Generative Models

Instructor: Alan Ritter

Slides Adapted from Fei-Fei Li & Justin Johnson & Serena Yeung

Midterm

10

Overview

e Unsupervised Learning

e Generative Models
o PixelRNN and PixelCNN
o Variational Autoencoders (VAE)
o (Generative Adversarial Networks (GAN)

Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

This image is CCO public domain

Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a function to map x ->y

A cat sitting on a suitcase on the floor

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Unsupervised Learning x o
Bt
Data: x B
o R % %G A
Just data, no labels! g% T
x Fress
. x +++:1_:£i+ +
Goal: Learn some underlying B Yo

hidden structure of the data S

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

K-means clustering

Supervised vs Unsupervised Learning

Unsupervised Learning

L2 Loss function:

Reconstructed data

e i = NI

N - YT
Data: x T e
Just data, no labels! heronsinieiad 7 -UH; W&
InpUt data Encoder: 4-layer conv

I Decoder Decoder: ;Hay)elr upconv

Goal: Learn some underlying Features [. -
hidden structure of the data I e = NS
Encoder ’m‘éﬁ ﬁ@
= s O | Input data T E&QW
.xamp_ es. _ usterlng, sl < 5

dimensionality reduction, feature Autoencoders

learning, density estimation, etc. (Feature learning)

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

1-d density estimation

Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X Is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Unsupervised Learning

Training data is cheap
Data: x \, Holy grail: Solve
Just data, no labels! unsupervised learning

Goal: Learn some underlying /
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Generative Models

Given training data, generate new samples from same distribution

B, =

Training data ~ p,_._(X) Generated samples ~p_ . (X)

Want to learn p__ . (x) similar to p,_._(x)

Generative Models

Given training data, generate new samples from same distribution

By S,

- —

Training data ~ p,_._(X) Generated samples ~p_ . (X)

Want to learn p__ . (x) similar to p,_._(x)

Addresses density estimation, a core problem in unsupervised learning
Several flavors:
- Explicit density estimation: explicitly define and solve forp__ . (X)

- Implicit density estimation: learn model that can sample from p (x) w/o explicitly defining it

model

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

1
)] o
h i n i B s 1% \
- I3 - {)
J e - »
' 5 . = B
.

¥
b - Y o - -
i » : v '\..-.!"\ ’ - m
. ' . b 3 ¥
R = - -
) A ¥ Y == 5 et |- (. >
| fosa L 2wWST ¥ By = B Y
- - - N - - - -~ .
o~ o - U I A "
= i o - .l . o
=y T = N -
. - - S : -
- ?
:) L h -
ol = g 4
T >
e P e I) ~
- R T . -
it e —” A ! ——
4 - =]
N T T : T A .
- 3 y . '3 g ~ — A
’ = 1 -—
g U B SRS B, !
- / -
SIS - s e -
- - - - Q«\“‘

- Generative models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

Taxonomy of Generative Models ~ Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
.. . GSN
Fully Visible Belief Nets \

- NADE _ / _
- MADE Variational Markov Chain
- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

nonlinear ICA
() Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Taxonomy of Generative Models ~ Direct

Today: discuss 3 most GAN
popular types of generative Generative models
models today /\
Explicit density Implicit density
Tractable density Approximate density Markov Chain

Fully Visible Belief Nets / \ GSN

- NADE — _

- MADE Variational Markov Chain

- [PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models

nonlinear ICA
() Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

PixelRNN and PixelCNN

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(z) = Hp(a:z-|a:1, ooy Ti—1)
o

Likelihood of Probability of i'th pixel value
Image X given all previous pixels

Then maximize likelihood of training data

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(z) = Hp(acz-|a:1, ooy Ti—1)
R

Likelihood of Probability of i'th pixel value
Image X given all previous pixels
Complex distribution over pixel

. o . values => Express using a neural
Then maximize likelihood of training data otwork!

Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:

n
p(z) = H p(z;|lzy, ..., xi—1)
T i=1 T Will need to define
o ordering of “previous
Likelihood of Probability of i'th pixel value pixels”
Image X given all previous pixels

Complex distribution over pixel
values => Express using a neural

Then maximize likelihood of training data otwork!

PIX6| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

© O O O @

© O O O O

© O O O O

© O O O O

© O O O O

PIX6| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

OOOO—E
© O O O
© O O O O

© O O O O

© O O O O

PIX6| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

3

© O O O O

© O @&
© O O
© O O

© O O O O

PIX6| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!

