
Maximum	Entropy	Markov	
Models

Alan	Ritter
CSE	5525

Many	slides	from	Michael	Collins

The Language Modeling Problem

I
w

i

is the i’th word in a document

I Estimate a distribution p(w

i

|w1, w2, . . . wi�1) given previous
“history” w1, . . . , wi�1.

I E.g., w1, . . . , wi�1 =

Third, the notion “grammatical in English” cannot be
identified in any way with the notion “high order of
statistical approximation to English”. It is fair to assume
that neither sentence (1) nor (2) (nor indeed any part of
these sentences) has ever occurred in an English
discourse. Hence, in any statistical

Trigram Models

I Estimate a distribution p(w

i

|w1, w2, . . . wi�1) given previous
“history” w1, . . . , wi�1 =

Third, the notion “grammatical in English” cannot be identified in any way

with the notion “high order of statistical approximation to English”. It is fair

to assume that neither sentence (1) nor (2) (nor indeed any part of these

sentences) has ever occurred in an English discourse. Hence, in any statistical

I
Trigram estimates:

q(model|w1, . . . wi�1) = �1qML

(model|w
i�2 = any, w

i�1 = statistical) +

�2qML

(model|w
i�1 = statistical) +

�3qML

(model)

where �

i

� 0,
P

i

�

i

= 1, q
ML

(y|x) = Count(x,y)
Count(x)

Trigram Models

q(model|w1, . . . wi�1) = �1qML

(model|w
i�2 = any, w

i�1 = statistical) +

�2qML

(model|w
i�1 = statistical) +

�3qML

(model)

I Makes use of only bigram, trigram, unigram estimates

I Many other “features” of w1, . . . , wi�1 may be useful, e.g.,:

q

ML

(model | w

i�2 = any)

q

ML

(model | w

i�1 is an adjective)

q

ML

(model | w

i�1 ends in “ical”)

q

ML

(model | author = Chomsky)

q

ML

(model | “model” does not occur somewhere in w1, . . . wi�1)

q

ML

(model | “grammatical” occurs somewhere in w1, . . . wi�1)

A Naive Approach

q(model|w1, . . . wi�1) =

�1qML

(model|w
i�2 = any, w

i�1 = statistical) +

�2qML

(model|w
i�1 = statistical) +

�3qML

(model) +

�4qML

(model|w
i�2 = any) +

�5qML

(model|w
i�1 is an adjective) +

�6qML

(model|w
i�1 ends in “ical”) +

�7qML

(model|author = Chomsky) +

�8qML

(model|“model” does not occur somewhere in w1, . . . wi�1) +

�9qML

(model|“grammatical” occurs somewhere in w1, . . . wi�1)

This quickly becomes very unwieldy...

A Second Example: Part-of-Speech Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
. . .

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• There are many possible tags in the position ??
{NN, NNS, Vt, Vi, IN, DT, . . . }

• The task: model the distribution

p(t

i

|t1, . . . , ti�1, w1 . . . wn

)

where t

i

is the i’th tag in the sequence, w
i

is the i’th word

A Second Example: Part-of-Speech Tagging
Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• The task: model the distribution

p(t

i

|t1, . . . , ti�1, w1 . . . wn

)

where t

i

is the i’th tag in the sequence, w
i

is the i’th word

• Again: many “features” of t1, . . . , ti�1, w1 . . . wn

may be relevant

qML(NN | wi = base)

qML(NN | ti�1 is JJ)

qML(NN | wi ends in “e”)

qML(NN | wi ends in “se”)

qML(NN | wi�1 is “important”)

qML(NN | wi+1 is “from”)

Overview

I Log-linear models

I Parameter estimation in log-linear models

I Smoothing/regularization in log-linear models

The General Problem

I We have some input domain X

I Have a finite label set Y

I Aim is to provide a conditional probability p(y | x)
for any x, y where x 2 X , y 2 Y

Language Modeling

I
x is a “history” w1, w2, . . . wi�1, e.g.,

Third, the notion “grammatical in English” cannot be identified in any

way with the notion “high order of statistical approximation to English”.

It is fair to assume that neither sentence (1) nor (2) (nor indeed any

part of these sentences) has ever occurred in an English discourse.

Hence, in any statistical

I
y is an “outcome” w

i

Feature Vector Representations

I Aim is to provide a conditional probability p(y | x) for
“decision” y given “history” x

I A feature is a function f

k

(x, y) 2 R
(Often binary features or indicator functions
f

k

(x, y) 2 {0, 1}).

I Say we have m features f
k

for k = 1 . . .m

) A feature vector f(x, y) 2 Rm for any x, y

Language Modeling

I
x is a “history” w1, w2, . . . wi�1, e.g.,
Third, the notion “grammatical in English” cannot be identified in any

way with the notion “high order of statistical approximation to English”.

It is fair to assume that neither sentence (1) nor (2) (nor indeed any

part of these sentences) has ever occurred in an English discourse.

