Directed Graphical Models

Instructor: Alan Ritter

Many Slides from Tom Mitchell
Graphical Models

• Key Idea:
 – Conditional independence assumptions useful
 – but Naïve Bayes is extreme!
 – Graphical models express sets of conditional
 independence assumptions via graph structure
 – Graph structure plus associated parameters define
 joint probability distribution over set of variables

• Two types of graphical models:
 – Directed graphs (aka Bayesian Networks)
 – Undirected graphs (aka Markov Random Fields)
Graphical Models – Why Care?

• Among most important ML developments

• Graphical models allow combining:
 – Prior knowledge in form of dependencies/independencies
 – Prior knowledge in form of priors over parameters
 – Observed training data

• Principled and ~general methods for
 – Probabilistic inference
 – Learning

• Useful in practice
 – Diagnosis, help systems, text analysis, time series models, ...
Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

\[(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)\]

Which we often write \[P(X | Y, Z) = P(X | Z)\]

E.g., \[P(\text{Thunder} | \text{Rain, Lightning}) = P(\text{Thunder} | \text{Lightning})\]
Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$
Represent Joint Probability Distribution over Variables

- Visit to Asia \(x_1 \)
- Smoking \(x_2 \)
- Tuberculosis \(x_3 \)
- Lung Cancer \(x_4 \)
- Bronchitis \(x_5 \)
- Tuberculosis or Cancer \(x_6 \)
- XRay Result \(x_7 \)
- Dyspnea \(x_8 \)
Describe network of dependencies

- Visit to Asia (X_1)
- Tuberculosis (X_3) → Tuberculosis or Cancer (X_6) → XRay Result (X_7)
- Smoking (X_2)
- Lung Cancer (X_4) → Tuberculosis or Cancer (X_6) → Dyspnea (X_8) → Diagnostic Tests
- Bronchitis (X_5)
Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters.

\[
P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) = P(X_1) P(X_2) P(X_3|X_1) P(X_4|X_2) P(X_5|X_2) P(X_6|X_3, X_4) P(X_7|X_6) P(X_8|X_5, X_6)
\]

Benefits of Bayes Nets:

• Represent the full joint distribution in fewer parameters, using prior knowledge about dependencies

• Algorithms for inference and learning
Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD’s)

- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i | Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 \ldots X_n) = \prod_i P(X_i | Pa(X_i))$$

$Pa(X) =$ immediate parents of X in the graph
Bayesian Network

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node \(N \), defining \(P(N \mid \text{Parents}(N)) \)

| Parents | P(W|Pa) | P(¬W|Pa) |
|----------|--------|----------|
| L, R | 0 | 1.0 |
| L, ¬R | 0 | 1.0 |
| ¬L, R | 0.2 | 0.8 |
| ¬L, ¬R | 0.9 | 0.1 |

The joint distribution over all variables:

\[
P(X_1 \ldots X_n) = \prod_i P(X_i \mid \text{Pa}(X_i))
\]
What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

| Parents | P(W|Pa) | P(¬W|Pa) |
|---------|--------|----------|
| L, R | 0 | 1.0 |
| L, ¬R | 0 | 1.0 |
| ¬L, R | 0.2 | 0.8 |
| ¬L, ¬R | 0.9 | 0.1 |
Some helpful terminology

Parents = Pa(X) = immediate parents
Antecedents = parents, parents of parents, ...
Children = immediate children
Descendents = children, children of children, ...

