal Covariance)

Y

X1 X 2 X 3 X 4



What do we do if variables are mix of discrete 
and real valued? 



Bayes Network for a Hidden Markov Model 

Implies the future is conditionally independent of the past, 
given the present 

St-2 St-1 St St+1 St+2 

Ot-2 Ot-1 Ot Ot+1 Ot+2 

Unobserved 
state: 

Observed 
output: 



Inference in Bayes Nets 

•  In general, intractable (NP-complete) 
•  For certain cases, tractable 

–  Assigning probability to fully observed set of variables 
–  Or if just one variable unobserved 
–  Or for singly connected graphs (ie., no undirected loops) 

•  Variable elimination 
•  Belief propagation 

•  For multiply connected graphs 
•  Junction tree 

•  Sometimes use Monte Carlo methods 
–  Generate many samples according to the Bayes Net 

distribution, then count up the results 

•  Variational methods for tractable approximate 
solutions 



Example 

•  Bird flu and Allegies both cause Sinus problems 
•  Sinus problems cause Headaches and runny Nose 



Prob. of joint assignment: easy  

•  Suppose we are interested in joint 
 assignment <F=f,A=a,S=s,H=h,N=n> 
 
What is P(f,a,s,h,n)? 

let’s use p(a,b) as shorthand for p(A=a, B=b) 



Prob. of marginals: not so easy  

•  How do we calculate P(N=n) ? 

 

let’s use p(a,b) as shorthand for p(A=a, B=b) 



Generating a sample from  
joint distribution: easy  

How can we generate random samples 
drawn according to P(F,A,S,H,N)? 
 
Hint: random sample of F according to P(F=1) = θF=1 : 
•  draw a value of r uniformly from [0,1] 
•  if r<θ  then output F=1, else F=0 
 
 

let’s use p(a,b) as shorthand for p(A=a, B=b) 



Generating a sample from  
joint distribution: easy  

How can we generate random samples 
drawn according to P(F,A,S,H,N)? 
 
Hint: random sample of F according to P(F=1) = θF=1 : 
•  draw a value of r uniformly from [0,1] 
•  if r<θ  then output F=1, else F=0 
 
Solution: 
•  draw a random value f for F, using its CPD 
•  then draw values for A, for S|A,F, for H|S, for N|S 
 



Generating a sample from  
joint distribution: easy  

 
Note we can estimate marginals 
like P(N=n) by generating many samples 
from joint distribution, then count the fraction of samples 

for which N=n 
 
Similarly, for anything else we care about  

 P(F=1|H=1, N=0) 
 
! weak but general method for estimating any 

probability term… 



Learning of Bayes Nets 
•  Four categories of learning problems 

–  Graph structure may be known/unknown 
–  Variable values may be fully observed / partly unobserved 

•  Easy case: learn parameters for graph structure is 
known, and data is fully observed 

 
•  Interesting case: graph known, data partly known 

•  Gruesome case: graph structure unknown, data partly 
unobserved 



Learning CPTs from Fully Observed Data 

Flu Allergy 

Sinus 

Headache Nose 

kth training 
example δ(x) = 1 if x=true,  

       =  0 if x=false 

•  Example: Consider learning 
the parameter 

•  Max Likelihood Estimate is 

•  Remember why? 

let’s use p(a,b) as shorthand for p(A=a, B=b) 



MLE estimate of         from fully observed data 

•  Maximum likelihood estimate 

•  Our case: 

Flu Allergy 

Sinus 

Headache Nose 



Estimate     from partly observed data 

•  What if FAHN observed, but not S? 
•  Can’t calculate MLE 

•  Let X be all observed variable values (over all examples) 
•  Let Z be all unobserved variable values   
•  Can’t calculate MLE: 
 

Flu Allergy 

Sinus 

Headache Nose 

•   WHAT TO DO? 



Estimate     from partly observed data 

•  What if FAHN observed, but not S? 
•  Can’t calculate MLE 

•  Let X be all observed variable values (over all examples) 
•  Let Z be all unobserved variable values   
•  Can’t calculate MLE: 
 

Flu Allergy 

Sinus 

Headache Nose 

•   EM seeks* to estimate: 

* EM guaranteed to find local maximum 



Flu Allergy 

Sinus 

Headache Nose 

•   EM seeks estimate: 

•   here, observed X={F,A,H,N}, unobserved Z={S} 



EM Algorithm - Precisely 

EM is a general procedure for learning from partly observed data 

Given  observed variables X, unobserved Z  (X={F,A,H,N}, Z={S}) 

Define 

Iterate until convergence: 

•  E Step: Use X and current θ to calculate P(Z|X,θ) 

•  M Step: Replace current θ by  

Guaranteed to find local maximum. 
Each iteration increases   



E Step: Use X, θ, to Calculate P(Z|X,θ) 

•  How?  Bayes net inference problem. 

