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Overview

● Unsupervised Learning

● Generative Models
○ PixelRNN and PixelCNN
○ Variational Autoencoders (VAE)
○ Generative Adversarial Networks (GAN)
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Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain
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Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning

K-means clustering

This image is CC0 public domain
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning

Autoencoders
(Feature learning) 
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning

2-d density estimation

2-d density images left and right 
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Holy grail: Solve 
unsupervised learning
=> understand structure 
of visual world

15

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Training data is cheap
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Generative Models
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Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution
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Generative Models
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Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning
Several flavors: 

- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it 
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Why Generative Models?
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- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and 
planning (reinforcement learning applications!)

- Training generative models can also enable inference of  latent 
representations that can be useful as general features

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission. 
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Taxonomy of Generative Models

19

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today: discuss 3 most 
popular types of generative 
models today
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PixelRNN and PixelCNN
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Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data
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Then maximize likelihood of training data
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Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Complex distribution over pixel 
values => Express using a neural 
network!
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Fully visible belief network

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Will need to define 
ordering of “previous 
pixels”

Complex distribution over pixel 
values => Express using a neural 
network!Then maximize likelihood of training data
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PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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PixelRNN

27

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]
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PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

 

[van der Oord et al. 2016]

Drawback: sequential generation is slow!
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PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

 
Figure copyright van der Oord et al., 2016. Reproduced with permission. 
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PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Training: maximize likelihood of training 
images

 

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

Softmax loss at each pixel
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PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

 

Training is faster than PixelRNN
(can parallelize convolutions since context region 
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission. 
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Generation Samples
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Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission. 

32x32 CIFAR-10 32x32 ImageNet
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PixelRNN and PixelCNN
Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:
- Can explicitly compute likelihood 

p(x)
- Explicit likelihood of training 

data gives good evaluation 
metric

- Good samples

Con:
- Sequential generation => slow
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Variational 
Autoencoders (VAE)
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PixelCNNs define tractable density function, optimize likelihood of training data:

So far...
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So far...
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PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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Some background first: Autoencoders
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Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data
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Some background first: Autoencoders
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Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN
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Some background first: Autoencoders
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Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?
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Some background first: Autoencoders
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Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data
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Some background first: Autoencoders

41

Encoder

Input data

Features

How to learn this feature representation?
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Some background first: Autoencoders
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Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data
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Some background first: Autoencoders
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Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)
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Some background first: Autoencoders

44

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv
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Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data
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Some background first: Autoencoders

46

Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!
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Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder
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Some background first: Autoencoders

48

Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)
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Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?
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Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from underlying unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from underlying unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional

Intuition (remember from autoencoders!): 
x is an image, z is latent factors used to 
generate x: attributes, orientation, etc. 
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How should we represent this model?

 



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 12 - May 15, 201855

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian.

Conditional p(x|z) is complex (generates 
image) => represent with neural network

 

Decoder 
network



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 12 - May 15, 201857

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters         
to maximize likelihood of training data

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters         
to maximize likelihood of training data

Now with latent z

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters         
to maximize likelihood of training data

Q: What is the problem with this?

Decoder 
network



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 12 - May 15, 201861

Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model.

 

How to train the model?

Remember strategy for training generative 
models from FVBNs. Learn model parameters         
to maximize likelihood of training data

Q: What is the problem with this?

Intractable!

Decoder 
network
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior

✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Decoder neural network

✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractible to compute 
p(x|z) for every z!

ʰ ✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ ✔ ✔

Posterior density also intractable:
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ

✔

✔

Posterior density also intractable:
ʰ✔

✔

Intractable data likelihood
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
ʰ

✔

✔

Posterior density also intractable:
ʰ✔

✔

Solution: In addition to decoder network modeling pθ(x|z), define additional 
encoder network qɸ(z|x) that approximates pθ(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that is 
tractable, which we can optimize
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Variational Autoencoders

69

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Encoder network Decoder network

(parameters ɸ) (parameters θ)
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Variational Autoencoders
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 12 - May 15, 2018

Variational Autoencoders

71

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Encoder and decoder networks also called 
“recognition”/“inference” and “generation” networks
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Taking expectation wrt. z 
(using encoder network) will 
come in handy later
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

The expectation wrt. z (using 
encoder network) let us write 
nice KL terms
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