Parents | P(W|Pa) | P(¬W|Pa) |
---------|-------|---------|
L, R | 0 | 1.0 |
L, ¬R | 0 | 1.0 |
¬L, R | 0.2 | 0.8 |
¬L, ¬R | 0.9 | 0.1 |
Bayesian Networks

- CPD for each node X_i describes $P(X_i \mid Pa(X_i))$

Chain rule of probability says that in general:

$$P(S, L, R, T, W) = P(S)P(L \mid S)P(R \mid S, L)P(T \mid S, L, R)P(W \mid S, L, R, T)$$

But in a Bayes net:

$$P(X_1 \ldots X_n) = \prod_i P(X_i \mid Pa(X_i))$$

<table>
<thead>
<tr>
<th>Parents</th>
<th>$P(W \mid Pa)$</th>
<th>$P(\neg W \mid Pa)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, R</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>L, \neg R</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>\neg L, R</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>\neg L, \neg R</td>
<td>0.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>
How Many Parameters?

| Parents | $P(W|Pa)$ | $P(\neg W|Pa)$ |
|---------|----------|----------------|
| L, R | 0 | 1.0 |
| L, ¬R | 0 | 1.0 |
| ¬L, R | 0.2 | 0.8 |
| ¬L, ¬R | 0.9 | 0.1 |

To define joint distribution in general?

To define joint distribution for this Bayes Net?
P(S=1, L=0, R=1, T=0, W=1) =
Consider learning when graph structure is given, and data = \{ <s,l,r,t,w> \}

What is the MLE solution? MAP?
Algorithm for Constructing Bayes Network

- Choose an ordering over variables, e.g., X_1, X_2, \ldots, X_n
- For $i = 1$ to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of X_1, \ldots, X_{i-1} such that
 \[P(X_i | Pa(X_i)) = P(X_i | X_1, \ldots, X_{i-1}) \]

Notice this choice of parents assures
\[
P(X_1 \ldots X_n) = \prod_i P(X_i | X_1 \ldots X_{i-1}) \quad \text{(by chain rule)}
\]
\[
= \prod_i P(X_i | Pa(X_i)) \quad \text{(by construction)}
\]
Example

• Bird flu and Allegies both cause Nasal problems
• Nasal problems cause Sneeze and Headaches
What is the Bayes Network for X_1, \ldots, X_4 with NO assumed conditional independencies?
What is the Bayes Network for Naïve Bayes?
Naïve Bayes
(Same as Gaussian Mixture Model w/ Diagonal Covariance)

\[P(y, x_1:D) = P(y) \prod_{j=1}^{D} P(x_j | y) \]
What do we do if variables are mix of discrete and real valued?
Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, given the present

\[P(S_{t-2}, O_{t-2}, S_{t-1}, \ldots, O_{t+2}) = \]
Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (i.e., no undirected loops)
 - Variable elimination
 - Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions
Example

- Bird flu and Allegies both cause Sinus problems
- Sinus problems cause Headaches and runny Nose
Prob. of joint assignment: easy

• Suppose we are interested in joint assignment \(<F=f, A=a, S=s, H=h, N=n>\)

What is \(P(f,a,s,h,n)\)?

Let's use \(p(a,b)\) as shorthand for \(p(A=a, B=b)\)
Prob. of marginals: not so easy

- How do we calculate $P(N=n)$?

Let’s use $p(a,b)$ as shorthand for $p(A=a, B=b)$.
Generating a sample from joint distribution: easy

How can we generate random samples drawn according to $P(F, A, S, H, N)$?

Hint: random sample of F according to $P(F=1) = \theta_{F=1}$:
• draw a value of r uniformly from $[0,1]$
• if $r<\theta$ then output $F=1$, else $F=0$

let's use $p(a,b)$ as shorthand for $p(A=a, B=b)$
Generating a sample from joint distribution: easy

How can we generate random samples drawn according to \(P(F,A,S,H,N) \)?

Hint: random sample of \(F \) according to \(P(F=1) = \theta_{F=1} \):

- draw a value of \(r \) uniformly from \([0,1]\)
- if \(r < \theta \) then output \(F=1 \), else \(F=0 \)

Solution:

- draw a random value \(f \) for \(F \), using its CPD
- then draw values for \(A \), for \(S|A,F \), for \(H|S \), for \(N|S \)
Generating a sample from joint distribution: easy

Note we can estimate marginals like $P(N=n)$ by generating many samples from joint distribution, then count the fraction of samples for which $N=n$.

Similarly, for anything else we care about $P(F=1|H=1, N=0)$.

