Gaussian Naive Bayes and Linear Regression

Instructor: Alan Ritter

Many Slides from Tom Mitchell
What if we have continuous X_i?

Eg., image classification: X_i is real-valued i^{th} pixel
What if we have continuous X_i?

Eg., image classification: X_i is real-valued i^{th} pixel

Naïve Bayes requires $P(X_i \mid Y=y_k)$, but X_i is real (continuous)

$$P(Y = y_k \mid X_1 \ldots X_n) = \frac{P(Y = y_k) \prod_i P(X_i \mid Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i \mid Y = y_j)}$$

Common approach: assume $P(X_i \mid Y=y_k)$ follows a Normal (Gaussian) distribution
Gaussian Distribution (also called “Normal”)

$p(x)$ is a probability density function, whose integral (not sum) is 1.

\[
p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2}
\]

The probability that X will fall into the interval (a, b) is given by

\[
\int_a^b p(x) \, dx
\]

- Expected, or mean value of X, $E[X]$, is
 \[E[X] = \mu\]

- Variance of X is
 \[Var(X) = \sigma^2\]

- Standard deviation of X, σ_X, is
 \[\sigma_X = \sigma\]
Gaussian Naïve Bayes Algorithm – continuous X_i
(but still discrete Y)

- Train Naïve Bayes (examples)
 for each value y_k
 estimate* $\pi_k \equiv P(Y = y_k)$
 for each attribute X_i estimate $P(X_i|Y = y_k)$
- class conditional mean μ_{ik}, variance σ_{ik}

- Classify (X^{new})

\[
Y^{new} \leftarrow \arg \max_{y_k} \ P(Y = y_k) \prod_{i} \ P(X_i^{new}|Y = y_k)
\]

\[
Y^{new} \leftarrow \arg \max_{y_k} \ \pi_k \prod_{i} \mathcal{N}(X_i^{new}; \mu_{ik}, \sigma_{ik})
\]

* probabilities must sum to 1, so need estimate only n-1 parameters...
Estimating Parameters: \(Y \) discrete, \(X_i \) continuous

Maximum likelihood estimates:

\[
\hat{\mu}_{ik} = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j X_i^j \delta(Y^j = y_k)
\]

\[
\hat{\sigma}_{ik}^2 = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j (X_i^j - \hat{\mu}_{ik})^2 \delta(Y^j = y_k)
\]
GNB Example: Classify a person’s cognitive state, based on brain image

- reading a sentence or viewing a picture?
- reading the word describing a “Tool” or “Building”?
- answering the question, or getting confused?
Mean activations over all training examples for Y="bottle"

Y is the mental state (reading “house” or “bottle”)
X_i are the voxel activities,

this is a plot of the μ's defining $P(X_i \mid Y="bottle")$
Classification task: is person viewing a “tool” or “building”?

![Bar chart showing classification accuracy for participants](chart)

- **Statistically significant:** $p < 0.05$

Participants' classification accuracy is plotted on the y-axis, with each participant labeled with a unique identifier (e.g., p4, p8, p6, p11, etc.). The bar heights indicate their accuracy levels, with a horizontal dashed line at 0.5 serving as a comparison benchmark. The chart visually demonstrates that most participants achieved a classification accuracy above 0.5, with some reaching as high as 1.0 (perfect accuracy).
Where is information encoded in the brain?

Accuracies of cubical 27-voxel classifiers centered at each significant voxel [0.7-0.8]
Naïve Bayes: What you should know

• Designing classifiers based on Bayes rule

• Conditional independence
 – What it is
 – Why it’s important

• Naïve Bayes assumption and its consequences
 – Which (and how many) parameters must be estimated under different generative models (different forms for $P(X|Y)$)
 • and why this matters

• How to train Naïve Bayes classifiers
 – MLE and MAP estimates
 – with discrete and/or continuous inputs X_i
Naïve Bayes with Log Probabilities

\[c_{\text{MAP}} = \arg\max_c P(c|x_1, \ldots, x_n) \]

\[= \arg\max_c P(c) \prod_{i=1}^{n} P(x_i|c) \]

\[= \arg\max_c \log \left(P(c) \prod_{i=1}^{n} P(x_i|c) \right) \]

\[= \arg\max_c \log P(c) + \sum_{i=1}^{n} \log P(x_i|c) \]
What if we want to calculate posterior log-probabilities?

\[P(c|x_1, \ldots, x_n) = \frac{P(c) \prod_{i=1}^{n} P(x_i|c)}{\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i|c')} \]
What if we want to calculate posterior log-probabilities?

\[P(c|x_1, \ldots, x_n) = \frac{P(c) \prod_{i=1}^{n} P(x_i|c)}{\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i|c')} \]

\[\log P(c|x_1, \ldots, x_n) = \log \frac{P(c) \prod_{i=1}^{n} P(x_i|c)}{\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i|c')} \]
What if we want to calculate posterior log-probabilities?

\[
P(c|x_1, \ldots, x_n) = \frac{P(c) \prod_{i=1}^{n} P(x_i | c)}{\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i | c')}
\]

\[
\log P(c|x_1, \ldots, x_n) = \log \frac{P(c) \prod_{i=1}^{n} P(x_i | c)}{\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i | c')}
\]

\[
= \log P(c) + \sum_{i=1}^{n} \log P(x_i | c) - \log \left[\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i | c') \right]
\]
What if we want to calculate posterior log-probabilities?

There is no log identity.

