Deep Learning in NLP

Many slides adapted from Richard Socher, Tom Mitchell



What’s Deep Learning (DL)?

e Deep learning is a subfield of machine learning

e Most machine learning methods work
well because of human-designed
representations and input features

* For example: features for finding
named entities like locations or
organization names (Finkel, 2010):

e Machine learning becomes just optimizing
weights to best make a final prediction

Feature

Current Word

Previous Word

Next Word

Current Word Character n-gram

Current POS Tag

Surrounding POS Tag Sequence

Current Word Shape

Surrounding Word Shape Sequence

Presence of Word in Left Window

Presence of Word in Right Window
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Machine Learning vs Deep Learning

Machine Learning in Practice
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What’s Deep Learning (DL)?

Representation learning attempts
to automatically learn good
features or representations

Deep learning algorithms attempt to
learn (multiple levels of)
representation and an output

From “raw” inputs x (e.g. words)
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On the history and term of “Deep Learning”

e We will focus on different kinds of neural networks
e The dominant model family inside deep learning

* Only clever terminology for stacked logistic regression units?

* Somewhat, but interesting modeling principles and actual
connections to neuroscience in some cases



Reasons for Exploring Deep Learning

e Manually designed features are often over-specified, incomplete
and take a long time to design and validate

e Learned Features are easy to adapt, fast to learn

e Deep learning provides a very flexible, (almost?) universal,
learnable framework for representing world, visual and
linguistic information.

e Deep learning can learn unsupervised (from raw text) and
supervised (with specific labels like positive/negative)



Reasons for Exploring Deep Learning

* |n 2006 deep learning techniques started outperforming other
machine learning techniques. Why now?

e DL techniques benefit more from a lot of data

e Faster machines and multicore CPU/GPU help DL
e New models, algorithms, ideas

- Improved performance (first in speech and vision, then NLP)



Deep Learning for Speech

e The first breakthrough results of

“deep learning” on large datasets Phonemes/Words
happened in speech recognition

e Context-Dependent Pre-trained
Deep Neural Networks for Large
Vocabulary Speech Recognition
Dahl et al. (2010)

Acoustic model Recog | RT03S
\ WER | FSH

Traditional 1-pass 27.4

features —adapt

Deep Learning 1l-pass 18.5 16.1

—adapt (-33%) (-32%)



Deep Learning for Computer Vision

e Most deep learning groups
have (until recently) largely
focused on computer vision

e Break through paper:
ImageNet Classification with
Deep Convolutional Neural
Networks by Krizhevsky et

Persian cat Simese cat tabby N

Egyptian cat

Zeiler and Fergus (2013)



Neural word vectors - visualization

need help
come
go
take
qive keep
make get
meet cem continue
expect want become
think
say remain
are .
IS
be
wergas
being
been

hadnas

have



Representations at NLP Levels: Syntax

e Traditional: Phrases
Discrete categories like NP, VP

e DL:

* Every word and every phrase
IS a vector

* a neural network combines
two vectors into one vector

* Socher et al. 2011




Machine Translation

Interlingua

e Many levels of translation
have been tried in the past:

e Traditional MT systems are
very large complex systems

Figure 1: The Vauquois triangle

e What do you think is the interlingua for the DL approach to
translation?



Machine Translation

e Source sentence mapped to vector, then output sentence
generated.
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e Sequence to Sequence Learning with Neural Networks by
Sutskever et al. 2014

e Very new but could replace very complex architectures!



Neural Networks



Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10'°
e Connections per neuron ~ 1049
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

= Much parallel computation



Properties of neural nets:
e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

¢ Emphasis on tuning weights automatically



Perceptron
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Decision Surface of a Perceptron
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Represents some useful functions

e What weights represent g(z1,z2) = AND(x1,x2)?

But some functions not representable
e All not linearly separable

e Therefore, we’ll want networks of these...



Neural Nets for the Win!

* Neural networks can learn much more complex
functions and nonlinear decision boundaries!