→ weak but general method for estimating any probability term...
Learning of Bayes Nets

- Four categories of learning problems
 - Graph structure may be known/unknown
 - Variable values may be fully observed / partly unobserved

- Easy case: learn parameters for graph structure is known, and data is fully observed

- Interesting case: graph known, data partly known

- Gruesome case: graph structure unknown, data partly unobserved
Learning CPTs from Fully Observed Data

- Example: Consider learning the parameter

\[\theta_{s|i,j} \equiv P(S = 1|F = i, A = j) \]

- Max Likelihood Estimate is

\[\theta_{s|i,j} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)} \]

- Remember why?

let's use p(a,b) as shorthand for p(A=a, B=b)
MLE estimate of \(\theta_{s|ij} \) from fully observed data

- Maximum likelihood estimate
 \[\theta \leftarrow \arg \max_{\theta} \log P(\text{data}|\theta) \]

- Our case:

\[
P(\text{data}|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)
\]

\[
P(\text{data}|\theta) = \prod_{k=1}^{K} P(f_k)P(a_k)P(s_k|f_ka_k)P(h_k|s_k)P(n_k|s_k)
\]

\[
\log P(\text{data}|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)
\]

\[
\frac{\partial \log P(\text{data}|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_ka_k)}{\partial \theta_{s|ij}}
\]

\[
\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}
\]
Estimate θ from partly observed data

• What if FAHN observed, but not S?
• Can’t calculate MLE
 \[\theta \leftarrow \arg \max_{\theta} \log \prod_k P(f_k, a_k, s_k, h_k, n_k|\theta) \]

• Let X be all *observed* variable values (over all examples)
• Let Z be all *unobserved* variable values
• Can’t calculate MLE:
 \[\theta \leftarrow \arg \max_{\theta} \log P(X, Z|\theta) \]

• WHAT TO DO?
Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can’t calculate MLE
 \[\theta \leftarrow \arg \max_{\theta} \log \prod_{k} P(f_{k}, a_{k}, s_{k}, h_{k}, n_{k}|\theta) \]

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can’t calculate MLE:
 \[\theta \leftarrow \arg \max_{\theta} \log P(X, Z|\theta) \]

- EM seeks* to estimate:
 \[\theta \leftarrow \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)] \]

* EM guaranteed to find local maximum
• EM seeks estimate:

\[
\theta \leftarrow \arg \max_\theta E_{Z|X,\theta} \left[\log P(X, Z|\theta) \right]
\]

• here, observed \(X=\{F,A,H,N\}\), unobserved \(Z=\{S\}\)

\[
\log P(X, Z|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_k,a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)
\]

\[
E_{P(Z|X,\theta)} \log P(X, Z|\theta) = \sum_{k=1}^{K} \sum_{i=0}^{1} P(s_k = i|f_k, a_k, h_k, n_k) \\
\left[\log P(f_k) + \log P(a_k) + \log P(s_k|f_k,a_k) + \log P(h_k|s_k) + \log P(n_k|s_k) \right]
\]
EM Algorithm

EM is a general procedure for learning from partly observed data
Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})
Define
\[Q(\theta' | \theta) = E_{P(Z|X,\theta)}[\log P(X, Z|\theta')] \]
Iterate until convergence:
• E Step: Use X and current \(\theta \) to calculate \(P(Z|X,\theta) \)
• M Step: Replace current \(\theta \) by
\[\theta \leftarrow \arg \max_{\theta'} Q(\theta' | \theta) \]

