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The Brown Clustering Algorithm

I Input: a (large) corpus of words

I Output 1: a partition of words into word clusters

I Output 2 (generalization of 1): a hierarchichal word clustering



Example Clusters (from Brown et al, 1992)Peter F. Brown and Vincent J. Della Pietra Class-Based n-gram Models of Natural Language 

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays 

June March July April January December October November September August 

people guys folks fellows CEOs chaps doubters commies unfortunates blokes 

down backwards ashore sideways southward northward overboard aloft downwards adrift 

water gas coal liquid acid sand carbon steam shale iron 

great big vast sudden mere sheer gigantic lifelong scant colossal 

man woman boy girl lawyer doctor guy farmer teacher citizen 

American Indian European Japanese German African Catholic Israeli Italian Arab 

pressure temperature permeability density porosity stress velocity viscosity gravity tension 

mother wife father son husband brother daughter sister boss uncle 

machine device controller processor CPU printer spindle subsystem compiler plotter 

John George James Bob Robert Paul William Jim David Mike 

anyone someone anybody somebody 

feet miles pounds degrees inches barrels tons acres meters bytes 

director chief professor commissioner commander treasurer founder superintendent dean cus- 
todian 

liberal conservative parliamentary royal progressive Tory provisional separatist federalist PQ 

had hadn't hath would've could've should've must've might've 

asking telling wondering instructing informing kidding reminding bc)thering thanking deposing 

that tha theat 

head body hands eyes voice arm seat eye hair mouth 

Table 2 

Classes from a 260,741-word vocabulary. 

we include no more than the ten most frequent words of any class (the other two 

months would appear with the class of months if we extended this limit to twelve). 

The degree to which the classes capture both syntactic and semantic aspects of English 

is quite surprising given that they were constructed from nothing more than counts 

of bigrams. The class {that tha theat} is interesting because although tha and theat are 

not English words, the computer has discovered that in our data each of them is most 

often a mistyped that. 

Table 4 shows the number of class 1-, 2-, and 3-grams occurring in the text with 

various frequencies. We can expect from these data that maximum likelihood estimates 

will assign a probability of 0 to about 3.8 percent of the class 3-grams and to about 

.02 percent of the class 2-grams in a new sample of English text. This is a substantial 

improvement over the corresponding numbers for a 3-gram language model, which 

are 14.7 percent for word 3-grams and 2.2 percent for word 2-grams, but we have 

achieved this at the expense of precision in the model. With a class model, we distin- 

guish between two different words of the same class only according to their relative 

frequencies in the text as a whole. Looking at the classes in Tables 2 and 3, we feel that 
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A Sample Hierarchy (from Miller et al., NAACL 2004)

3 Discriminative Name Tagger

To implement discriminative training, we followed  the

averaged perceptron approach of (Collins, 2002).  Our

decision was based on three criteria.  First, the method

performed nearly as well as the currently best global

discriminative model (Sha and Pereira, 2003), as

evaluated on one of the few tasks for which there are

any published results (noun phrase chunking).  Second,

convergence rates appeared favorable, which would

facilitate multiple experiments.  Finally, and most

important, the method appeared far simpler to

implement than any of the alternatives.

We implemented the averaged perceptron training

algorithm exactly as described by Collins.  However,

we did not implement cross-validation to determine

when to stop training.  Instead, we simply iterated for 5

epochs in all cases, regardless of the training set size or

number of features used.  Furthermore, we did not

implement features that occurred in no training

instances, as was done in (Sha and Pereira, 2003).  We

suspect that these simplifications may have cost several

tenths of a point in performance.

A set of 16 tags was used to tag 8 name classes (the

seven MUC classes plus the additional null class).  Two

tags were required per class to account for adjacent

elements of the same type.  For example, the string

Betty Mary and Bobby Lou would be tagged as

PERSON-START PERSON-START NULL-START

PERSON-START PERSON-CONTINUE.

