CSE 5525 Homework 3: Tagging

Alan Ritter

In this assignment you will implement the structured perceptron and
Viterbi algorithms for part-of-speech tagging. Then you will experiment
with your trained models on a small dataset of tweets annotated with parts-
of-speech and named entities. These experiments will explore the question
of how well part of speech taggers perform when applied to domains other
than for which they were trained. For example, how well does a Wall Street
Journal trained part-of-speech tagger perform when applied on Twitter?

We provide you with starter Python code to help read in the data and
evaluate the results of your model’s predictions. You are strongly encouraged
to make use of the provided code. If you really prefer to implement every-
thing from scratch for some reason, please talk to the instructor first. Your
submitted code should run on the command line in a unix-like environment
(e.g. Linux, OSX, Cygwin).

The experiments required to complete the assignment will take some time
to run, so it is highly recommended to start early. We recommend you read
through this entire document and run the sample code before getting started.

We have provided an evaluation script to train your models and generate
predictions on the test data as follows:

> #Trains a part-of-speech tagger on the provided Twitter training set
> bash eval.sh twitter

> #Trains a part-of-speech tagger on the provided penn treebank data
> bash eval.sh ptb

#Trains a part-of-speech tagger on the provided IRC chat data

> bash eval.sh nps

Your model’s predictions on the test data will be output into the direc-
tory, eval/. You can check the accuracy of your model on the test data by
using the provided scripts accuracy.py for POS-tagging and the Perl script
conlleval.pl for named entity recognition.



When you first run the starter code, the tagger will always predict every
word is a noun. You will need to implement the viterbi algorithm for decoding
in addition to parameter updates analogous to the perceptron algorithm in
Homework #2.

Word’s Most Frequent Tag Baseline (2 points)

Before getting started with implementing the perceptron tagger, write a sim-

ple program to implement the following baseline. First count the number of

times each word occurs with each tag in the training dataset (data/twitter_train universal.txt
Now generate an output file (using the same format as the training data) that

predicts the tag of each word using the following heuristic: simply tag each

word in the test dataset (data/twitter_test_ universal.txt) with the tag

that appears most frequently in the training dataset (breaking ties arbitrar-

ily). Tag all the unseen words in the test set as nouns. Report your accuracy

on the test data using the provided script like so:

> python accuracy.py mft_baseline.out data/twitter_test_universal.txt

Viterbi Algorithm (6 points)

Implement the Viterbi Algorithm for a bigram perceptron tagger. The pro-
vided code in Data.py will read in the provided training data. You should
make use of log-scores (unnormalized log probabilities) - each multiplication
in Viterbi should be replaced with addition, and unnormalized probabili-
ties are simply dot products of feature vectors and weights. Note: you will
need to complete the next part of the assignment before you can test if your
implementation is properly working.

The methods you will need to implement is ViterbiTagger.Viterbi.
Before you do this, the classifier always predicts "Noun’.

Structured Perceptron (4 points)

Next, implement the structured perceptron algorithm. For this you will
need to modify ViterbiTagger.Train. Include parameter averaging as in
Homework #2. Report your performance (accuracy) training and testing on
the Twitter data.



Cross-Domain Experiments (2 points)

Next, try training your POS tagger in each of the following scenarios and
report accuracy:

e Train on the provided penn-treebank data and test on Twitter.
e Train on the provided IRC-chat data and test on Twitter.

e Train on all the data (irc + ptb + twitter) and test on Twitter.

What can you say about the performance of part-of-speech taggers when
they are applied on text outside their training domain?

Extra Credit: Named Entity Recognition (2 points)

Train your tagger on the provided named entity recognition dataset twitter ner_train.txt
and report precision, recall and F; on twitter ner_test.txt using the pro-

vided script conlleval.pl. Next, add additional features to the tagger

specifically for the named entity recognition task, and report performance.

Commonly used features for named entity recognition include lists of first

and last names.!. Lists of companies, products, etc... can be scraped from

various places on the web, such as Wikipedia.?.

http://www.census.gov/topics/population/genealogy/data/1990_census/
1990_census_namefiles.html
’https://en.wikipedia.org/wiki/List_of_companies_of_the_United_States


http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://en.wikipedia.org/wiki/List_of_companies_of_the_United_States