Guaranteed to find local maximum.
Each iteration increases
\[E_{P(Z|X,\theta)}[\log P(X, Z|\theta')] \]
E Step: Use X, θ, to Calculate $P(Z|X,\theta)$

observed $X=\{F,A,H,N\}$, unobserved $Z=\{S\}$

$$P(S_k = 1|f_ka_kh_kn_k, \theta) =$$

let's use $p(a,b)$ as shorthand for $p(A=a, B=b)$
E Step: Use X, θ, to Calculate $P(Z|X,\theta)$

observed $X=${F,A,H,N},
unobserved $Z=${S}

$$P(S_k = 1|f_k a_k h_k n_k, \theta) =$$

$$P(S_k = 1|f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k|\theta)}{P(S_k = 1, f_k a_k h_k n_k|\theta) + P(S_k = 0, f_k a_k h_k n_k|\theta)}$$

let's use $p(a,b)$ as shorthand for $p(A=a, B=b)$
EM and estimating $\theta_{s|i,j}$

observed $X = \{F,A,H,N\}$, unobserved $Z=\{S\}$

E step: Calculate $P(Z_k|X_k; \theta)$ for each training example, k

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{E[s_k]}{P(Z_k=1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

M step: update all relevant parameters. For example:

$$\theta_{s|i,j} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j) E[s_k]}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

Recall MLE was:

$$\theta_{s|i,j} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$
EM and estimating θ

More generally,

Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable

M step:

Calculate estimates similar to MLE, but

replacing each count by its expected count

$$
\delta(Y = 1) \rightarrow E_{Z|X,\theta}[Y] \quad \delta(Y = 0) \rightarrow (1 - E_{Z|X,\theta}[Y])
$$
Learning Naïve Bayes Classifier using unlabeled data.

Learn \(P(Y|X) \)

\[
\begin{array}{cccc}
Y & X1 & X2 & X3 & X4 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
? & 0 & 1 & 1 & 0 \\
? & 0 & 1 & 0 & 1 \\
\end{array}
\]
EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \ldots x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^{1} P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

let's use $y(k)$ to indicate value of Y on kth example
EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k),...,x_N(k);\theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

$$\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k)) \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k)\ldots x_N(k))}$$

MLE would be:

$$\hat{P}(X_i = j|Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$$
• **Inputs:** Collections \mathcal{D}^l of labeled documents and \mathcal{D}^u of unlabeled documents.

• Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, \mathcal{D}^l, only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg\max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).

• Loop while classifier parameters improve, as measured by the change in $l_c(\theta|\mathcal{D};z)$ (the complete log probability of the labeled and unlabeled data).

 • **(E-step)** Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, i.e., the probability that each mixture component (and class) generated each document, $P(c_j|d_i;\hat{\theta})$ (see Equation 7).

 • **(M-step)** Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg\max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).

• **Output:** A classifier, $\hat{\theta}$, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]
Experimental Evaluation

• Newsgroup postings
 – 20 newsgroups, 1000/group
• Web page classification
 – student, faculty, course, project
 – 4199 web pages
• Reuters newswire articles
 – 12,902 articles
 – 90 topics categories
Conditional Independence Properties

• A is independent of B given C

\[X_A \perp_G X_B \mid X_C \]

• I(G) is the set of all such conditional independence assumptions encoded by G

• G is an I-map for P iff \(I(G) \subseteq I(P) \)
 – Where \(I(P) \) is the set of all CI statements that hold for P
 – In other words: G doesn’t make any assertions that are not true about P
Conditional Independence Properties (cont)

• Note: fully connected graph is an I-map for all distributions

• **G is a minimal I-map of P** if:
 – G is an I-map of P
 – There is no $G' \subset G$ which is an I-map of P

• **Question:**
 – How to determine if $X_A \perp_G X_B | X_C$?
 – Easy for undirected graphs
 – Kind of complicated for DAGs (Bayesian Nets)
D-separation

• Definitions:
 – An undirected path P is d-separated by a set of nodes E (containing evidence) iff at least one of the following conditions hold:
 • P contains a chain $s \rightarrow m \rightarrow t$ or $s \leftarrow m \leftarrow t$ where m is evidence
 • P contains a fork $s \leftarrow m \rightarrow t$ where m is in the evidence
 • P contains a v-structure $s \rightarrow m \leftarrow t$ where m is not in the evidence, nor any descendent of m
D-seperation (cont)

• A set of nodes A is **D-separated** from a set of nodes B, if given a third set of nodes E iff each undirected path from every node in A to every node in B is d-separated by E