Our model uses a total of 19 classes of features.  The

first seven of these correspond closely to features used

in a typical HMM name tagger. The remaining twelve

encode cluster membership.  Clusters of various

granularity are specified by prefixes of the bit strings.

Short prefixes specify short paths from the root node

and therefore large clusters.  Long prefixes specify long

paths and small clusters.  We used 4 different prefix

lengths: 8 bit, 12 bit, 16 bit, and 20 bit.  Thus, the

clusters decrease in size by about a factor of 16 at each

level.  The complete set of features is given in Table 2. 

4 Active Learning

We used only a rudimentary confidence measure to

lawyer 1000001101000

newspaperman 100000110100100

stewardess 100000110100101

toxicologist 10000011010011

slang 1000001101010

babysitter 100000110101100

conspirator 1000001101011010

womanizer 1000001101011011

mailman 10000011010111

salesman 100000110110000

bookkeeper 1000001101100010

troubleshooter 10000011011000110

bouncer 10000011011000111

technician 1000001101100100

janitor 1000001101100101

saleswoman 1000001101100110

...

Nike 1011011100100101011100

Maytag 10110111001001010111010

Generali 10110111001001010111011

Gap 1011011100100101011110

Harley-Davidson 10110111001001010111110

Enfield 101101110010010101111110

genus 101101110010010101111111

Microsoft 10110111001001011000

Ventritex 101101110010010110010

Tractebel 1011011100100101100110

Synopsys 1011011100100101100111

WordPerfect 1011011100100101101000

....

John 101110010000000000

Consuelo 101110010000000001

Jeffrey 101110010000000010

Kenneth 10111001000000001100

Phillip 101110010000000011010

WILLIAM 101110010000000011011

Timothy 10111001000000001110

Terrence 101110010000000011110

Jerald 101110010000000011111

Harold 101110010000000100

Frederic 101110010000000101

Wendell 10111001000000011

Table 1: Sample bit strings

1. Tag + PrevTag

2. Tag + CurWord

3. Tag + CapAndNumFeatureOfCurWord

4. ReducedTag + CurWord 

      //collapse start and continue tags

5. Tag + PrevWord

6. Tag + NextWord

7. Tag + DownCaseCurWord

8. Tag + Pref8ofCurrWord

9. Tag + Pref12ofCurrWord

10. Tag + Pref16ofCurrWord

11. Tag + Pref20ofCurrWord

12. Tag + Pref8ofPrevWord

13. Tag + Pref12ofPrevWord

14. Tag + Pref16ofPrevWord

15. Tag + Pref20ofPrevWord

16. Tag + Pref8ofNextWord

17. Tag + Pref12ofNextWord

18. Tag + Pref16ofNextWord

19. Tag + Pref20ofNextWord

Table 2: Feature Set



The Intuition

I Similar words appear in similar contexts

I More precisely: similar words have similar distributions of words to their
immediate left and right



The Formulation

I V is the set of all words seen in the corpus w1, w2, . . . wn

I Say C : V ! {1, 2, . . . k} is a partition of the vocabulary into k classes

I The model:

p(w1, w2, . . . wn) =

nY

i=1

e(wi|C(wi))q(C(wi)|C(wi�1))

(note: C(w0) is a special start state)



An Example

p(w1, w2, . . . wn) =

nY

i=1

e(wi|C(wi))q(C(wi)|C(wi�1))

C(the) = 1, C(dog) = C(cat) = 2, C(saw) = 3

e(the|1) = 1, e(cat|2) = e(dog|2) = 0.5, e(saw|3) = 1

q(1|0) = 0.2, q(2|1) = 0.4, q(3|2) = 0.3, q(1|3) = 0.6

p(the dog saw the cat) =
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The Brown Clustering Model

A Brown clustering model consists of:

I A vocabulary V
I A function C : V ! {1, 2, . . . k} defining a partition of the vocabulary into k

classes

I A parameter e(v|c) for every v 2 V , c 2 {1 . . . k}
I A parameter q(c0|c) for every c0, c 2 {1 . . . k}



Measuring the Quality of C
I How do we measure the quality of a partition C?

