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What’s&Deep&Learning&(DL)?&

•  Deep&learning&is&a&subfield&of&machine&learning&

•  Most&machine&learning&methods&work&&
well&because&of&human\designed&&
representa8ons&and&input&features&
•  For&example:&features&for&finding&&
named&en88es&like&loca8ons&or&&
organiza8on&names&(Finkel,&2010):&

•  Machine&learning&becomes&just&op8mizing&
weights&to&best&make&a&final&predic8on&

3/30/15&Richard&Socher&Lecture&1,&Slide&11&

3.3. APPROACH 35

Feature NER TF
Current Word ! !

Previous Word ! !

Next Word ! !

Current Word Character n-gram all length ≤ 6
Current POS Tag !

Surrounding POS Tag Sequence !

Current Word Shape ! !

Surrounding Word Shape Sequence ! !

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two
forms of non-local structure: label consistency in the named entity recognition task, and
template consistency in the template filling task. One could imagine many ways of defining
such models; for simplicity I use the form

PM(y|x)∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation types Λ, and for each violation type λ we
specify a penalty parameter θλ . The exponent #(λ ,s,o) is the count of the number of times
that the violation λ occurs in the state sequence s with respect to the observation sequence
o. This has the effect of assigning sequences with more violations a lower probability.
The particular violation types are defined specifically for each task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do
so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem
for us.



Machine&Learning&vs&Deep&Learning&

Machine Learning in Practice 

Describing your data with 
features a computer can 
understand 

Learning 
algorithm 

Domain&specific,&requires&Ph.D.&
level&talent&

Op8mizing&the&
weights&on&features&



What’s&Deep&Learning&(DL)?&

•  Representa8on&learning&aUempts&&
to&automa8cally&learn&good&&
features&or&representa8ons&

•  Deep&learning&algorithms&aUempt&to&
learn&(mul8ple&levels&of)&&
representa8on&and&an&output&

•  From&“raw”&inputs&x&(e.g.&words)&
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On&the&history&and&term&of&“Deep&Learning”&

•  We&will&focus&on&different&kinds&of&neural&networks&&
•  The&dominant&model&family&inside&deep&learning&

•  Only&clever&terminology&for&stacked&logis8c&regression&units?&
•  Somewhat,&but&interes8ng&modeling&principles&and&actual&
connec8ons&to&neuroscience&in&some&cases&

•  We&will&not&take&a&historical&approach&but&instead&focus&on&
methods&which&work&well&on&NLP&problems&now&

•  For&history&of&deep&learning&models&(star8ng&~1960s),&see:&&
Deep&Learning&in&Neural&Networks:&An&Overview&&
by&Schmidhuber&
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Reasons&for&Exploring&Deep&Learning&

•  Manually&designed&features&are&o`en&over\specified,&incomplete&
and&take&a&long&8me&to&design&and&validate&

•  Learned&Features&are&easy&to&adapt,&fast&to&learn&

•  Deep&learning&provides&a&very&flexible,&(almost?)&universal,&
learnable&framework&for&represen>ng&world,&visual&and&
linguis8c&informa8on.&

•  Deep&learning&can&learn&unsupervised&(from&raw&text)&and&
supervised&(with&specific&labels&like&posi8ve/nega8ve)&
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Reasons&for&Exploring&Deep&Learning&

•  In&2006&deep&learning&techniques&started&outperforming&other&
machine&learning&techniques.&Why&now?&

•  DL&techniques&benefit&more&from&a&lot&of&data&
•  Faster&machines&and&mul8core&CPU/GPU&help&DL&&
•  New&models,&algorithms,&ideas&&

!&Improved&performance&(first&in&speech&and&vision,&then&NLP)&
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Deep&Learning&for&Speech&

•  The&first&breakthrough&results&of&
“deep&learning”&on&large&datasets&
happened&in&speech&recogni8on&

•  Context\Dependent&Pre\trained&
Deep&Neural&Networks&for&Large&
Vocabulary&Speech&Recogni8on&&
Dahl&et&al.&(2010)&
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Phonemes/Words&

Acous>c&model& Recog&
\&WER&

RT03S&
FSH&

Hub5&
SWB&

Tradi8onal&
features&

1\pass&
−adapt&

27.4& 23.6&

Deep&Learning& 1\pass&
−adapt&

18.5&
(−33%)&

16.1&
(−32%)&



Deep&Learning&for&Computer&Vision&

•  Most&deep&learning&groups&
have&(un8l&recently)&largely&
focused&on&computer&vision&

•  Break&through&paper:&
ImageNet&Classifica8on&with&
Deep&Convolu8onal&Neural&
Networks&by&Krizhevsky&et&
al.&2012&

Richard&Socher& Lecture&1,&Slide&18&18&
Zeiler&and&Fergus&(2013)&

8 Olga Russakovsky* et al.
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Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.
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Neural&word&vectors&A&visualiza>on&