For summation:

\[
 \log P(c) + \sum_{i=1}^{n} \log P(x_i | c) - \log \left(\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i | c') \right)
\]
Log Exp Sum Trick

• We have: a bunch of log probabilities.
 – log(p1), log(p2), log(p3), … log(pn)
• We want: log(p1 + p2 + p3 + … pn)
Log Exp Sum Trick:

$$\log\left[\sum_i \exp(x_i)\right] = x_{\text{max}} + \log\left[\sum_i \exp(x_i - x_{\text{max}})\right]$$
What if we want to calculate posterior log-probabilities?

There is no log identity for summation.

\[
P(c|\mathbf{x}) = \log P(c) + \sum_{i=1}^{n} \log P(x_i|c) - \log \left[\sum_{c'} P(c') \prod_{i=1}^{n} P(x_i|c') \right]
\]
Linear Regression
Regression

So far, we’ve been interested in learning $P(Y|X)$ where Y has discrete values (called ‘classification’)

What if Y is continuous? (called ‘regression’)
• predict weight from gender, height, age, …

• predict Google stock price today from Google, Yahoo, MSFT prices yesterday

• predict each pixel intensity in robot’s current camera image, from previous image and previous action
Regression

Wish to learn $f: X \rightarrow Y$, where Y is real, given $\{<x^1, y^1>, \ldots, <x^n, y^n>\}$

Approach:

1. choose some parameterized form for $P(Y|X; \theta)$
 (θ is the vector of parameters)

2. derive learning algorithm as MCLE or MAP estimate for θ
1. Choose parameterized form for $P(Y|X; \theta)$

Assume Y is some deterministic $f(X)$, plus random noise

$$y = f(x) + \epsilon \quad \text{where} \quad \epsilon \sim N(0, \sigma)$$

Therefore Y is a random variable that follows the distribution

$$p(y|x) = N(f(x), \sigma)$$

and the expected value of y for any given x is $f(x)$
Training Linear Regression

\[p(y|x; W) = N(w_0 + w_1 x, \sigma) \]

How can we learn \(W \) from the training data?
Maximum Likelihood Estimation Recipe

1. Use the log-likelihood
2. Differentiate with respect to the parameters
3. *Equate to zero and solve

*Often requires numerical approximation (no closed form solution)
Training Linear Regression

\[p(y|x; W) = N(w_0 + w_1 x, \sigma) \]

How can we learn \(W \) from the training data?

Learn Maximum Conditional Likelihood Estimate!

\[
W_{MCLE} = \arg \max_W \prod p(y^l|x^l, W) \\
W_{MCLE} = \arg \max_W \sum_l \ln p(y^l|x^l, W)
\]

where

\[
p(y|x; W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y - f(x; W)}{\sigma})^2}
\]
Training Linear Regression

Learn Maximum Conditional Likelihood Estimate

\[W_{MCLE} = \arg \max_W \sum_l \ln p(y^l|x^l, W) \]

where

\[p(y|x; W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{y-f(x;W)}{\sigma} \right)^2} \]
Training Linear Regression

Learn Maximum Conditional Likelihood Estimate

\[W_{MCLE} = \arg \max_W \sum_l \ln p(y^l|x^l, W) \]

where

\[p(y|x; W) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{y-f(x;W)}{\sigma})^2} \]

so:

\[W_{MCLE} = \arg \min_W \sum_l (y - f(x; W))^2 \]
Gradient Descent

Gradient

\[\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right] \]

Training rule:

\[\Delta \vec{w} = -\eta \nabla E[\vec{w}] \]

i.e.,

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \]
Gradient Descent:

Batch gradient: use error $E_D(w)$ over entire training set D

Do until satisfied:

1. Compute the gradient $\nabla E_D(w) = \left[\frac{\partial E_D(w)}{\partial w_0}, \ldots, \frac{\partial E_D(w)}{\partial w_n} \right]$
2. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_D(w)$

Stochastic gradient: use error $E_d(w)$ over single examples $d \in D$

Do until satisfied:

1. Choose (with replacement) a random training example $d \in D$
2. Compute the gradient just for d: $\nabla E_d(w) = \left[\frac{\partial E_d(w)}{\partial w_0}, \ldots, \frac{\partial E_d(w)}{\partial w_n} \right]$
3. Update the vector of parameters: $w \leftarrow w - \eta \nabla E_d(w)$

Stochastic approximates Batch arbitrarily closely as $\eta \rightarrow 0$

Stochastic can be much faster when D is very large

Intermediate approach: use error over subsets of D
Training Linear Regression

Learn Maximum Conditional Likelihood Estimate

\[W_{MCLE} = \arg \min_W \sum_l (y - f(x; W))^2 \]

Can we derive gradient descent rule for training?

\[
\frac{\partial \sum_l (y - f(x; W))^2}{\partial w_i} = \sum_l 2(y - f(x; W)) \frac{\partial (y - f(x; W))}{\partial w_i}
\]

\[
= \sum_l -2(y - f(x; W)) \frac{\partial f(x; W)}{\partial w_i}
\]
Normal Equation

\[w^* = (X^T X)^{-1} X^T y \]
How About MAP instead of MLE?

\[w^* = \arg \max_W \sum_l \ln P(Y^l|X^l; W) + \ln N(W|0, I) \]

\[= \arg \max_W \sum_l \ln P(Y^l|X^l; W) - c \sum_i w_i^2 \]
Regression - What you should know

• MLE -> Sum of Squared Errors
• MAP -> Sum of Squared Errors minus sum of squared weights
• Learning is an optimization problem once we choose objective function
 • Maximize Data Likelihood
 • Maximize Posterior Prob of Weights
• Can use Gradient Descent as General Learning Algorithm