Quality(C) =

nX

i=1

log e(wi|C(wi))q(C(wi)|C(wi�1))

=

kX

c=1

kX

c0=1

p(c, c0) log
p(c, c0)

p(c)p(c0)
+G

where G is a constant
I Here

p(c, c0) =
n(c, c0)P
c,c0 n(c, c

0
)

p(c) =
n(c)P
c n(c)

where n(c) is the number of times class c occurs in the corpus, n(c, c0) is the
number of times c0 is seen following c, under the function C



A First Algorithm

I We start with |V| clusters: each word gets its own cluster

I Our aim is to find k final clusters

I We run |V|� k merge steps:

I
At each merge step we pick two clusters ci and cj , and merge them into a single

cluster

I
We greedily pick merges such that

Quality(C)

for the clustering C after the merge step is maximized at each stage

I Cost? Naive = O(|V|5). Improved algorithm gives O(|V|3): still two slow for
realistic values of |V|



A Second Algorithm

I Parameter of the approach is m (e.g., m = 1000)

I Take the top m most frequent words, put each into its own cluster, c1, c2, . . . cm
I For i = (m+ 1) . . . |V|

I
Create a new cluster, cm+1, for the i’th most frequent word. We now have m+ 1
clusters

I
Choose two clusters from c1 . . . cm+1 to be merged: pick the merge that gives a

maximum value for Quality(C). We’re now back to m clusters

I Carry out (m� 1) final merges, to create a full hierarchy

Running time: O(|V|m2
+ n) where n is corpus length
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Abstract

We present a technique for augmenting

annotated training data with hierarchical word

clusters that are automatically derived from a

large unannotated corpus.  Cluster

membership is encoded in features that are

incorporated in a discriminatively trained

tagging model.  Active learning is used to

select training examples.  We evaluate the

technique for  named-entity tagging.

Compared with a state-of-the-art HMM-based

name finder, the presented technique requires

only 13% as much annotated data to achieve

the same level of performance.  Given a large

annotated training set of 1,000,000 words, the

technique achieves a 25% reduction in error

over the state-of-the-art HMM trained on the

same material.

1 Introduction

At a recent meeting, we presented name-tagging

technology to a potential user.  The technology had

performed well in formal evaluations, had been applied

successfully by several research groups, and required

only annotated training examples to configure for new

name classes.  Nevertheless, it did not meet the user's

needs.

To achieve reasonable performance, the HMM-based

technology we presented required roughly 150,000

words of annotated examples, and over a million words

to achieve peak accuracy.  Given a typical annotation

rate of 5,000 words per hour, we estimated that setting

up a name finder for a new problem would take four

person days of annotation work – a period we

considered reasonable.  However, this user's problems

were too dynamic for that much setup time.  To be

useful, the system would have to be trainable in

minutes or hours, not days or weeks.

We left the meeting thinking about ways to reduce

training requirements to no more than a few hours.  It

seemed that three existing ideas could be combined in a

way that might reduce training requirements

sufficiently to achieve the objective.

First were techniques for producing word clusters from

large unannotated corpora (Brown et al., 1990; Pereira

et al., 1993; Lee and Pereira, 1999).  The resulting

clusters appeared to contain a great deal of implicit

semantic information.  This implicit information, we

believed, could serve to augment a small amount of

annotated data.  Particularly promising were techniques

for producing hierarchical clusters at various scales,

from small and highly specific to large and more

general.  To benefit from such information, however,

we would need an automatic learning mechanism that

could effectively exploit it.

Fortunately, a second line of recent research provided a

potential solution.  Recent work in discriminative

methods (Lafferty et al., 2001; Sha and Pereira, 2003,

Collins 2002) suggested a framework for exploiting

large numbers of arbitrary input features.  These

methods seemed to have exactly the right

c h a r a c t e r i s t i c s  fo r  i n c or p o r a t i n g  t h e

statistically-correlated hierarchical word clusters we

wished to exploit.