Perceptron Training Rule

where
Aw; = n(t — o)x;
Where:
e { = c(Z) is target value
® 0 1s perceptron output

e 7 is small constant (e.g., 0.1) called learning rate



Perceptron Training Rule

Can prove it will converge if
e Training data is linearly separable

e 7 sufficiently small



Gradient Descent
To understand, consider simpler linear unit, where

O=wWyg+wWi1x1+ " +w,Tn

Let’s learn w;’s that minimize the squared error

Bli) = o 3 (ta — 0a)?

deD

Where D is set of training examples



E(w]

Gradient Descent

25

O
204 S0
N S0
\\\\\ ““““
NN pesgtigtistis
15 R A A
e
@




Gradient:
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Gradient Descent

GRADIENT-DESCENT(training_examples, n)
Initialize each w; to some small random value

Until the termination condition is met, Do
e Initialize each Aw; to zero.

e For each (Z,t) in training_examples, Do
— Input instance I to unit and compute output o
— For each linear unit weight w;, Do

Aw; — Aw; + n(t — o)x;
e For each linear unit weight w;, Do



Summary

Perceptron training rule guaranteed to succeed if
e Training examples are linearly separable

e Sufficiently small learning rate n

Linear unit training rule uses gradient descent

e Guaranteed to converge to hypothesis with minimum
squared error

e Given sufficiently small learning rate n
e Even when training data contains noise

e Even when training data not separable by H



Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:

Do until convergence
1. Compute the gradient VEp W]
2. W «— W — WVED[TE]



Incremental Mode Gradient Descent:

Do until convergence

For each training example d in D
1. Compute the gradient V E 4[]
2. W— W — nVEd['LU]

Euli] = 3 (t — 04)’

Incremental Gradient Descent can approximate Batch
Gradient Descent arbitrarily closely if  made small enough
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Sigmoid Unit

O

0 = O(net) = 1_n€t
l1+e

o(x) is the sigmoid function

1
1+e %

Nice property: d‘;—gf) = o(xz)(1 — o(x))




We can derive gradient descent rules to train

e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation



Error Gradient for a Sigmoid Unit
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Backpropagation Algorithm

Initialize all weights to small random numbers
Until convergence, Do

For each training example, Do
1. Input it to network and compute network outputs
2. For each output unit k&

6k — Ok(l — Ok)(tk — Ok)
3. For each hidden unit A
On +— on(1 — op) Z Wh, 1O

k€outputs
4. Update each network weight w; ;
Wi,j — Wij + Aw

where Awi,j = 7763-:1:1-,3-



More on Backpropagation

Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs

Will find a local, not necessarily global error minimum

— In practice, often works well
(can run multiple times)

Often include weight momentum o

Aw; j(n) =16 ; + alwg j(n — 1)
Minimizes error over training examples
— Will it generalize well to subsequent examples?

Training can take thousands of iterations — slow!

Using network after training is very fast



Learning Hidden Layer Representations

Inputs Outputs




A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned?




Learned hidden layer representation:

Input Hidden QOutput
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — (1000000
00100000 — .01 97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .06 .02 — 00001000
00000100 — .22 99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
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Automatic Differentiotion

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping



Neural Network Language Models



Review

* Deep Learning
* Learning Representations of Inputs

* Neural Networks
* Layers of Logistic Regression
e Can represent any nonlinear function (with a large enough network)
* Training with backpropagation

* Recent breakthroughsin predictive tasks
* Speech Recognition
* Object Recognition (computer vision)



Q: How to model sequences with neural

Networks?

* Fixed number of inputs.
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How about just predicting the next word in
the input?

* Q: what about just predicting the next word?

* From the context?
* No longer a language model

e Word2Vec!



Word2vec

* Learn continuous word embedding for each word

* Each word represented by a vector

Input layer

Xy

O
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Hidden layer Output layer
OV,
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h;lO O Y3
> Mo 2]
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Figure 1: A simple CBOW model with only one word in the context



Using more than one word of context
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Figure 2: Continuous bag-of-word model
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Figure 3: The skip-gram model.



Word2Vec: fast to train

 Word2Vecis a fairly simple model,
* But Can efficiently train word vectors on really big corpora

* This is probably the main advantage of Word2vec over other
approaches...
* Principal Component Analysis
e Recurrent Neural Network Language Models
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Country and Capital Vectors Projected by PCA
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.



The Unreasonable Effectiveness of Word Representations
for Twitter Named Entity Recognition

System Finl0Dev Ritll Frol4 | Avg

CoNLL 273 271 295 [28.0

+ Brown 384 394 425 |40.1

+ Vector 408 404 429 |41.4

+ Reps 424 422 462 | 436

Fin10 36.7 290 304 |32.0

Colin Cherry and Hongyu Guo + Brown 59.9 539 563 |56.7
- . + Vector 61.5 564 584 |588
National Research Council Canada + Reps 40 585 602 | 500
first.last@nrc—-cnrc.gc.ca CoNLL+Finl0 | 447 399 442 [429
+ Brown 549 529 585 | 554

+ Vector 58.9 552 599 | 58.0

+ Reps 589 564 61.8 |59.0

+Weights | 644 596 633 | 624

Table 5: Impact of our components on Twitter NER per-
formance, as measured by F1, under 3 data scenarios.

