SVMs

Instructor: Alan Ritter

Many Slides from Carlos Guestrin and Luke Zettlemoyer
Linear classifiers – Which line is better?
Pick the one with the largest margin!

Margin for point j:
$$\gamma^j = y^j (w \cdot x^j + w_0)$$

Max Margin:
$$\max_{\gamma, w, w_0} \gamma$$
$$\forall j. y^j (w \cdot x^j + w_0) > \gamma$$

$$w \cdot x = \sum_i w_i x_i$$
How many possible solutions?

\[\max_{\gamma, w, w_0} \gamma \]
\[\forall j. y^j (w \cdot x^j + w_0) > \gamma \]

Any other ways of writing the same dividing line?

- \(w \cdot x + b = 0 \)
- \(2w \cdot x + 2b = 0 \)
- \(1000w \cdot x + 1000b = 0 \)
-
- Any constant scaling has the same intersection with \(z=0 \) plane, so same dividing line!

Do we really want to \(\max_{\gamma, w, w_0} \)?
Review: Normal to a plane

\[x^j = \bar{x}^j + \lambda \frac{w}{\|w\|_2} \]

Key Terms
- \(\bar{x}^j \) -- projection of \(x^j \) onto \(w \)
- \(\frac{w}{\|w\|_2} \) -- unit vector normal to \(w \)

\[\|w\|_2 = \sqrt{\sum_i w_i^2} \]
Idea: constrained margin

\[x^j = \bar{x}^j + \lambda \frac{w}{\|w\|_2} \]

\[\|w\|_2 = \sqrt{\sum_i w_i^2} \]

Assume: \(x^+ \) on positive line \((y=1\) intercept\), \(x^- \) on negative \((y=-1)\)

\[x^+ = x^- + 2\gamma \frac{w}{\|w\|_2} \]

\[w \cdot x^+ + w_0 = 1 \]

\[w \cdot (x^- + 2\gamma \frac{w}{\|w\|_2}) + w_0 = 1 \]

\[w \cdot x^- + w_0 + 2\gamma \frac{w \cdot w}{\|w\|_2} = 1 \]

\[\gamma \frac{w \cdot w}{\|w\|_2} = 1 \]

\[w \cdot w = \sum_i w_i^2 = \|w\|_2^2 \]

\[\gamma = \frac{\|w\|_2}{w \cdot w} = \frac{1}{\|w\|_2} \]

Final result: can maximize constrained margin by minimizing \(\|w\|_2 \)!!!
Max margin using canonical hyperplanes

The assumption of canonical hyperplanes (at +1 and -1) changes the objective and the constraints!
Support vector machines (SVMs)

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close
- Decision boundary defined by support vectors

Decision boundary defined by support vectors:

\[w \cdot x + b = +1 \]
\[w \cdot x + b = -1 \]
\[w \cdot x + b = 0 \]

Support Vectors:
- data points on the canonical lines

Non-support Vectors:
- everything else
- moving them will not change \(w \)
What if the data is not linearly separable?

Add More Features!!!

Can use Kernels…

What about overfitting?

\[
\phi(x) = \begin{pmatrix}
x_1 \\
\cdots \\
x_n \\
x_1 x_2 \\
x_1 x_3 \\
\cdots \\
e^{x_1} \\
\cdots
\end{pmatrix}
\]
What if the data is still not linearly separable?

\[
\min_{w, w_0} \frac{1}{2} \|w\|^2 + C \#(\text{mistakes}) \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1
\]

- **First Idea:** Jointly minimize \(\|w\|^2\) and number of training mistakes
 - How to tradeoff two criteria?
 - Pick \(C\) on development / cross validation

- **Tradeoff \(\#(\text{mistakes})\) and \(\|w\|^2\)**
 - 0/1 loss
 - Not QP anymore
 - Also doesn’t distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!
Slack variables – Hinge loss

For each data point:
• If margin ≥ 1, don’t care
• If margin < 1, pay linear penalty

\[
\min_{w, w_0} \frac{1}{2} \| w \|_2^2 + C \sum_j \xi_j \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1 - \xi_j, \xi_j \geq 0
\]

Slack Penalty \(C > 0 \):
• \(C=\infty \) → have to separate the data!
• \(C=0 \) → ignore data entirely!
• Select on dev. set, etc.
Slack variables – Hinge loss

\[
\min_{w, w_0} \frac{1}{2} \|w\|^2_2 + C \sum_j \xi_j \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1 - \xi_j, \quad \xi_j \geq 0
\]

\[\text{Hinge loss} = \max(x, 0)\]

\[
\min_{w, w_0} \frac{1}{2} \|w\|^2_2 + C \sum_{j=1}^{N} [1 - y^j (w \cdot x^j + w_0)]_+
\]

Solving SVMs:
- Differentiate and set equal to zero!
- No closed form solution, but quadratic program (top) is concave
- Hinge loss is not differentiable, gradient ascent a little trickier…
Logistic Regression as Minimizing Loss

Logistic regression assumes:

\[P(Y = 1 | X = x) = \frac{\exp(f(x))}{1 + \exp(f(x))} \]

And tries to maximize data likelihood, for \(Y = \{-1, +1\} \):

\[P(y^i | x^i) = \frac{1}{1 + \exp(-y^i f(x^i))} \]

Equivalent to minimizing log loss:

\[\sum_{i=1}^{N} \ln(1 + \exp(-y^i f(x^i))) \]
SVMs vs Regularized Logistic Regression

SVM Objective:

\[
\begin{align*}
\arg \min_{\mathbf{w}, w_0} & \quad \frac{1}{2} \| \mathbf{w} \|^2_2 + C \sum_{j=1}^{N} [1 - y^j f(x^j)]_+ \\
\end{align*}
\]

\[
[x]_+ = \max(x, 0)
\]

Logistic regression objective:

\[
\begin{align*}
\arg \min_{\mathbf{w}, w_0} & \quad \lambda \| \mathbf{w} \|^2_2 + \sum_{j=1}^{N} \ln(1 + \exp(-y^j f(x^j))) \\
\end{align*}
\]

Tradeoff: same l_2 regularization term, but different error term
Graphing Loss vs Margin

Logistic regression:
\[
\ln(1 + \exp(-y^j f(x^j)))
\]

Hinge loss:
\[
[1 - y^j f(x^j)]^+
\]

0-1 Loss:
\[
\delta(f(x^j) \neq y^j)
\]

We want to smoothly approximate 0/1 loss!
What about multiple classes?
One against All

Learn 3 classifiers:
- $+ \text{ vs } \{0, -\}$, weights w_+
- $- \text{ vs } \{0, +\}$, weights w_-
- $0 \text{ vs } \{+, -\}$, weights w_0

Output for x:
$$y = \text{argmax}_i w_i \cdot x$$

Any problems? Could we learn this dataset?
Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

• How do we guarantee the correct labels?
• Need new constraints!

For each class:

\[w^{y^i} x^j + w_0^{y^i} \geq w^{y'} x^j + w_0^{y'} + 1, \quad \forall y' \neq y^i, \quad \forall j \]
Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

$$\min_{w, w_0} \sum_y \|w^y\|_2^2 + C \sum_j \xi^j$$

$$w^{y_j} \cdot x^j + w_0^{y_j} \geq w^{y'} \cdot x^j + w_0^{y'} + 1 - \xi^j, \quad \forall y' \neq y^j, \quad \xi^j > 0 \quad \forall j$$

Now, can we learn it?
What you need to know

• Maximizing margin
• Derivation of SVM formulation
• Slack variables and hinge loss
• Tackling multiple class
 – One against All
 – Multiclass SVMs