© O O O O

© O

QOl}:
© O O
© O O

PIX6|C N N [van der Oord et al. 2016]

Still generate image pixels starting from Lﬂ
corner

0 T 255

N

Dependency on previous pixels now /

modeled using a CNN over context region .

Figure copyright van der Oord et al., 2016. Reproduced with permission.

PIX6|C N N [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from Lﬂ
corner

0 ? 255

N

Dependency on previous pixels now /

modeled using a CNN over context region /

Training: maximize likelihood of training

Images
n

p(x) = Hp(wz-\xl, ooy Ti—1)

=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.

PIX6|C N N [van der Oord et al. 2016]

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Training is faster than PixelRNN

(can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially
=> still slow

e

0 1‘ 255

N

g
71 ‘\
71 N
/ L »
/
/
/
4

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Generation Samples

~ - : | ~ -"

3 . 4
GRS NN K
S 5 S 2 . -~ : j -
YW O RER
Fﬁ”ﬂlﬁﬂ!lﬂ

2 » .
>~ \r ’ - ; . . }-.
n & : .
- oy VP4
.- “ -~ .
N i 3 » a2 e i ’
=N ! o L .

32x32 CIFAR-10 32x32 ImageNet

ﬁb‘.ﬁﬁﬁl

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

PixelRNN and PixelCNN

Pros: Improving PixelCNN performance
- Can explicitly compute likelihood - Gated convolutional layers
P(X) - Short-cut connections
- Explicit likelihood of training - Discretized logistic loss
data gives good evaluation - Multi-scale
metric - Training tricks
- Good samples - Efc...
Con: See
- Sequential generation => slow - Van der Oord et al. NIPS 2016

- Salimans et al. 2017
(Pixel CNN++)

Variational
Autoencoders (VAE)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

pQ(CL') — Hp9($i|$1a veey xi—l)
1=1

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

pg(.fU) — Hp9($i|m17 very xi—l)
1=1

VAEs define intractable density function with latent z:

po(z) = [po(z)po(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Features z

Encoder

Input data T

Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

Features z

Encoder

Input data T

Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

| L Later: Deep, fully-connected
Q: Why dimensionality Later ReLU CNN
reduction? '

Features z

Encoder

Input data T

Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?

A: Want features to

capture meaningful Features &
factors of variation in A
data Encoder

Input data T

Some background first: Autoencoders

How to learn this feature representation?

Features % ﬁﬁi i
Encoder ’Eﬁ @
Input data DSQN
" g sl < [HES

Some background first: Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed A
iInput data A
Decoder
Features z
A
Encoder

Input data T

Some background first: Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself
Originally: Linear +

nonlinearity (sigmoid)
Re_constructed T / Later: Deep, fully-connected
iInput data A Later: ReLU CNN (upconv)

Decoder

Features Z uhﬁ . -;:,
A Encoder ﬁ
| TS
nput data T E(.E

Some background first: Autoencoders _Reconstructed data
e =
Bl .&00
el 5 23 Y 20
i < M8

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed A

_ X Encoder: 4-layer conv
input data A Decoder: 4-layer upconv
Decoder 4
ut data
Features A .i > A

A Encoder .’4 ﬁ.
Input data DSQW
" & B0l < [

Some background first: Autoencoders _Reconstructed data

o e B . A
- Y 12E
Pl S Y A
-H; Il

Train such that features |
can be used to L2 Loss function:

reconstruct original data |z — 53H2 =

T

Re.(x)nStrUCted 53’ Encoder: 4-layer conv
input data A Decoder: 4-layer upconv
Decoder &
ut data
Features 2 .i
A

Encoder . ﬁ.
Input data T Sgg
a0 < 08

Some background first: Autoencoders _Reconstructed data

e T e M
rain such that features oesn't use labels! ’ ' "
can be used to L2 Loss function: %ggz

reconstruct original data |z — 53H2 “ -
: il < WS

Re.(x)nStrUCted X Encoder: 4-layer conv
input data A Decoder: 4-layer upconv
Decoder &
_ Input gata
Features % ﬁ = =

Encoder Eﬁ
Input data T Sgg
Ml < IR

Some background first: Autoencoders

Reconstructed o
iInput data A
Decoder
Features z \ After training,
A throw away decoder
Encoder

Input data T

Some background first: Autoencoders

Loss function
(Softmax, etc) bird plane

/ \ dog deer truck

Predicted Label

Classifier Fine-tune Irain fo.r final tgsk
Encoder can be encoder (sometimes with
used to initialize a Features 2 jointly with small data)
supervised model A classifier

Encoder

L L

Input data T

Some background first: Autoencoders

Reconstructed

Input data

Features

Decoder

Encoder

Input data

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an
autoencoder?