Decoder network gives pθ(x|z), can 
compute estimate of this term through 
sampling. (Sampling differentiable 
through reparam. trick, see paper.)
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Variational lower bound (“ELBO”) Training: Maximize lower bound
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Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Variational lower bound (“ELBO”) Training: Maximize lower bound

Reconstruct
the input data

Make approximate 
posterior distribution 
close to prior
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Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the bound 
(forward pass) for a given minibatch of 
input data
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Input Data
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Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed
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Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed

For every minibatch of input 
data: compute this forward 
pass, and then backprop!
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission. 
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Variational Autoencoders

97

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian
- Incorporating structure in latent variables 
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Generative Adversarial 
Networks (GAN)
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So far...

99

PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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What if we give up on explicitly modeling density, and just want ability to sample?



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 12 - May 15, 2018

So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

10
1

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution 
through 2-player game
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Generative Adversarial Networks

10
2

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

   
Q: What can we use to 
represent this complex 
transformation?
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Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

   

Generative Adversarial Networks

10
3

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution 

Q: What can we use to 
represent this complex 
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

10
4

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

10
5

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Training GANs: Two-player game

10
6

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

10
7

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

10
8

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

 

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

10
9

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

11
0

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good
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Training GANs: Two-player game

11
1

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different 
objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 
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Training GANs: Two-player game

11
2

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different 
objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 

Aside: Jointly training two 
networks is challenging, 
can be unstable.  Choosing 
objectives with better loss 
landscapes helps training, 
is an active area of 
research.
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Training GANs: Two-player game

11
3

Putting it together: GAN training algorithm

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

11
4

Putting it together: GAN training algorithm

Some find k=1 
more stable, 
others use k > 1, 
no best rule.

Recent work (e.g. 
Wasserstein GAN) 
alleviates this 
problem, better 
stability!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

11
5

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Generative Adversarial Nets

11
6

Nearest neighbor from training set

Generated samples

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets

11
7

Nearest neighbor from training set

Generated samples (CIFAR-10)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

11
8

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network
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Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator

Generative Adversarial Nets: Convolutional Architectures
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Radford et al,
 ICLR 2016

Samples 
from the 
model look 
much 
better!

Generative Adversarial Nets: Convolutional Architectures
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Radford et al,
 ICLR 2016

Interpolating 
between 
random 
points in latent 
space

Generative Adversarial Nets: Convolutional Architectures
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Generative Adversarial Nets: Interpretable Vector Math

12
2

Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Radford et al, ICLR 2016
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Smiling woman Neutral woman Neutral man

Samples 
from the 
model

Average Z 
vectors, do 
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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Smiling woman Neutral woman Neutral man

Smiling ManSamples 
from the 
model

Average Z 
vectors, do 
arithmetic

Radford et al, ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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Radford et al, 
ICLR 2016

Glasses man No glasses man No glasses woman

Generative Adversarial Nets: Interpretable Vector Math
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Glasses man No glasses man No glasses woman

Woman with glasses

Radford et al, 
ICLR 2016

Generative Adversarial Nets: Interpretable Vector Math
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“The GAN Zoo”

12
7

https://github.com/hindupuravinash/the-gan-zoo

2017: Explosion of GANs
“The GAN Zoo”
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https://github.com/hindupuravinash/the-gan-zoo

See also: https://github.com/soumith/ganhacks for tips 
and tricks for trainings GANs2017: Explosion of GANs

“The GAN Zoo”
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2017: Explosion of GANs

13
0

CycleGAN. Zhu et al. 2017.

Source->Target domain transfer

Many GAN applications

Pix2pix. Isola 2017. Many examples at 
https://phillipi.github.io/pix2pix/

Reed et al. 2017.

Text -> Image Synthesis 
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GANs

13
1

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player 
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications
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Recap

13
2

Generative Models

- PixelRNN and PixelCNN
 

- Variational Autoencoders (VAE)

- Generative Adversarial Networks (GANs)

Explicit density model, optimizes exact likelihood, good 
samples.  But inefficient sequential generation.

Optimize variational lower bound on likelihood.  Useful 
latent representation, inference queries. But current 
sample quality not the best.  

Game-theoretic approach, best samples!  
But can be tricky and unstable to train, 
no inference queries. 