Combining these two methods, we suspected, would be

sufficient to drastically reduce the number of annotated

examples required.  However, we also hoped that a

third technique, active learning (Cohn et al., 1996;
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To implement discriminative training, we followed  the

averaged perceptron approach of (Collins, 2002).  Our

decision was based on three criteria.  First, the method

performed nearly as well as the currently best global

discriminative model (Sha and Pereira, 2003), as
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any published results (noun phrase chunking).  Second,

convergence rates appeared favorable, which would

facilitate multiple experiments.  Finally, and most

important, the method appeared far simpler to

implement than any of the alternatives.

We implemented the averaged perceptron training

algorithm exactly as described by Collins.  However,

we did not implement cross-validation to determine

when to stop training.  Instead, we simply iterated for 5

epochs in all cases, regardless of the training set size or

number of features used.  Furthermore, we did not

implement features that occurred in no training

instances, as was done in (Sha and Pereira, 2003).  We

suspect that these simplifications may have cost several

tenths of a point in performance.

A set of 16 tags was used to tag 8 name classes (the

seven MUC classes plus the additional null class).  Two

tags were required per class to account for adjacent

elements of the same type.  For example, the string

Betty Mary and Bobby Lou would be tagged as

PERSON-START PERSON-START NULL-START

PERSON-START PERSON-CONTINUE.

Our model uses a total of 19 classes of features.  The

first seven of these correspond closely to features used

in a typical HMM name tagger. The remaining twelve

encode cluster membership.  Clusters of various

granularity are specified by prefixes of the bit strings.

Short prefixes specify short paths from the root node

and therefore large clusters.  Long prefixes specify long

paths and small clusters.  We used 4 different prefix

lengths: 8 bit, 12 bit, 16 bit, and 20 bit.  Thus, the

clusters decrease in size by about a factor of 16 at each

level.  The complete set of features is given in Table 2. 

4 Active Learning

We used only a rudimentary confidence measure to
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salesman 100000110110000

bookkeeper 1000001101100010

troubleshooter 10000011011000110

bouncer 10000011011000111

technician 1000001101100100

janitor 1000001101100101

saleswoman 1000001101100110

...
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Terrence 101110010000000011110

Jerald 101110010000000011111

Harold 101110010000000100

Frederic 101110010000000101

Wendell 10111001000000011

Table 1: Sample bit strings

1. Tag + PrevTag

2. Tag + CurWord

3. Tag + CapAndNumFeatureOfCurWord

4. ReducedTag + CurWord 

      //collapse start and continue tags

5. Tag + PrevWord

6. Tag + NextWord

7. Tag + DownCaseCurWord

8. Tag + Pref8ofCurrWord

9. Tag + Pref12ofCurrWord

10. Tag + Pref16ofCurrWord

11. Tag + Pref20ofCurrWord

12. Tag + Pref8ofPrevWord

13. Tag + Pref12ofPrevWord

14. Tag + Pref16ofPrevWord

15. Tag + Pref20ofPrevWord

16. Tag + Pref8ofNextWord

17. Tag + Pref12ofNextWord

18. Tag + Pref16ofNextWord

19. Tag + Pref20ofNextWord

Table 2: Feature Set
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Third, we consider the impact of active learning.  Figure

3 shows (a) discriminative tagger performance without

cluster features, (b) the same tagger using active

learning, (c) the discriminative tagger with cluster

features, and (d) the discriminative tagger with cluster

features using active learning.  Both with and without

clusters, active learning exhibits a noticeable increase in

learning rates.  However, the increase in learning rate is

significantly more pronounced when cluster features are

introduced.  We attribute this increase to better

confidence measures provided by word clusters – the

system is no longer restricted  to whether or not it

knows a word; it now can know something about the

clusters to which a word belongs, even if it does not

know the word.

