
Logistic	Regression

Some	slides	adapted	from	Dan	Jurfasky and	Brendan	O’Connor

Naïve	Bayes	Recap

• Bag	of	words	(order	independent)

• Features	are	assumed	independent	given	class

P (x1, . . . , xn|c) = P (x1|c) . . . P (xn|c)

Q:	Is	this	really	true?

The	problem	with	assuming	
conditional	independence	

• Correlated	features	->	double	counting	
evidence
– Parameters	are	estimated	independently

• This	can	hurt	classifier	accuracy	and	
calibration

Logistic	Regression

• (Log)	Linear	Model	– similar	to	Naïve	Bayes

• Doesn’t	assume	features	are	independent

• Correlated	features	don’t	“double	count”

What	are	“Features”?

• A	feature	function,	f
– Input:	Document,	D (a	string)
– Output:	Feature	Vector,	X

What	are	“Features”?

f(d) =

0

BBBBB@

count(“boring”)

count(“not boring”)

length of document

author of document

.

.

.

1

CCCCCA

Doesn’t	have	to	be	just	“bag	of	words”

Feature	Templates

• Typically	“feature	templates”	are	used	to	
generate	many	features	at	once

• For	each	word:
– ${w}_count
– ${w}_lowercase
– ${w}_with_NOT_before_count

Logistic	Regression:	Example

f(di) = xi =

0

@
count(“nigerian”)

count(“prince”)

count(“nigerian prince”)

1

A

w =

0

@
�1.0
�1.0
4.0

1

A

• Compute	Features:

• Assume	we	are	given	some	weights:

Logistic	Regression:	Example

• Compute	Features
• We	are	given	some	weights
• Compute	the	dot	product:

z =

|X|X

i=0

wixi

Logistic	Regression:	Example

• Compute	the	dot	product:

z =

|X|X

i=0

wixi

• Compute	the	logistic	function:

P (spam|x) = e

z

e

z + 1
=

1

1 + e

�z

The	Logistic	function

P (spam|x) = e

z

e

z + 1
=

1

1 + e

�z

The	Dot	Product

• Intuition:	weighted	sum	of	features
• All	Linear	models	have	this	form

z =

|X|X

i=0

wixi

Naïve	Bayes	as	a	log-linear	model

• Q:	what	are	the	features?

• Q:	what	are	the	weights?	

Naïve	Bayes	as	a	Log-Linear	Model

P (spam|D) / P (spam)
Y

w2D

P (w|spam)

P (spam|D) / P (spam)
Y

w2Vocab

P (w|spam)xi

logP (spam|D) / logP (spam) +

X

w2Vocab

xi · logP (w|spam)

Naïve	Bayes	as	a	Log-Linear	Model

In	both	Naïve	Bayes	and	
Logistic	Regression	we	

Compute	The	Dot	Product!

logP (spam|D) / logP (spam) +

X

w2Vocab

xi · logP (w|spam)

NB	vs.	LR

• Both	compute	the	dot	product

• NB:	sum	of	log	probabilities

• LR:	logistic	function

NB	vs.	LR:
Parameter	Learning

• Naïve	Bayes:
– Learn	conditional	probabilities	independently by	
counting

• Logistic	Regression:
– Learn	weights	jointly

LR:	Learning	Weights

• Given:	a	set	of	feature	vectors	and	labels

• Goal:	learn	the	weights

Learning	Weights

2

6664

x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
...

. . .
...

xd1 xd2 xd3 . . . xdn

3

7775

0

BBB@

y1
y2
...
yn

1

CCCA
Document

Feature Labels

Q:	what	parameters	should	we	
choose?

• What	is	the	right	value	for	the	weights?

• Maximum	Likelihood	Principle:
– Pick	the	parameters	that	maximize	the	probability	
of	the	data

Maximum	Likelihood	Estimation

= argmaxw

X

i

logP (yi|xi;w)

= argmaxw

X

i

log

(
pi, if yi = 1

1� pi, if yi = 0

= argmaxw

X

i

log pI(yi=1)
i (1� pi)

I(yi=0)

wMLE = argmaxw logP (y1, . . . , yd|x1, . . . , xd;w)

Maximum	Likelihood	Estimation

= argmaxw

X

i

yi log pi + (1� yi) log(1� pi)

= argmaxw

X

i

log pI(yi=1)
i (1� pi)

I(yi=0)

• Unfortunately	there	is	no	closed	form	solution
– (like	there	was	with	naïve	bayes)

• Solution:
– Iteratively	climb	the	log-likelihood	surface	through	
the	derivatives	for	each	weight

• Luckily,	the	derivatives	turn	out	to	be	nice

Maximum	Likelihood	Estimation

Gradient	ascent

Loop	While	not	converged:
For	all	features	j,	compute	and	add	derivatives

wnew

j = wold

j + ⌘
@

@wj
L(w)

