Instance-Based Learning

Instructor: Alan Ritter

Many Slides from Pedro Domingos
Instance-Based Learning

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:
- Given query instance x_q, first locate nearest training example x_n, then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:
- Given x_q, take vote among its k nearest neighbors (if discrete-valued target function)
- Take mean of f values of k nearest neighbors (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^{k} f(x_i)$$
Advantages and Disadvantages

Advantages:

- Training is very fast
- Learn complex target functions easily
- Don’t lose information

Disadvantages:

- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes
Distance Measures

• Numeric features:
 – Euclidean, Manhattan, L^n-norm:
 $$L^n(x_1, x_2) = \sqrt[n]{\sum_{i=1}^{\#\text{dim}} |x_{1,i} - x_{2,i}|^n}$$
 – Normalized by: range, std. deviation

• Symbolic features:
 – Hamming/overlap
 – Value difference measure (VDM):
 $$\delta(val_i, val_j) = \sum_{h=1}^{\#\text{classes}} |P(c_h | val_i) - P(c_h | val_j)|^n$$

• In general: arbitrary, encode knowledge
Voronoi Diagram

S: Training set

Voronoi cell of $x \in S$:
All points closer to x than to any other instance in S

Region of class C:
Union of Voronoi cells of instances of C in S
Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily ...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Notice that now it makes sense to use all training examples instead of just k:
Curse of Dimensionality

• Imagine instances described by 20 attributes, but only 2 are relevant to target function

• **Curse of dimensionality:**
 – Nearest neighbor is easily misled when hi-dim X
 – Easy problems in low-dim are hard in hi-dim
 – Low-dim intuitions don’t apply in hi-dim

• **Examples:**
 – Normal distribution
 – Uniform distribution on hypercube
 – Points on hypergrid
 – Approximation of sphere by cube
 – Volume of hypersphere
Things Get Weird in High Dimensions

» High-Dimensional Spheres look like porcupines instead of balls

» Distances between points in high dimensions are all about the same
Things Get Weird in High Dimensions

» High-Dimensional Spheres

Pythagorean theorem says:

\[1^2 + 1^2 = (1 + r)^2 \]

\[r = \sqrt{2} - 1 \approx 0.41 \]

Inside the unit square
Things Get Weird in High Dimensions

» High-Dimensional Spheres

3d Pythagorean theorem says:

\[1^2 + 1^2 + 1^2 = (1 + r)^2 \]

Thus

\[r = \sqrt{3} - 1 \approx 0.73 \]

Bigger, but still inside the unit cube

Figure 3.17: 3d spheres in spheres
Things Get Weird in High Dimensions

» High-Dimensional Spheres

\[D = N \]

\[r = \sqrt{N} - 1 \]

\(N = 1000 \Rightarrow r = 30.6 \)

Radius of the middle hypersphere extends way beyond the unit hypercube
Things Get Weird in High Dimensions

» Distances between points
 » Maximum Distance between any two points in a unit hypercube grows as \sqrt{D}
 » But can show that variance is constant (independet of D): $\frac{1}{\sqrt{18}}$

» Effective variance behaves as: $\frac{1}{\sqrt{18D}}$
Things Get Weird in High Dimensions

```python
import numpy as np
import matplotlib.pyplot as plt
import sys
import math

N = 100

def DistancesBetweenRandomPoints(D):
    data = np.random.random((N,D))

    dsum = 0.0
    dlist = []
    for i in range(N):
        for j in range(N):
            if i != j:
                dlist += [np.linalg.norm(data[i,:] - data[j,:])] # Euclidean distance between rows i and j
            count += 1
    return dlist

plt.hist([(x / math.sqrt(2)) for x in DistancesBetweenRandomPoints(2)])
plt.hist([(x / math.sqrt(10)) for x in DistancesBetweenRandomPoints(10)])
plt.hist([(x / math.sqrt(100)) for x in DistancesBetweenRandomPoints(100)])
plt.hist([(x / math.sqrt(1000)) for x in DistancesBetweenRandomPoints(1000)])
plt.hist([(x / math.sqrt(10000)) for x in DistancesBetweenRandomPoints(10000)])
plt.show()
```
Things Get Weird in High Dimensions
Feature Selection