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(i)}ﬁvzl iIs generated from underlying unobserved (latent)
representation z

Sample from
true conditional 4

po+(| Z(i)) 1
Sample from
true prior >

po~(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {:z:(i)}gvzl iIs generated from underlying unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from _ _ _
generate x: attributes, orientation, etc.

true conditional £

po+(| Z(i)) 1
Sample from
true prior >

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from

true conditional £
po=(T | Z(i)) 1
Sample from

true prior >
po=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample fr.o.m How should we represent this model?
true conditional b
po~ (x| Z(i)) t
Sample from
true prior >
pe=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from

true conditional £
po=(T | Z(i)) 1
Sample from

true prior >
po=(2)

We want to estimate the true parameters g*
of this generative model.

How should we represent this model?
Choose prior p(z) to be simple, e.q.

Gaussian. Reasonable for latent attributes,
e.g. pose, how much smile.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from

o How should we represent this model?
true conditional £
0 A . .
po- (x| 2) Choose prior p(z) to be simple, e.g.
Decoder Gaussian.
network - _
Sample from Conditional p(x|z) is complex (generates
true prior > image) => represent with neural network
po=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample fr.o.m How to train the model?
true conditional £
Pe*(ﬂf ’ Z(i)) t
Decoder
network
Sample from
true prior >
po=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample fr.o.m How to train the model?
true conditional £
7 A
po-(x | 29) Remember strategy for training generative
Decoder models from FVBNSs. Learn model parameters
network to maximize likelihood of training data
Sample from
true prior > fpo 2)pg(z|2)dz
po=(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample fr.o.m How to train the model?
true conditional £
7 A
po-(x | 29) Remember strategy for training generative
Decoder models from FVBNSs. Learn model parameters
network to maximize likelihood of training data
Sample from
tr]t)Je p()g)or > fpo 2)pe(z|2)dz
7 \

Now with latent z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample fr.o.m How to train the model?
true conditional £
7 A
po-(x | 29) Remember strategy for training generative
Decoder models from FVBNSs. Learn model parameters
network to maximize likelihood of training data
Sample from
true prior > fpo 2)pg(z|2)dz
po=(2)

Q: What is the problem with this?

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from
true conditional

pe-(z | 27)

Sample from
true prior

pe=(2)

X

A

Decoder
network

<

We want to estimate the true parameters g*
of this generative model.

How to train the model?

Remember strategy for training generative
models from FVBNs. Learn model parameters
to maximize likelihood of training data

= | po(2)pe(x|2)dz
Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractabllity

Data likelihood: po(z) = [pe(2)pe(x|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractabllity

Data likelihood: po(z) = [pe(2)pe(x|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractabllity

Data likelihood: po(z) = [pe(2)pe(x|2)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational AutoencoderS' Intractability

Data likelihood: pg(x fpg 2)pg(x|2)dz

f

Intractible to compute
p(x|z) for every Z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational AutoencoderS' Intractability

Data likelihood: pg(x fpg 2)pg(x|2)dz

Posterior density also intractable: Po(2|Z) = po(z|2)pe(2)/Pe(T)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational AutoencoderS' Intractability

Data likelihood: pg(x fpg 2)pg(x|2)dz

D
Posterior density also intractable: Do (2|T) = po(z|2)pe(2)/po()

f

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractabllity

D t/ v
Data likelihood: pg(z) = | pe(2)pe(z|2)dz

v v 9
Posterior density also intractable: Do (2|T) = po(z|2)pe(2)/po()

Solution: In addition to decoder network modeling p4(x|z), define additional
encoder network q ¢(z|x) that approximates p,(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is
tractable, which we can optimize

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
N N
Hz|x Zz|m M|z Z$|z
Encoder network Decoder network
qy(2|7) pe(z|2)
(parameters ¢) (parameters 0)
X Z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z‘a: ~ ,uzh;, z|$) Sample x|z from :E‘z ~ N u$|z, x|z)
Hz|x z|a: M|z a:|z
Encoder network Decoder network
9 (2|) po(z|2)
(parameters ¢) (parameters 0)
X Z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z‘a: ~ ,uzh;, z|$) Sample x|z from :E‘z ~ N u$|z, x|z)
Hz|x z|a: M|z a:|z
Encoder network Decoder network
9 (2|) po(z|2)
(parameters ¢) (parameters 0)
X Z