Finally, Figure 4 shows the impact of consolidating the

gains from both cluster features and active learning

compared to the baseline HMM.  This final combination

achieves an F-score of 90 with less than 20,000 words of

training – a quantity that can be annotated in about 4

person hours – compared to 150,000 words for the

HMM – a quantity requiring nearly 4 person days to

annotate.  At 1,000,000 word of training, the final

combination continues to exhibit a 25% reduction in

error over the baseline system (because of limitations in

the experimental framework discussed earlier, active

learning can provide no additional gain at this

operating point).

6 Discussion

The work presented here extends a substantial body of

previous work (Blum and Mitchell, 1998; Riloff and

Jones, 1999; Lin et al., 2003; Boschee et al, 2002;

Collins and Singer, 1999; Yarowsky, 1995) that all

focuses on reducing annotation requirements through a

combination of (a) seed examples, (b) large un-

annotated corpora, and (c) training example selection.

Moreover, our work is based largely on existing

techniques for word clustering (Brown et al., 1990),

discriminative training (Collins 2002), and active

learning.  

The synthesis of these techniques, nevertheless, proved

highly effective in achieving our primary objective of

reducing the need for annotated data.

Much work remains to be done.  In an effort to move

rapidly toward our primary objective, we investigated

only one type of discriminative training (averaged

perceptron), only one type of clustering (bigram mutual

information), and only one simple confidence measure

for active learning.  It seems likely that some additional

gains could be realized by alternative discriminative

methods (e.g. conditional random fields estimated with

conjugate-gradient training).  Similarly, alternative

clustering techniques, perhaps based on different

contextual features or different distance measures,
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Third, we consider the impact of active learning.  Figure

3 shows (a) discriminative tagger performance without

cluster features, (b) the same tagger using active

learning, (c) the discriminative tagger with cluster

features, and (d) the discriminative tagger with cluster

features using active learning.  Both with and without

clusters, active learning exhibits a noticeable increase in

learning rates.  However, the increase in learning rate is

significantly more pronounced when cluster features are

introduced.  We attribute this increase to better

confidence measures provided by word clusters – the

system is no longer restricted  to whether or not it

knows a word; it now can know something about the

clusters to which a word belongs, even if it does not

know the word.

Finally, Figure 4 shows the impact of consolidating the

gains from both cluster features and active learning

compared to the baseline HMM.  This final combination

achieves an F-score of 90 with less than 20,000 words of

training – a quantity that can be annotated in about 4

person hours – compared to 150,000 words for the

HMM – a quantity requiring nearly 4 person days to

annotate.  At 1,000,000 word of training, the final

combination continues to exhibit a 25% reduction in

error over the baseline system (because of limitations in

the experimental framework discussed earlier, active

learning can provide no additional gain at this

operating point).

6 Discussion

The work presented here extends a substantial body of

previous work (Blum and Mitchell, 1998; Riloff and

Jones, 1999; Lin et al., 2003; Boschee et al, 2002;

Collins and Singer, 1999; Yarowsky, 1995) that all

focuses on reducing annotation requirements through a

combination of (a) seed examples, (b) large un-

annotated corpora, and (c) training example selection.

Moreover, our work is based largely on existing

techniques for word clustering (Brown et al., 1990),

discriminative training (Collins 2002), and active

learning.  

The synthesis of these techniques, nevertheless, proved

highly effective in achieving our primary objective of

reducing the need for annotated data.

Much work remains to be done.  In an effort to move

rapidly toward our primary objective, we investigated

only one type of discriminative training (averaged

perceptron), only one type of clustering (bigram mutual

information), and only one simple confidence measure

for active learning.  It seems likely that some additional

gains could be realized by alternative discriminative

methods (e.g. conditional random fields estimated with

conjugate-gradient training).  Similarly, alternative

clustering techniques, perhaps based on different

contextual features or different distance measures,
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Software	for	Brown	Clusters

• Percy	Liang’s	code:	https://github.com/percyliang/brown-cluster
• “A	bit	of	progress	in	language	modeling”	Joshua	Goodman
• More	sophisticated	smoothing
• JCLUSTER:	http://research.microsoft.com/en-us/downloads/0183a49d-c86c-
4d80-aa0d-53c97ba7350a/default.aspx