- **Filter approach:**
 Pre-select features individually
 - E.g., by info gain

- **Wrapper approach:**
 Run learner with different combinations of features
 - Forward selection
 - Backward elimination
 - Etc.
FORWARD SELECTION\((FS)\)

\(FS\): Set of features used to describe examples

Let \(SS = \emptyset\)

Let \(BestEval = 0\)

Repeat

- Let \(BestF = \text{None}\)
 - For each feature \(F\) in \(FS\) and not in \(SS\)
 - Let \(SS' = SS \cup \{F\}\)
 - If \(\text{Eval}(SS') > BestEval\)
 - Then Let \(BestF = F\)
 - Let \(BestEval = \text{Eval}(SS')\)

- If \(BestF \neq \text{None}\)
 - Then Let \(SS = SS \cup \{BestF\}\)

Until \(BestF = \text{None}\) or \(SS = FS\)

Return \(SS\)
BACKWARD_ELIMINATION(FS)

FS: Set of features used to describe examples

Let $SS = FS$
Let $BestEval = Eval(SS)$
Repeat
 Let $WorstF = None$
 For each feature F in SS
 Let $SS' = SS - \{F\}$
 If $Eval(SS') \geq BestEval$
 Then Let $WorstF = F$
 Let $BestEval = Eval(SS')$
 If $WorstF \neq None$
 Then Let $SS = SS - \{WorstF\}$
Until $WorstF = None$ or $SS = \emptyset$
Return SS
Reducing Computational Cost

- Efficient retrieval: k-D trees
 (only work in low dimensions)

- Efficient similarity comparison:
 - Use cheap approx. to weed out most instances
 - Use expensive measure on remainder

- Form prototypes

- Edited k-NN:
 Remove instances that don’t affect frontier
Overfitting Avoidance

- Set k by cross-validation
- Form prototypes
- Remove noisy instances
 - E.g., remove x if all of x’s k nearest neighbors are of another class
Collaborative Filtering
(AKA Recommender Systems)

- **Problem:**
 Predict whether someone will like a Web page, newsgroup posting, movie, book, CD, etc.

- **Previous approach:**
 Look at content

- **Collaborative filtering:**
 - Look at what similar users liked
 - Similar users = Similar likes & dislikes
Collaborative Filtering

- Represent each user by vector of ratings
- Two types:
 - Yes/No
 - Explicit ratings (e.g., 0 - *****)
- Predict rating:
 \[\hat{R}_{ik} = \bar{R}_i + \alpha \sum_{X_j \in N_i} W_{ij} (R_{jk} - \bar{R}_j) \]
- Similarity (Pearson coefficient):
 \[W_{ij} = \frac{\sum_k (R_{ik} - \bar{R}_i)(R_{jk} - \bar{R}_j)}{\sqrt{\sum_k (R_{ik} - \bar{R}_i)^2} \sqrt{\sum_k (R_{jk} - \bar{R}_j)^2}} \]
Fine Points

- Primitive version:

\[\hat{R}_{ik} = \alpha \sum_{X_j \in \mathcal{N}_i} W_{ij} R_{jk} \]

- \(\alpha = (\sum |W_{ij}|)^{-1} \)

- \(\mathcal{N}_i \) can be whole database, or only \(k \) nearest neighbors

- \(R_{jk} = \) Rating of user \(j \) on item \(k \)

- \(\bar{R}_j = \) Average of all of user \(j \)'s ratings

- Summation in Pearson coefficient is over all items rated by both users

- In principle, any prediction method can be used for collaborative filtering
Example

<table>
<thead>
<tr>
<th></th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>R_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Chris</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Diana</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>