22&



Representa>ons&at&NLP&Levels:&Syntax&

•  Tradi8onal:&Phrases&
Discrete&categories&like&NP,&VP&

•  DL:&&
•  Every&word&and&every&phrase&
is&a&vector&

•  a&neural&network&combines&&
two&vectors&into&one&vector&

•  Socher&et&al.&2011&
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Machine&Transla>on&

•  Many&levels&of&transla8on&&
have&been&tried&in&the&past:&

•  Tradi8onal&MT&systems&are&&
very&large&complex&systems&&

•  What&do&you&think&is&the&interlingua&for&the&DL&approach&to&
transla8on?&
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Machine&Transla>on&

•  Source&sentence&mapped&to&vector,&then&output&sentence&
generated.&&

•  Sequence&to&Sequence&Learning&with&Neural&Networks&by&
Sutskever&et&al.&2014&

•  Very&new&but&could&replace&very&complex&architectures!&

3/30/15&Richard&Socher&Lecture&1,&Slide&29&

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use another LSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network languagemodel
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes it a natural choice for this application
due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is related to Cho et al. [5] although
the latter was used only for rescoring hypotheses produced by a phrase-based system. Graves [10]
introduced a novel differentiable attention mechanism that allows neural networks to focus on dif-
ferent parts of their input, and an elegant variant of this idea was successfully applied to machine
translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another popular
technique for mapping sequences to sequences with neural networks, but it assumes a monotonic
alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 384M parameters and 8,000 dimensional state each) using a simple left-to-right beam-
search decoder. This is by far the best result achieved by direct translation with large neural net-
works. For comparison, the BLEU score of an SMT baseline on this dataset is 33.30 [29]. The 34.81
BLEU score was achieved by an LSTM with a vocabulary of 80k words, so the score was penalized
whenever the reference translation contained a word not covered by these 80k. This result shows
that a relatively unoptimized small-vocabulary neural network architecture which has much room
for improvement outperforms a phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline by
3.2 BLEU points and is close to the previous best published result on this task (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not the target sentences in the training and test
set. By doing so, we introduced many short term dependencies that made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different
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Neural Networks











Neural&Nets&for&the&Win!&
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•  Neural'networks'can'learn'much'more'complex'
func,ons'and'nonlinear'decision'boundaries!'

















































Automatic Differentiation 

•  The(gradient(computa2on(can(
be(automa;cally'inferred'from(
the(symbolic(expression(of(the(
fprop.(

•  Each(node(type(needs(to(know(
how(to(compute(its(output(and(
how(to(compute(the(gradient(
wrt(its(inputs(given(the(
gradient(wrt(its(output.(

•  Easy(and(fast(prototyping(
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Neural	Network	Language	Models



Review

• Deep	Learning
• Learning	Representations	of	Inputs

• Neural	Networks
• Layers	of	Logistic	Regression
• Can	represent	any	nonlinear	function	(with	a	large	enough	network)
• Training	with	backpropagation

• Recent	breakthroughs	in	predictive	tasks
• Speech	Recognition
• Object	Recognition	(computer	vision)



Q:	How	to	model	sequences	with	neural	
Networks?
• Fixed	number	of	inputs.



How	about	just	predicting	the	next	word	in	
the	input?

• Q:	what	about	just	predicting	the	next	word?
• From	the	context?
• No	longer	a	language	model

• Word2Vec!



Word2vec
• Learn	continuous	word	embedding	for	each	word
• Each	word	represented	by	a	vector



Using	more	than	one	word	of	context



Word2Vec:	fast	to	train

• Word2Vec	is	a	fairly	simple	model,
• But	Can	efficiently	train	word	vectors	on	really	big	corpora
• This	is	probably	the	main	advantage	of	Word2vec over	other	
approaches...
• Principal	Component	Analysis
• Recurrent	Neural	Network	Language	Models



man

queen

king

woman

VEC(king)	+	VEC(woman)	- VEC(man)	=	?







Language Modeling

I
x is a “history” w1, w2, . . . wi�1, e.g.,
Third, the notion “grammatical in English” cannot be identified in any

way with the notion “high order of statistical approximation to English”.

It is fair to assume that neither sentence (1) nor (2) (nor indeed any

part of these sentences) has ever occurred in an English discourse.

Hence, in any statistical

I
y is an “outcome” w

i

I Example features:

f1(x, y) =

⇢
1 if y = model

0 otherwise

f2(x, y) =

⇢
1 if y = model and wi�1 = statistical

0 otherwise

f3(x, y) =

⇢
1 if y = model, wi�2 = any, wi�1 = statistical

0 otherwise



f4(x, y) =

⇢
1 if y = model, w

i�2 = any

0 otherwise

f5(x, y) =

⇢
1 if y = model, w

i�1 is an adjective
0 otherwise

f6(x, y) =

⇢
1 if y = model, w

i�1 ends in “ical”
0 otherwise

f7(x, y) =

⇢
1 if y = model, author = Chomsky
0 otherwise

f8(x, y) =

⇢
1 if y = model, “model” is not in w1, . . . wi�1

0 otherwise

f9(x, y) =

⇢
1 if y = model, “grammatical” is in w1, . . . wi�1

0 otherwise



Defining Features in Practice

I We had the following “trigram” feature:

f3(x, y) =

⇢
1 if y = model, w

i�2 = any, w
i�1 = statistical

0 otherwise

I In practice, we would probably introduce one trigram feature
for every trigram seen in the training data: i.e., for all
trigrams (u, v, w) seen in training data, create a feature

f

N(u,v,w)(x, y) =

⇢
1 if y = w, w

i�2 = u, w
i�1 = v

0 otherwise

where N(u, v, w) is a function that maps each (u, v, w)

trigram to a di↵erent integer



Language Modeling

I
x is a “history” w1, w2, . . . wi�1, e.g.,
Third, the notion “grammatical in English” cannot be identified in any

way with the notion “high order of statistical approximation to English”.

It is fair to assume that neither sentence (1) nor (2) (nor indeed any

part of these sentences) has ever occurred in an English discourse.

Hence, in any statistical

I Each possible y gets a di↵erent score:

v · f(x,model) = 5.6 v · f(x, the) = �3.2

v · f(x, is) = 1.5 v · f(x, of) = 1.3

v · f(x,models) = 4.5 . . .



Log-Linear Models
I We have some input domain X , and a finite label set Y. Aim is

to provide a conditional probability p(y | x) for any x 2 X and
y 2 Y.

I A feature is a function f : X ⇥ Y ! R
(Often binary features or indicator functions
f

k

: X ⇥ Y ! {0, 1}).
I Say we have m features f

k

for k = 1 . . .m

) A feature vector f(x, y) 2 Rm for any x 2 X and y 2 Y .

I We also have a parameter vector v 2 Rm

I We define

p(y | x; v) = e

v·f(x,y)
P

y

02Y e

v·f(x,y0)



Recurrent	Neural	Network	Language	Models
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Recurrent&Neural&Network&language&model&
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Given&list&of&word&vectors:&

At&a&single&3me&step:&

xt' ht'
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Recurrent&Neural&Network&language&model&

Main&idea:&we&use&the&same&set&of&W&weights&at&all&3me&
steps!&

Everything&else&is&the&same:&

&

&

&&&&&is&some&ini3aliza3on&vector&for&the&hidden&layer&
at&3me&step&0&

&&&&&&&&is&the&column&vector&of&L&at&index&[t]&at&3me&step&t&



Training	RNN	language	models

• It’s	just	a	neural	network!
• With	a	slightly	different	/	more	complicated	structure
• Straightforward	to	compute	gradients	of	all	parameters	wrt.	Outputs





More	complicated	stuff…

• Technical	Problem:	vanishing	/	exploding	gradients
• (sort	of)	Solutions:	LSTM	units	or	GRUs

• Encoder-decoder	RNN
• Sequence-to-sequence
• Machine	translation
• Conversation	generation

• Image	captioning

These	are	all	just	end-to-end	neural	networks	
trained	with	backpropagation!



LSTM	Unit…



GRU	Unit…



Generating	text	from	an	RNN	LM
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Neural	Translation	Models	(sequence	to	
sequence)



Conversation	Generation











[Szegedy et al., 2014]  6.6% error
[Simonyan and Zisserman, 2014] 7.3% error

[Krizhevsky, Sutskever, Hinton. 2012] 16.4% error

[Zeiler and Fergus, 2013] 11.1% error





Image Sentence Datasets

Microsoft COCO
[Tsung-Yi Lin et al. 2014]
mscoco.org

currently:
~120K images
~5 sentences each



+ Transfer Learning

h0

x0
<ST
ART

>

y0

x1
“stra
w”

h1

y1

x2
“hat”

h2

y2

<START> straw hat

“straw hat”

training example

use weights 
pretrained from 
ImageNet

use word vectors 
pretrained with 
word2vec [1]

[1] Mikolov et al., 2013



Summary of the approach
We wanted to describe images with sentences.

1. Define a single function from input -> output
2. Initialize parts of net from elsewhere if possible
3. Get some data
4. Train with SGD



Wow I can’t believe that worked



Wow I can’t believe that worked



Well, I can kind of see it



Training an RNN/LSTM...

- Clip the gradients (important!). 5 worked ok
- RMSprop adaptive learning rate worked nice
- Initialize softmax biases with log word 

frequency distribution
- Train for long time



Summary

• Deep	learning	is	a	popular	area	in	machine	learning	recently
• Very	successful	in	speech	recognition	and	computer	vision

• Becoming	very	popular	in	NLP	these	days
• Main	motivation:
• Learn	feature	representations	from	data
• Alternative	to	hand-engineered	features

• Neural	networks:
• Primary	deep	learning	approach
• Layers	of	logistic	regressions	– can	directly	calculate	gradients	from	outputs
• Nonlinear	decision	boundaries