Encoder and decoder networks also called
“recognition”/“inference” and “generation” networks Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

logpg(x(i)) =E, g, (2]z) [1ng9($(i))] (pg (x(i)) Does not depend on z)

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

logpg(x(i)) =E, g, (2]z) [1ng9($(i))] (pg (x(i)) Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later

Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
log pg (V) = E. q,(zlz0) [1ng9($(i))] (po(z'?) Does not depend on z)

po (2 | 2)po(2)
po(z | (D)

= B, [log] (Bayes’ Rule)

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pg (z'?) = E. q,(:lz0) [logpg(m(i))] (po(z') Does not depend on z)

pe(l’(i) | 2)po(2)
po(z | ()

po (¥ | 2)pe(2) qp(z | W)
po(z | 2@) gqg(z]| 2¥)

=E. |log] (Bayes’ Rule)

=E, |log] (Multiply by constant)

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:
log pg (z'?) = E. g, (zlz0) [logpg(m(i))] (po(z'?) Does not depend on z)

pe(l’(i) | 2)po(2)
po(z | ()

po (x| 2)po(z) gz |)
po(z | @) qu(z | @)

= E. |log] (Bayes’ Rule)

=E, |log] (Multiply by constant)

! . (2) (4)
=E, |log pg(z'V | z)} —E, [log 42 | T)] +E, [log 47 | @ .)] (Logarithms)
: po(z) po(z | ()

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg (V) = E. q,(:lz0) [logpg(a:(i))] (po(z'?) Does not depend on z)

[(2)
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z |)

po (W | 2)po(2) gz |)
po(z | @) gu(z | @)

=E, |log] (Multiply by constant)

, | : (1) (4)
=E, |logps(z¥ | 2)| — E, [log 42 | @)] + E, [log 47 | @ .)] (Logarithms)
- : pe(2) po(z | 2t)

=E. |logps(z" | 2)| — Drr(gs(z | 2) || pe(2)) + Dir(gs(z |) || po(z |)

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg (V) = E. q,(:lz0) [logpg(x(i))] (po(z'?) Does not depend on z)

[(2)
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z |)

po (W | 2)po(2) gz |)
po(z | @) gu(z | @)

=E, |log] (Multiply by constant)

, | : (4) (4)
=E, |logps(z¥ | 2)| — E, [log 42 | @)] + E, [log 47 | @)] (Logarithms)

: _ po(2) pe(z | ()
=E. |logpe(2") | 2)| — Dr1(gs(z | 27) || po(2)) + Drr(gs(z |) || po(z |)
\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg (V) = E. q,(zlz®) [logpg(x(i))] (po(z'?) Does not depend on z)

= E, |log

po (') | Z)pe(Z)]
: Bayes’ Rule

po(z') | 2)po(2) qg(z | 2?)

= E, |log

=E, —logpg(:v(i) | z)-

po(z | @) gu(z | @)

(%)
— E, [log 47| @)] +E, [log

=" _logpg(:z:(i) | z)-

*

Decoder network gives p,(x|z), can
compute estimate of this term through
sampling. (Sampling differentiable
through reparam. trick, see paper.)

po(2)

] (Multiply by constant)

(4)
Qo2 | @ ,
ngz |‘ xﬁ);] (Logarithms)

— Drr(as(2 | 219) || po(2)) + Drer(as(z | 29) || po(= | 21V))

*

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
solution!

*

Py(2[x) intractable (saw
earlier), can’'t compute this KL
term :(But we know KL
divergence always >= 0.

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg (') = E. q,(zlz®) [logpg(a:(i))] (po(z'?) Does not depend on z)

logps(¢? | 2)| —E. llog

po (2" | 2)po(2)
po(z | (V)

po (29 | 2)py(2) qg(z |)
pa(z | z®) gqg(z | 2¥)

go(z | V)
po(2)

log] (Bayes’ Rule)

log

] +E, [log

logpo(a™ | 2)| = Dici(gs(= | &) [l pa(2))

/|

£z .0,)

Tractable lower bound which we can take

] (Multiply by constant)

q4(z | (V)
po(z | z()

] (Logarithms)

+ D (as(z | 2) lpo(z | 2))
_O

gradient of and optimize! (pe(x|z) differentiable,

KL term differentiable)

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg(z'¥) = E. q,(zlz®) [lngg(I‘(i))] (po(z'?) Does not depend on z)