Flu Allergy 

Sinus 

Headache Nose 

observed X={F,A,H,N}, 
unobserved Z={S} 

let’s use p(a,b) as shorthand for p(A=a, B=b) 



E Step: Use X, θ, to Calculate P(Z|X,θ) 

•  How?  Bayes net inference problem. 

Flu Allergy 

Sinus 

Headache Nose 

observed X={F,A,H,N}, 
unobserved Z={S} 

let’s use p(a,b) as shorthand for p(A=a, B=b) 



EM and estimating   Flu Allergy 

Sinus 

Headache Nose 
observed X = {F,A,H,N}, unobserved Z={S} 

E step:  Calculate P(Zk|Xk; θ) for each training example, k  

M step: update all relevant parameters.  For example: 

Recall MLE was: 



EM and estimating   
Flu Allergy 

Sinus 

Headache Nose More generally,  
Given observed set X, unobserved set Z of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable   

M step: 
Calculate estimates similar to MLE, but 
replacing each count by its expected count 



Using Unlabeled Data to Help Train  
Naïve Bayes Classifier 

Y

X1 X4 X3 X2 

Y X1 X2 X3 X4 
1 0 0 1 1 
0 0 1 0 0 
0 0 0 1 0 
? 0 1 1 0 
? 0 1 0 1 

Learn P(Y|X) 



EM and estimating   

Given observed set X, unobserved set Y of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable Y 

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count 

let’s use y(k) to indicate value of Y on kth example 



EM and estimating   

Given observed set X, unobserved set Y of boolean values 

E step:  Calculate for each training example, k  

 the expected value of each unobserved variable Y 

M step: Calculate estimates similar to MLE, but 
replacing each count by its expected count 

MLE would be: 



From [Nigam et al., 2000] 



Experimental Evaluation 

•  Newsgroup postings  
–  20 newsgroups, 1000/group 

•  Web page classification  
–  student, faculty, course, project 
–  4199 web pages 

•  Reuters newswire articles  
–  12,902 articles 
–  90 topics categories 



20 Newsgroups 



Conditional Independence Properties

• A is independent of B given C 

• I(G) is the set of all such conditional 
independence assumptions encoded by G 

• G is an I-map for P iff I(G)      I(P) 
– Where I(P) is the set of all CI statements that 

hold for P 
– In other words: G doesn’t make any assertions 

that are not true about P



Conditional Independence Properties  
(cont)

• Note: fully connected graph is an I-map 
for all distributions 

• G is a minimal I-map of P if: 
– G is an I-map of P 
– There is no G’      G which is an I-map of P 

• Question: 
– How to determine if                                         

? 
– Easy for undirected graphs 
– Kind of complicated for DAGs (Bayesian Nets)



D-separation

• Definitions: 
– An undirected path P is d-separated by a set 

of nodes E (containing evidence) iff at least 
one of the following conditions hold: 

• P contains a chain s -> m -> t or s <- m <- t where 
m is evidence 

• P contains a fork s <- m -> t where m is in the 
evidence 

• P contains a v-structure s -> m <- t where m is not 
in the evidence, nor any descendent of m 



D-seperation (cont)

• A set of nodes A is D-separated from a set of 
nodes B, if given a third set of nodes E iff each 
undirected path from every node in A to every 
node in B is d-seperated by E 

• Finally, define the CI properties of a DAG 
as follows:



Bayes Ball Algorithm

• Simple way to check if A is d-separated 
from B given E 
1. Shade in all nodes in E 
2. Place “balls” in each node in A and let them 

“bounce around” according to some rules 
• Note: balls can travel in either direction 

3. Check if any balls from A reach nodes in B



Bayes Ball Rules



Explaining Away (inter-causal 
reasoning)

Example: Toss two coins and observe their sum



E xample

Radio

Battery

Ignition Gas

Starts

Moves

AreGas and Radio independent? Given Battery? Ignition? Starts? Moves?