• Finally, define the CI properties of a DAG as follows:

$$X_A \perp_G X_B | X_E \iff A \text{ is d-separated from } B \text{ given } E$$
Bayes Ball Algorithm

• Simple way to check if A is d-separated from B given E
 1. Shade in all nodes in E
 2. Place “balls” in each node in A and let them “bounce around” according to some rules
 • Note: balls can travel in either direction
 3. Check if any balls from A reach nodes in B
Bayes Ball Rules
Explaining Away (inter-causal reasoning)

\[
P(x, z|y) = \frac{P(x)P(z)P(y|x, z)}{P(y)}
\]

\[\implies x \indep z|y\]

Example: Toss two coins and observe their sum

\[
P(x, z) = P(x)P(z)
\]

\[\implies x \perp z\]
Example

Bent Coin Bayesian Network

\[P(x_1, x_2, \ldots, x_n | \theta_H) = P(\theta_H) P(x_1 | \theta_H) P(x_2 | \theta_H) \ldots P(x_n | \theta_H) \]
Probability of Each coin flip is conditionally independent given Θ

$$P(x_1, x_2, \ldots, x_n | \theta_H) = P(\theta_H)P(x_1 | \theta_H)P(x_2 | \theta_H)\ldots P(x_n | \theta_H)$$
Bent Coin Bayesian Network
(Plate Notation)
Learning Bayes-net structure

Given data, which model is correct?

model 1: \[X \rightarrow Y \]

model 2: \[X \rightarrow Y \]
Bayesian approach

Given data, which model is correct? More likely?

model 1: $\begin{align*} X & \quad Y \\ p(m_1) = 0.7 & \quad p(m_1 | d) = 0.1 \end{align*}$

model 2: $\begin{align*} X & \rightarrow Y \\ p(m_2) = 0.3 & \quad p(m_2 | d) = 0.9 \end{align*}$
Bayesian approach: Model averaging

Given data, which model is correct? more likely?

model 1: $X \rightarrow Y$ \hspace{1cm} p(m_1) = 0.7 \hspace{1cm} p(m_1 \mid d) = 0.1

model 2: $X \rightarrow Y$ \hspace{1cm} p(m_2) = 0.3 \hspace{1cm} p(m_2 \mid d) = 0.9
Bayesian approach: Model selection

Given data, which model is correct? more likely?

model 1: \(p(m_1) = 0.7 \)
\(p(m_1 | d) = 0.1 \)

model 2: \(p(m_2) = 0.3 \)
\(p(m_2 | d) = 0.9 \)

Data \(d \)

Keep the best model:
- Explanation
- Understanding
- Tractability
To score a model, use Bayes’ theorem

Given data \mathbf{d}:

\[
p(m \mid \mathbf{d}) \propto p(m)p(\mathbf{d} \mid m)
\]

"marginal likelihood"

\[
p(\mathbf{d} \mid m) = \int p(\mathbf{d} \mid \theta, m)p(\theta \mid m)d\theta
\]
Thumbtack example

\[p(d \mid m) = \int \theta^\#h (1 - \theta)^\#t \, p(\theta \mid m) \, d\theta \]

\[= \int \theta^\#h + \alpha_h - 1 (1 - \theta)^\#t + \alpha_t - 1 \, d\theta \]

conjugate prior

\[= \frac{\Gamma(\alpha_h + \alpha_t)}{\Gamma(\alpha_h + \alpha_t + \#h + \#t)} \frac{\Gamma(\alpha_h + \#h)}{\Gamma(\alpha_h)} \frac{\Gamma(\alpha_t + \#t)}{\Gamma(\alpha_t)} \]
More complicated graphs

![Diagram of two variables X and Y with heads/tails annotations and a mathematical expression for the conditional probability of Y given X.]