[(2)
= E., |log po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z |)

po (x| 2)pe(2) g(2 | 2'V)
po(z | z) gy(z | 2)

=E, |log] (Multiply by constant)

! . : (4) (4)
=E, |logpy(z'V | 2)| — E. [log 42 | @)] + E, [log 47 | @ .)] (Logarithms)
: : Po(2) po(z |)

=E, |logpe(z" | 2)| — Drr(ge(z | 7)) || pe(2)) +PKL(Q¢(Z | 2) || po(z | m(i))z
g > ()

L(z®), 0, ¢)

| . 0* ¢ = Lz 0,
log pe(2?) > L(zD, 6,) 3 argmaxz 2

Variational lower bound ("ELBQO”) Training: MaX|m|ze Iower bound

Variational Autoencoders

Now equipped with our encoder and decoder networks, let’'s work out the (log) data likelihood:

log pg(z'¥) = E. q,(zlz®) [logpg(m(i))] (po(z'?) Does not depend on z)

[(2)
= E., |log po(z™ | z)pg(z)] (Bayes’ Rule)
po(z |)

po (2 | 2)po(2) g (2 | w(i))]
pa(z | z) qg(z | 2¥)

Make approximate
posterior distribution
y by constant) close to prior

Reconstruct -
the input data=E__|log

- , -) (7)
— E, |log polx'? | z) —E. [log 42)] + E. [log 4p(2 | @ .)] (Logarithms)
i Do z) po(z | (1)
=E. |logpg(a" | Z) — Drr(ap(z | 219) [po(2)) + Drer(as(z | 29) | po(2 | 7))
£(z,6,9) =

log pe(z\V) > L(zV, 6, ¢) ¢ = arg maXZ 9)

Variational lower bound ("ELBQO”) Training: MaX|m|ze Iower bound

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(2? | 2)| — Dicr(gs(= | 27) | po(2))

N

£(zD, 0,)

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(2? | 2)| — Dicr(gs(= | 27) | po(2))

\ .

L(zD,0,)

Let’s look at computing the bound
(forward pass) for a given minibatch of
iInput data

Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(2? | 2)| — Dicr(gs(= | 27) | po(2))

\ .

L(zD,0,)

Hz|x

Encoder network

9 (2|2)
Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(2? | 2)| — Dicr(gs(= | 27) | po(2))

\ .

£(zD, 0,)

Make approximate
posterior distribution

close to prior

Hz|x

Encoder network

dy(2|7)
Input Data

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(2? | 2)| — Dicr(gs(= | 27) | po(2))

\ .

£(zD, 0,)

<
Sample z from z|:L' ~ N(Mzh:) zz|:c)

Make approximate
posterior distribution / \
close to prior Hz|x Zzl:c
Encoder network \/
qy(2|7)

Input Data XL

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpy(s | 2)] ~ Drcao(z | 2) | po(2) K|z i)z

) L(x(;)r, 0,9) ’ Decoder network \/
Po(z]2)

<
Sample z from z|:E ~ N(Mz|g;, zz|:c)

T

Hz|x 2z|:c
Encoder network
wielt) N

Input Data XL

Make approximate
posterior distribution
close to prior

Variational Autoencoders

A

— £z
Putting it all t Tmaximizing the eximize
~ut g : g likelihood of Sample x|z from CB‘Z ~ N(u’mlza Z:1:|z)
likelihoo@Tower bound original input
| | being / \
E, {logpg(x(z) | Z)} — Dir(gs(z | 29) || pe(2)) reconstructed M|z Zm|z
£(m(?)r’ 0,) Decoder network \/
po(z|2)
Z

Sample z from z‘:L' ~ N(Mz|g;, Zz|:c)

T

l‘l’Zlic Zzlx
Encoder network
wilt) N

Input Data XL

Make approximate
posterior distribution
close to prior

Variational Autoencoders

A

Putting it all - maximizing the
likelihoo@Tower bound

\ .

£(zD, 0,)

Make approximate
posterior distribution
close to prior

For every minibatch of input
data: compute this forward
pass, and then backprop!

E. [logps(2? | 2)| — Dicr(gs(= | 27) | po(2))

Maximize

XL

likelihood of Sample x|z from a:‘z ~ N(/Lm|z, Zx|z)

original input / \

reconstructed M|z)2y | 2

being

Decoder network \/
po(z|2)

Hz|x Zz|:c
Encoder network \/
o (2|T)
Input Data XL

<
Sample z from Z‘LE ~ N(Mz|g;, Zz|:z:)

T

Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

A

h
Sample x|z from x\z ~ N(;LL;,;|Z, Z$|z)

i

M|z Za:|z

Decoder network \/
po(z|2)
YA

Sample z from z ~ N (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Data!