13



Bent Coin Bayesian Network

56

P (x1, x2, . . . , xn|✓H) = P (✓H)P (x1|✓H)P (x2|✓H) . . . P (xn|✓H)



Bent Coin Bayesian Network

56

Probability of Each coin 
flip is conditionally 

independent given Θ

P (x1, x2, . . . , xn|✓H) = P (✓H)P (x1|✓H)P (x2|✓H) . . . P (xn|✓H)



Bent Coin Bayesian Network 
(Plate Notation)

57



Learning Bayes-net structure

Given data, which model is correct?

X Ymodel 1:

X Ymodel 2:



Bayesian approach

Given data, which model is correct?  more likely?

X Ymodel 1:

X Ymodel 2:

7.0)( 1 =mp

3.0)( 2 =mp

Data d
1.0)|( 1 =dmp

9.0)|( 2 =dmp



Bayesian approach: 
Model averaging

Given data, which model is correct?  more likely?

X Ymodel 1:

X Ymodel 2:

7.0)( 1 =mp

3.0)( 2 =mp

Data d
1.0)|( 1 =dmp

9.0)|( 2 =dmp

average 
predictions



Bayesian approach: 
Model selection

Given data, which model is correct?  more likely?

X Ymodel 1:

X Ymodel 2:

7.0)( 1 =mp

3.0)( 2 =mp

Data d
1.0)|( 1 =dmp

9.0)|( 2 =dmp

Keep the best model: 
- Explanation 
- Understanding 
- Tractability



To score a model, 
use Bayes’ theorem

Given data d:

)|()()|( mpmpmp dd ∝

∫= θθθ dmpmpmp )|(),|()|( dd

"marginal 
likelihood"

model 
score

likelihood



Thumbtack example
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More complicated graphs

Xheads/tails Y heads/tails

3 separate thumbtack-like learning problems
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Model score for a 
discrete Bayes net
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Computation of 
marginal likelihood

Efficient closed form if 
• Local distributions from the exponential 

family (binomial, poisson, gamma, ...) 
• Parameter independence 
• Conjugate priors 
• No missing data (including no hidden 

variables)



Structure search
• Finding the BN structure with the highest 

score among those structures with at most k 
parents is NP hard for k>1 (Chickering, 
1995) 

• Heuristic methods 
–Greedy 
–Greedy with restarts 
–MCMC methods score 

all possible 
single changes

any 
changes 
better?

perform 
best 

change

yes

no

return 
saved structure

initialize 
structure



Structure priors

1. All possible structures equally likely 
2. Partial ordering, required / prohibited arcs 
3. Prior(m) α Similarity(m, prior BN)



Parameter priors

• All uniform: Beta(1,1) 
• Use a prior Bayes net 



Parameter priors

Recall the intuition behind the Beta prior for the 
thumbtack: 

• The hyperparameters αh and αt can be thought of 
as imaginary counts from our prior experience, 
starting from "pure ignorance" 

• Equivalent sample size = αh + αt 

• The larger the equivalent sample size, the more 
confident we are about the long-run fraction 



Parameter priors

x1

x4

x9

x3

x2

x5

x6
x7

x8

+
equivalent 

sample 
size

imaginary 
count 

for any 
variable 

configuration

parameter priors for any Bayes net structure for X1…Xn

parameter 
modularity



x1

x4

x9

x3

x2

x5

x6
x7

x8

prior network+equivalent sample size

data

improved network(s)

x1  
true 
false 
false 
true

x2  
false 
false 
false 
true

x3  
true 
true 
false 
false

...

. 

..
. . .

Combining knowledge & data

x1

x4

x9

x3

x2

x5

x6
x7

x8



Example: College Plans Data 
(Heckerman et. Al 1997)

• Data on 5 variables that might influence high school 
students’ decision to attend college: 
– Sex: Male or Female 
– SES: Socio economic status (low, lower-middle, middle, upper-

middle, high) 
– IQ: discritized into low, lower middle, upper middle, high 
– PE: Parental Encouragement (low or high) 
– CP: College plans (yes or no) 

• 128 possible joint configurations 
• Heckerman et. al. computed the exact posterior over all 

29,281 possible 5 node DAGs 
– Except those in which Sex or SAS have parents and/or CP have 

children (prior knowledge)





Bayes Nets – What You Should Know 

•  Representation 
–  Bayes nets represent joint distribution as a DAG + Conditional 

Distributions 
–  D-separation lets us decode conditional independence 

assumptions 

•  Inference 
–  NP-hard in general 
–  For some graphs, some queries, exact inference is tractable 
–  Approximate methods too, e.g., Monte Carlo methods, … 

•  Learning 
–  Easy for known graph, fully observed data (MLE’s, MAP est.) 
–  EM for partly observed data, known graph 