3 separate thumbtack-like learning problems

\[p(d \mid m) = \frac{\Gamma(\alpha_h + \alpha_t)}{\Gamma(\alpha_h + \alpha_t + \#h + \#t)} \frac{\Gamma(\alpha_h + \#h)}{\Gamma(\alpha_h)} \frac{\Gamma(\alpha_t + \#t)}{\Gamma(\alpha_t)} \]

\[\Gamma(\alpha_h + \alpha_t) \quad \Gamma(\alpha_h + \#h) \quad \Gamma(\alpha_t + \#t) \]

\[\Gamma(\alpha_h + \alpha_t + \#h + \#t) \quad \Gamma(\alpha_h) \quad \Gamma(\alpha_t) \]

\[\Gamma(\alpha_h + \alpha_t) \quad \Gamma(\alpha_h + \#h) \quad \Gamma(\alpha_t + \#t) \]

\[\Gamma(\alpha_h + \alpha_t + \#h + \#t) \quad \Gamma(\alpha_h) \quad \Gamma(\alpha_t) \]

\[Y \mid X = \text{heads} \]

\[Y \mid X = \text{tails} \]
Model score for a discrete Bayes net

\[p(d \mid m) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})} \]

\(N_{ijk} \): number of cases where \(X_i = x_i^k \) and \(\text{Pa}_i = \text{pa}_i^j \)

\(r_i \): number of states of \(X_i \)

\(q_i \): number of instances of parents of \(X_i \)

\[\alpha_{ij} = \sum_{k=1}^{r_i} \alpha_{ijk} \quad N_{ij} = \sum_{k=1}^{r_i} N_{ijk} \]
Computation of marginal likelihood

Efficient closed form if

• Local distributions from the exponential family (binomial, poisson, gamma, ...)
• Parameter independence
• Conjugate priors
• No missing data (including no hidden variables)
Structure search

• Finding the BN structure with the highest score among those structures with at most \(k \) parents is NP hard for \(k>1 \) (Chickering, 1995)

• Heuristic methods
 – Greedy
 – Greedy with restarts
 – MCMC methods

```
initialize structure

score all possible single changes

any changes better?
  yes
  perform best change
  no
  return saved structure
```
Structure priors

1. All possible structures equally likely
2. Partial ordering, required / prohibited arcs
3. Prior(m) α Similarity(m, prior BN)
Parameter priors

• All uniform: Beta(1,1)
• Use a prior Bayes net
Parameter priors

Recall the intuition behind the Beta prior for the thumbtack:

- The hyperparameters α_h and α_t can be thought of as imaginary counts from our prior experience, starting from "pure ignorance"
- Equivalent sample size $= \alpha_h + \alpha_t$
- The larger the equivalent sample size, the more confident we are about the long-run fraction
Parameter priors

Parameter priors for any Bayes net structure for $X_1 \ldots X_n$
Combining knowledge & data

prior network+equivalent sample size

data

<table>
<thead>
<tr>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

improved network(s)
Example: College Plans Data
(Heckerman et. Al 1997)

- Data on 5 variables that might influence high school students’ decision to attend college:
 - **Sex**: Male or Female
 - **SES**: Socio economic status (low, lower-middle, middle, upper-middle, high)
 - **IQ**: discretized into low, lower middle, upper middle, high
 - **PE**: Parental Encouragement (low or high)
 - **CP**: College plans (yes or no)

- 128 possible joint configurations

- Heckerman et. al. computed the exact posterior over all 29,281 possible 5 node DAGs
 - Except those in which Sex or SAS have parents and/or CP have children (prior knowledge)
\[
\frac{p(D | m_1)}{p(D | m_2)} \approx 8.3 \cdot 10^9
\]
Bayes Nets – What You Should Know

• Representation
 – Bayes nets represent joint distribution as a DAG + Conditional Distributions
 – D-separation lets us decode conditional independence assumptions

• Inference
 – NP-hard in general
 – For some graphs, some queries, exact inference is tractable
 – Approximate methods too, e.g., Monte Carlo methods, …

• Learning
 – Easy for known graph, fully observed data (MLE’s, MAP est.)
 – EM for partly observed data, known graph