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

DAY SNANNANAANNNNNSNNNNSN
QQADQYE Mgyt hLuLuLbuwewNwNwN~
QUAVYININN N LLLLVYY Y NN~
QAVVDNINIninig o to ©VOVVW W -~~~
QAVDHIHLHNNKVW W BIVIY W - - —
QOOOOHINNNNHEPBDIIDIDY @ W - —
QAQODIMHINMNMMOo N DIID D W - —
QOO MMNMMMMN N ®O DD D @ e —
OODMMM MMM N WD DD D e e —
OO0 MMMMON WD D e e e
QOMMMM M”00 000 o o o~ —
QA I A% 020700000000 o~ O~ 0~ i~ o~
N s N N N Nl ol ol Rl ol
S L LG ko kS S S
Sl dogorororororrraoanN~N
SdadadadadogorrrrrrTdTIIINNN
SddddagoorrrrrdFTITITIXINN
SAdAdTTTTTrrrrr>rrr2r22NN
S B e glits gl i« i« il ol ol ol ol ol ol O N N N UL N

2m|z

M|z

Sample x|z from :B‘z ~ N(N;ﬂza Zx|z)

Decoder network
pe(z|2)

Sample z from z ~ AN(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Data

Data manifold for 2-d z

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

DA NANNNAANNNNSNNNNSN
QAR ELLLLLLWNY NN~
QUAVYININN N LLLLVYY Y NN~
QAVVDNINIninig o to ©VOVVW W -~~~
QAVDHIHLHNNKVW W BIVIY W - - —
QOAVODNHINININMHMEEBBIIVID® W - —— A
QAOQQOIMHIMMMMNoMBDIOIID D @ - - —
QOO MMMMMN N W®O DD D " —
OODMMM MMM N WD DD D e e —
OO0 MMMMON WD D e e e
QOOMMOMMMME D00 W on o o
QOMMMM M”00 000 o o o~ —
OIS 02 0P 000000 00 n o 0~ 0~ P~ i o~
N L N N ol ol ol ol R ol
QZZZZIQ‘?????9997777<
Sl dogorororororrraoanN~N
SdadadadadogorrrrrrTdTIIINNN
SddddagocorrrrrdFITITIRINN
SAdAdTTTTTrrrrr>rdrr222NN
S g gl gl il ool ol ol ol ol ol N N NN NN

< >

Vary z,

Zac|z

Sample z from z ~ AN(0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

M|z

Sample x|z from m‘z ~ N(Mx|z, lez)

Decoder network
pe(z|2)

Vary z,

Variational Autoencoders: Generating Data!

Diagonal prior on z . Jﬁj_"_" o b i

= indepgndent Degree of smile | *““‘111"
latent variables \ - ggé%%w‘as

Ifferen ! ‘\ ”

(Ej)iriegsi:)ns of z Vary z, aa ggg%%g :1

?ft\e/;[iirae;itr)]le factors x’:%%-i:q-qq:q .

PR EEEE

PR EEE RSB

; ’ﬁ%ﬁ%ﬁ'ﬁ?

< Vary z, > _» Head pose

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

Diagonal prior on z . J‘J‘J_}j o b i g

=> in ndent . | ot R

Iatentd \?greiaglees begree of i{”e N 55%:{:*:;%3
Different 3‘{\33‘"\33 ”
dimensions of z Vary z, ﬁﬁﬁﬁﬁ'ﬂ'{ﬁ 7
%r’:g(r)dreetable factors aﬂﬁqqa :
of vaﬁiation 2222%%;% >
. SEEEEECCe
Also good feature representation that =~ [USSR LSS S S
can bge computed usir;g q,(z[x)! - 33533"33?

> _» Head pose

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data!

32x32 CIFAR-10

Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal

Gaussian
- Incorporating structure in latent variables

(Generative Adversarial
Networks (GAN)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

pg(:l:) — Hpe(x’ilxla ooy xi—l)
=1

VAEs define intractable density function with latent z:

po(z) = [po(z)po(alz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

pQ(CU) — Hp9($i|$17 very xi—l)
1=1

VAEs define intractable density function with latent z:

po(z) = [po(z)po(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

pe(x) — Hp9(xi|$17 very xi—l)
1=1

VAEs define intractable density function with latent z:
po(z) = [po(z)po(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: don’t work with any explicit density function!

Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?

lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Output: Sample from

Q: What can we use to
training distribution

| e
represent this complex '

transformation? *
A: A neural network! Generator
Network

*

Input: Random noise Z

lan Goodfellow et al., “Generative

Training GANSZ TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

lan Goodfellow et al., “Generative

Training GANSZ TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images Real Images
(from generator) | -~ (from training set)
*

Generator Network

*

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative

Training GANSZ TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

min max [o~ paata 108 Doy (T) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

lan Goodfellow et al., “Generative

Training GANSZ TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [o~ paata 108 Doy (T) + Eznp(z) log(1 — Do, (G, (Z)))]
g d |] l]

Discriminelltor output Discrimina'tor output for
for real data x generated fake data G(z)

lan Goodfellow et al., “Generative

Training GANSZ TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [o~ paata 108 Doy (T) + Eznp(z) log(1 — Do, (G, (Z)))]
g d |] l]

Discriminelltor output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to O (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

lan Goodfellow et al., “Generative

Training GANSZ TWO-pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:

n;in max [*‘wfvpdam log Do, (%) + Enp(z) log(l — Do, (Go, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

M Bz, 108 Do, (2) + Eonp(e) 08(1 — Do, (Go, (2)))]

2. Gradient descent on generator

in K, p(z) log(1 — Do, (Go, (2)))

Training GANs: Two-player game

Minimax objective function:

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

min max [tx,\,pdam log Do, (x) + E,~p(2) log(1 — Ded(Geg (Z)))]

0, 6Ba

Alternate between:
1. Gradient ascent on discriminator

04

2. Gradient descent on generator

n;in L ~op(2) log(1 — Ded(Geg (2)))

In practice, optimizing this generator objective
does not work well!

4

3+

When sample is likely:}
fake, want to learn i

from it to improve

generator. But dl
gradient in this region-;

Gradient signal

max [tx,vpdam log Dy, (CL‘) T Ly op(2) 108(1 — Dy, (Geg (z)))] dominated by region

where sample is
already good
T T \ T

|S re I atlvely ﬂ at' .0 02 04 0.6 0.8 1.0

D(G(=2))

lan Goodfellow et al., “Generative

Training GANSZ TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:

min max [o paata 108 Doy (T) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

0% Bz, 108 Do, (2) + Eonp(a) 10g(1 — Do, (Go, ()]

2. Instead: Gradient ascent on generator, different
objective

n}}ax L2 ~op(2) log(DQd (G9g (Z))) 17
g /
Instead of minimizing likelihood of discriminator being correct, now High gradilemﬁ

maximize likelihood of discriminator being wrong. o
Same objective of fooling discriminator, but now higher gradient A | , | | —
signal for bad samples => works much better! Standard in practice. " [owgradient signal

lan Goodfellow et al., “Generative

Training GANSZ TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [tx,\,pdam log Dy, (z) + E,np(2) log(1 — Dy, (Go, (z)))]

0, 6a
Aside: Jointly training two
networks is challenging,

Alternate b_etween: L. can be unstable. Choosing
1. Gradient ascent on discriminator objectives with better loss
D) _ landscapes helps training,
mO%X [o~paata 108 Do, () + z~p(z) log(1 Dy, (G99 (z)))] is an active area of
research.
2. Instead: Gradient ascent on generator, different | | T
objective 1 — —loeD(6(2)
max K, p(z) log(Dg,(Go,(2))) /‘
’ /
Instead of minimizing likelihood of discriminator being correct, now High gradileintsignal\ﬁ
maximize likelihood of discriminator being wrong. ‘
Same objective of fooling discriminator, but now higher gradient N “

L
0.0 0.2

signal for bad samples => works much better! Standard in practice. Eow;.;dfadieoﬁt signal

lan Goodfellow et al., “Generative

Training GANSZ TWO-player game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), . .., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(),..., (™} from data generating distribution
pdata(m)-
e Update the discriminator by ascending its stochastic gradient:
1 i i
Vi 2 | log Dy, (2?) + log(1 — Do, (Go, (21)))]
end for
e Sample minibatch of m noise samples {z(%), ..., z(™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— .
Vo, 1y 2 108(D0,(Go, (1))

end for

lan Goodfellow et al., “Generative

Training GANSZ TWO-player game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do