:	Training	set	log-likelihoodL(w)
✓

@L
@w1

,
@L
@w2

, . . . ,
@L
@wn

◆
:	Gradient	vector

Gradient	ascent

w1

w2

Gradient	ascent

w1

w2

LR	Gradient

@L
@wj

=
X

i

(yi � pi)xj

Logistic	Regression:	Pros	and	Cons

• Doesn’t	assume	conditional	independence	of	
features
– Better	calibrated	probabilities
– Can	handle	highly	correlated	overlapping	features

• NB	is	faster	to	train,	less	likely	to	overfit

NB	&	LR

• Both	are	linear	models

• Training	is	different:
– NB:	weights	are	trained	independently
– LR:	weights	trained	jointly

z =

|X|X

i=0

wixi

Perceptron	Algorithm
• Very	similar	to	logistic	regression
• Not	exactly	computing	gradients

Perceptron	Algorithm
• Algorithm	is	Very	similar	to	logistic	regression
• Not	exactly	computing	gradients

Initalize weight	vector	w	=	0
Loop	for	K iterations

Loop	For	all	training	examples	x_i
if	sign(w	*	x_i)	!=	y_i

w	+=	(y_i - sign(w	*	x_i))	*	x_i

Differences	between	LR	and	
Perceptron

• Online	learning	vs.	Batch

• Perceptron	doesn’t	always	make	updates

MultiClass Classification

• Q:	what	if	we	have	more	than	2	categories?
– Sentiment:	Positive,	Negative,	Neutral
– Document	topics:	Sports,	Politics,	Business,	
Entertainment,	…

• Could	train	a	seperate	logistic	regression	
model	for	each	category...

• Pretty	clear	what	to	do	with	Naive	Bayes.

Log-Linear	Models

P (y|x) = 1

Z(w)
e

w·f(d,y)

P (y|x) / e

w·f(d,y)

MultiClass Logistic	Regression

P (y|x) = 1

Z(w)
e

w·f(d,y)

P (y|x) / e

w·f(d,y)

P (y|x) = e

w·f(d,y)
P

y02Y e

w·f(d,y0)

MultiClass Logistic	Regression

• Binary	logistic	regression:
–We	have	one	feature	vector	that	matches	the	size	
of	the	vocabulary

• Multiclass	in	practice:
– one	weight	vector	for	each	category

w
pos

wneg wneut

Can	represent	this	in	practice	with	
one	giant	weight	vector	and	

repeated	features	for	each	category.

Q:	How	to	compute	posterior	class	
probabilities	for	multiclass?

P (y = j|x
i

) =
e

wj ·xi

P
k

e

wk·xi

Maximum	Likelihood	Estimation

wMLE = argmaxw logP (y1, . . . , yn|x1, . . . , xn;w)

= argmaxw

X

i

logP (yi|xi;w)

= argmax

w

X

i

log

ew·f(xi,yi)

P
y

02Y

ew·f(xi,yi)

Multiclass	LR	Gradient

@L
@wj

=
DX

i=1

fj(yi, di)�
DX

i=1

X

y2Y

fj(y, di)P (y|di)

MAP-based	learning
(perceptron)

@L
@wj

=

DX

i=1

fj(yi, di)�
DX

i=1

fj(argmax

y2Y
P (y|di), di)

Online	Learning	(perceptron)

• Rather	than	making	a	full	pass	through	the	
data,	compute	gradient	and	update	
parameters	after	each	training	example.

MultiClass Perceptron	Algorithm

Initalize weight	vector	w	=	0
Loop	for	K iterations

Loop	For	all	training	examples	x_i
y_pred =	argmax_y w_y *	x_i
if	y_pred !=	y_i

w_y_gold +=	x_i
w_y_pred -=	x_i

Q:	what	if	there	are	only	2	categories?

P (y = j|x
i

) =
e

wj ·xi

P
k

e

wk·xi

Q:	what	if	there	are	only	2	categories?

P (y = 1|x) = e

w1·x

e

w0·x+w1·x�w1·x + e

w1·x

Q:	what	if	there	are	only	2	categories?

P (y = 1|x) = e

w1·x

e

w0·x�w1·x
e

w1·x + e

w1·x

Q:	what	if	there	are	only	2	categories?

P (y = 1|x) = e

w1·x

e

w1·x(ew0·x�w1·x + 1)

Q:	what	if	there	are	only	2	categories?

P (y = 1|x) = 1

e

w0·x�w1·x + 1

Q:	what	if	there	are	only	2	categories?

P (y = 1|x) = 1

e

�w

0·x + 1

Regularization

• Combating	over	fitting

• Intuition:	don’t	let	the	weights	get	very	large

wMLE = argmaxw logP (y1, . . . , yd|x1, . . . , xd;w)

argmaxw logP (y1, . . . , yd|x1, . . . , xd;w)� �

VX

i=1

w

2
i

Regularization	in	the	Perceptron	
Algorithm

• Can’t	directly	include	regularization	in	
gradient

• #	of	iterations

• Parameter	averaging