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 735-745,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



Language Modeling

» x is a “history” wi,ws,...w;_1, €.g.,
Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to English”.
It is fair to assume that neither sentence (1) nor (2) (nor indeed any
part of these sentences) has ever occurred in an English discourse.

Hence, in any statistical

» ¢ Is an “outcome” w;
» Example features:

1 if y = model
filz,y) = { otherwise

if y = model and w;_1; = statistical
otherwise

hew = |

if y = model, w; o = any, w;_1 = statistical
otherwise

SO = O = O

hew = |



fa(z,y)
f5(x,y)
fe(,y)
fo(x,y)
fs(z,y)

folz,y)

O, O,k O, Ok, Ok, Ok

if ¥ = model, w;_o = any
otherwise

if y = model, w;_; is an adjective
otherwise

If y = model, w;_; ends in “ical”
otherwise

If y = model, author = Chomsky

otherwise

If y = model, “model” is not in wy,...w;_1
otherwise

If y = model, “grammatical” is in wq,...w;_1
otherwise



Defining Features in Practice

» We had the following “trigram” feature:

f3(517,y)

1 if y =model, w;,_o = any, w;_; = statistical
0 otherwise

» In practice, we would probably introduce one trigram feature
for every trigram seen in the training data: i.e., for all
trigrams (u, v, w) seen in training data, create a feature

1 ify=w, w,_o =u, wj_1 =v
fN(u,v,w) (CI?, y) { Y ? !

0 otherwise

where N (u,v,w) is a function that maps each (u, v, w)
trigram to a different integer



Language Modeling

» x IS a history” wi,wsy,...w;_1, €.8g.,
Third, the notion “grammatical in English” cannot be identified in any
way with the notion “high order of statistical approximation to English”.
It is fair to assume that neither sentence (1) nor (2) (nor indeed any
part of these sentences) has ever occurred in an English discourse.

Hence, in any statistical

» Each possible y gets a different score:

v - f(x,model) = 5.6
v- f(x,is) = 1.5
v - f(x,models) = 4.5

- f(x,the) = —3.2
- f(z,0f) =1.3

@@
<



Log-Linear Models

>

We have some input domain X', and a finite label set ). Aim is
to provide a conditional probability p(y | ) for any x € X and
ye V.

A feature is a function f: X x ) — R

(Often binary features or indicator functions

kaxy—>{O,1})
Say we have m features f, for k=1...m
= A feature vector f(x,y) € R™ for any x € X and y € ).

We also have a parameter vector v € R™

We define

evf(x7y)

p(y ‘ CE’, U) — nyey ev.f(x,y/)



Recurrent Neural Network Language Models




Recurrent Neural Network language model

Given list of word vectors: %1s---5%t—1,Tt, Te1,- -5 TT

At a single time step: he = o (W(h“ht_l + W(’”‘”)xm)
Uy = softmax (W(S)ht>
p(CEt_H :Uj ’ ilft,...,$1) = gt,j

>

J)

* (e000]

=




Recurrent Neural Network language model

Main idea: we use the same set of W weights at all time
steps!

Everything else is the same: h, = o (W(hh)ht—l - W“”%m)
U = softmax (W(S)ht)
f’(azt+1 :’Uj ‘ xt,...,xl) = gt,j

ho € RP» is some initialization vector for the hidden layer
at time step O

L1t] is the column vector of L at index [t] at time step t
W(hh) c RDh X Dy, W(h:c) c RDh X d W(S) c R|V|XDh



Training RNN language models

* It’s just a neural network!
* With a slightly different / more complicated structure
 Straightforward to compute gradients of all parameters wrt. Outputs



target chars:

output layer

hidden layer

input layer

input chars:

W_hh

“h”




More complicated stuff...

* Technical Problem: vanishing / exploding gradients
 (sort of) Solutions: LSTM units or GRUs

e Encoder-decoder RNN

* Sequence-to-sequence
* Machine translation
* Conversation generation

* |[mage captioning

These are all just end-to-end neural networks
trained with backpropagation!



LSTM Unit...