for|k steps o
e Sample minibatch of m noise samples {z(1), . .., z(™)} from noise prior p,(2).
Some find k=1 o Sa(m;))le minibatch of m examples {z(1),..., (™)} from data generating distribution
Pdata\L).
more stable, e Update the discriminator by ascending its stochastic gradient:
others use k > 1, ;o
no best rule. Voa- > [log Do, (z) + log(1 — Dy, (Go, (z("))))]
i=1
\I/?Vecent V‘;Of'k é}eAgN end for
assersiein) % Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
alleviates this e Update the generator by ascending its stochastic gradient (improved objective):
problem, better L
stability! Vo, — Z log(Dg,(Ge, ("))
i=1

end for

lan Goodfellow et al., “Generative

Training GANSZ TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images

Generator Network

Random noise

Real Images
4 (from training set)

After training, use generator network to
generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

" ; ,’ D

_—

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANSs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

i

|
|
|

100 z -

Iy

-

. Stride 2 16
Project and reshape

CONV 2

Generator @

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

Generative Adversarial Nets: Convolutional Architectures
EAE

w‘

G utu... : \.,.au.a‘ §. T

Interpolating =
between R
random

points In Iaten
space

Radford et al,
ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math

Radford et al, ICLR 2016

Smiling woman Neutral woman Neutral man

\" ;

Samples
from the
model

Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Samples
from the
model

Average Z
vectors, do
arithmetic

Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

.

Samples Smiling Man

from the
model

Average Z
vectors, do
arithmetic

Generative Adversarial Nets: Interpretable Vector Math

Glasses man No glasses man No glasses woman

Radford et al,
ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math

Radford et al,
Glasses man No glasses man No glasses woman O R 2015

Woman with glasses

2017 Explosion of GANs

“The GAN Zoo”

GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN - Amortised MAP Inference for Image Super-resolution

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
ALl - Adversarially Learned Inference

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery

ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs
b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
Bayesian GAN - Deep and Hierarchical Implicit Models

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks
BiGAN - Adversarial Feature Learning

BS-GAN - Boundary-Seeking Generative Adversarial Networks

CGAN - Conditional Generative Adversarial Nets

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters

with Generative Adversarial Networks
CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

CoGAN - Coupled Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

» CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

. " See also: https://github.com/soumith/ganhacks for tips
201 7 EXPIOSIO” Of GANS and tricks for trainings GANs
“The GAN Zoo”

1 . » Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation
¢ GAN - Generative Adversarial Networks
e C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling » CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks » CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
* AdaGAN - AdaGAN: Boosting Generative Models * DTN - Unsupervised Cross-Domain Image Generation

« AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets * DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

3 L » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
» AffGAN - Amortised MAP Inference for Image Super-resolution : g i ; : i
* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

» AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts o | UGN - DilsiGAN: Dhsiipeiioed DAl Laafiing 168 image-io-irtuge TeumlatoR

* ALl - Adversarially Learned Inference « EBGAN - Energy-based Generative Adversarial Network

« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
» AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learning What and Where to Draw

» GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
» Geometric GAN - Geometric GAN
* GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
« Bayesian GAN - Deep and Hierarchical Implicit Models

» BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks « GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
* BiGAN - Adversarial Feature Learning * AN - Neural Photo Editing with Introspective Adversarial Networks
» BS-GAN - Boundary-Seeking Generative Adversarial Networks » iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets * IcGAN - Invertible Conditional GANs for image editing

: ‘ : ’ . ’ , . » ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
e CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters ’ ¢ "

A : i * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks “ p 2 "

» InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

OGN~ ST S R L g W ST I I Cana AL e M SeRae I » LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

e CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis
» CoGAN - Coupled Generative Adversarial Networks » LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

2017 Explosion of GANs

Source->Target domain transfer

Input

[nput Output

Output

N h - winter Yocmilc
CycleGAN. Zhu et al. 2017.

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

-

Pix2pix. Isola 2017. Many examples at
https://phillipi.github.io/pix2pix/

GANSs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

cCons:
- Trickier / more unstable to train

- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANs for all kinds of applications

Recap

Generative Models

- PixelRNN and PixelCNN Explicit density model, optimizes exact likelihood, good
samples. But inefficient sequential generation.

- Variational Autoencoders (VAE) Optimize variational lower bound on likelihood. Useful
latent representation, inference queries. But current
sample quality not the best.

- Generative Adversarial Networks (GANsS) Game-theoretic approach, best samples!
But can be tricky and unstable to train,
no inference queries.