GRU Unit...

it — 0 (Wz ' :ht—laxt:)
re =0 (Wfr ' :ht—lafvt:)

he = tanh (W - [ry * he_1, ¢])

ht:(l—zt)*ht_l—kzt*ﬁt




Generating text from an RNN LM




Neural Translation Models (sequence to
sequence)

A
QN N

O




Conversation Generation

Human: what is the purpose of life?

Machine: to serve the greater good.

Human: what is the purpose of living?

Machine: to live forever.

Human: what is the purpose of existence?
Machine: to find out what happens when we get to the
planet earth.

Human: where are you now?

Machine: i’m in the middle of nowhere.

Human: what is the purpose of dying?

Machine: to have a life.

Human: what is the purpose of being intelligent?
Machine: to find out what it is.

Human: what is the purpose of emotions?
Machine: i don’t know.



Google Research Blog

Computer, respond to this email.
Tuesday, November 03, 2015

Posted by Greg Corrado*, Senior Research Scientist
Machine Intelligence for You

What | love about working at Google is the opportunity to harness cutting-edge
machine intelligence for users’ benefit. Two recent Research Blog posts talked about
how we've used machine learning in the form of deep neural networks to improve
voice search and YouTube thumbnails. Today we can share something even wilder -
Smart Reply, a deep neural network that writes email.
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Turkey!

0 dcorrado

Hi all,

We wanted to invite you to join us for an early
Thanksgiving on November 22nd, beginning

around 2PM. Please bring your favorite dish! RSVP by
next week

Dave

X E ©

Server issues

3 Dan Mané 22PM

Hi team,

The server appears to be dropping about 10% of
requests (see attached dashboards). There hasn't been
a new release since last night, so I'm not sure what's
going on. Is anyone looking into this?

| seeif | can find
I'll check on it I - e 'mon it
out
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Show and Tell: A Neural Image Caption Generator

Oriol Vinyals Alexander Toshev Samy Bengio Dumitru Erhan
Google Google Google Google

vinyals@google.com toshevl@google.com bengio@google.com dumitru@google.com



Classification error
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Vision Language A grou.p of people
Deep CNN Generating shopping at an
RNN outdoor market.

o @ There are many

vegetables at the
fruit stand.

Figure 1. NIC, our model, is based end-to-end on a neural net-
work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language
from an input image, as shown on the example above.



Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

this dirt bike rider is smiling and raising his fist in triumph. i C ro S O
a man riding a bicycle while pumping his fist in the air. M ft ‘ O ‘ O
a mountain biker pumps his fist in celebration.

RS . [Tsung-YiLin et al. 2014]
| % ' MSCcoco.org

currently:
~120K Iimages
~9 sentences each



+ Transfer Learning

use weights
pretrained from
ImageNet

image ] 4

 conv-64
- conv-64
~ maxpool

~ conv-128

w conv-128
maxpool

. conv-256

- conv-256

~ maxpool

 conv-512
~ conv-512
~_maxpool

- conv-512

\ conv-512

~_maxpool

~ FC-4096
~ FC-4096 —

“straw hat”

y0 y1 y2

hO h1 h2

A A A

<)§T "é(t1ra iz
ART - “hat”
<START> straw hat

training example

use word vectors
pretrained with
word2vec [1]

[1] Mikolov et al., 2013



Summary of the approach

We wanted to describe images with sentences.

1. Define a single function from input -> output
2. Initialize parts of net from elsewhere if possible

3. Get some data
4. Train with SGD



Wow | can’t believe that worked

a group of people standing | —— s T i UV N}
around a room with a cow is standing in the middle of a street
remotes baseball bat logprob: -8.84

logprob: -9.17 logprob: -7.61




Wow | can’t believe that worked

— . a display case filled with lots of different types of e
a cat is sitting on a toilet seat donuts a group of people sitting at a table with wine glasses

logprOb: _7.79 logprob: — TR loqprob: -6.71



Well, | can kind of see it

a cat is sitting on a couch with a remote contro
logprob: -12.45

a man standing next to a clock on a wall a young boy is holding a

logprob: -10.08 baseball bat
logprob: -7.65



Training an RNN/LSTM...

- Clip the gradients (important!). 5 worked ok

- RMSprop adaptive learning rate worked nice

- Initialize softmax biases with log word
frequency distribution

- Train for long time



Summary

* Deep learning is a popular area in machine learning recently
* Very successful in speech recognition and computer vision

* Becoming very popular in NLP these days

* Main motivation:
* Learn feature representations from data
* Alternative to hand-engineered features

* Neural networks:
* Primary deep learning approach
 Layers of logistic regressions — can directly calculate gradients from outputs
* Nonlinear decision boundaries