Hence, in any statistical

I
y is an “outcome” w

i

I Example features:

f1(x, y) =

⇢
1 if y = model

0 otherwise

f2(x, y) =

⇢
1 if y = model and wi�1 = statistical

0 otherwise

f3(x, y) =

⇢
1 if y = model, wi�2 = any, wi�1 = statistical

0 otherwise

f4(x, y) =

⇢
1 if y = model, w

i�2 = any

0 otherwise

f5(x, y) =

⇢
1 if y = model, w

i�1 is an adjective
0 otherwise

f6(x, y) =

⇢
1 if y = model, w

i�1 ends in “ical”
0 otherwise

f7(x, y) =

⇢
1 if y = model, author = Chomsky
0 otherwise

f8(x, y) =

⇢
1 if y = model, “model” is not in w1, . . . wi�1

0 otherwise

f9(x, y) =

⇢
1 if y = model, “grammatical” is in w1, . . . wi�1

0 otherwise

Defining Features in Practice

I We had the following “trigram” feature:

f3(x, y) =

⇢
1 if y = model, w

i�2 = any, w
i�1 = statistical

0 otherwise

I In practice, we would probably introduce one trigram feature
for every trigram seen in the training data: i.e., for all
trigrams (u, v, w) seen in training data, create a feature

f

N(u,v,w)(x, y) =

⇢
1 if y = w, w

i�2 = u, w
i�1 = v

0 otherwise

where N(u, v, w) is a function that maps each (u, v, w)

trigram to a di↵erent integer

The POS-Tagging Example

I Each x is a “history” of the form ht1, t2, . . . , ti�1, w1 . . . wn

, ii
I Each y is a POS tag, such as NN, NNS, Vt, Vi, IN, DT, . . .

I We have m features f
k

(x, y) for k = 1 . . .m

For example:

f1(x, y) =

⇢
1 if current word w

i

is base and y = Vt

0 otherwise

f2(x, y) =

⇢
1 if current word w

i

ends in ing and y = VBG

0 otherwise
. . .

The Full Set of Features in Ratnaparkhi, 1996

I Word/tag features for all word/tag pairs, e.g.,

f100(x, y) =

⇢
1 if current word w

i

is base and y = Vt

0 otherwise

I Spelling features for all prefixes/su�xes of length 4, e.g.,

f101(x, y) =

⇢
1 if current word w

i

ends in ing and y = VBG

0 otherwise

f102(h, t) =

⇢
1 if current word w

i

starts with pre and y = NN

0 otherwise

The Full Set of Features in Ratnaparkhi, 1996

I Contextual Features, e.g.,

f103(x, y) =

⇢
1 if ht

i�2, ti�1, yi = hDT, JJ, Vti
0 otherwise

f104(x, y) =

⇢
1 if ht

i�1, yi = hJJ, Vti
0 otherwise

f105(x, y) =

⇢
1 if hyi = hVti
0 otherwise

f106(x, y) =

⇢
1 if previous word w

i�1 = the and y = Vt
0 otherwise

f107(x, y) =

⇢
1 if next word w

i+1 = the and y = Vt
0 otherwise

The Final Result

I We can come up with practically any questions (features)
regarding history/tag pairs.

I For a given history x 2 X , each label in Y is mapped to a
di↵erent feature vector

f(hJJ, DT, h Hispaniola, . . . i, 6i,Vt) = 1001011001001100110

f(hJJ, DT, h Hispaniola, . . . i, 6i, JJ) = 0110010101011110010

f(hJJ, DT, h Hispaniola, . . . i, 6i,NN) = 0001111101001100100

f(hJJ, DT, h Hispaniola, . . . i, 6i, IN) = 0001011011000000010

. . .

Parameter Vectors

I Given features f
k

(x, y) for k = 1 . . .m,
also define a parameter vector v 2 Rm

I Each (x, y) pair is then mapped to a “score”

v · f(x, y) =
X

k

v

k

f

k

(x, y)

Language Modeling

I
x is a “history” w1, w2, . . . wi�1, e.g.,
Third, the notion “grammatical in English” cannot be identified in any

way with the notion “high order of statistical approximation to English”.

It is fair to assume that neither sentence (1) nor (2) (nor indeed any

part of these sentences) has ever occurred in an English discourse.

Hence, in any statistical

I Each possible y gets a di↵erent score:

v · f(x,model) = 5.6 v · f(x, the) = �3.2

v · f(x, is) = 1.5 v · f(x, of) = 1.3

v · f(x,models) = 4.5 . . .

Log-Linear Models
I We have some input domain X , and a finite label set Y. Aim is

to provide a conditional probability p(y | x) for any x 2 X and
y 2 Y.

I A feature is a function f : X ⇥ Y ! R
(Often binary features or indicator functions
f

k

: X ⇥ Y ! {0, 1}).
I Say we have m features f

k

for k = 1 . . .m

) A feature vector f(x, y) 2 Rm for any x 2 X and y 2 Y .

I We also have a parameter vector v 2 Rm

I We define

p(y | x; v) = e

v·f(x,y)
P

y

02Y e

v·f(x,y0)

Why the name?

log p(y | x; v) = v · f(x, y)| {z }
Linear term

� log

X

y

02Y

e

v·f(x,y0)

| {z }
Normalization term

Overview

I Log-linear models

I Parameter estimation in log-linear models

I Smoothing/regularization in log-linear models

Maximum-Likelihood Estimation

I Maximum-likelihood estimates given training sample
(x

(i)
, y

(i)
) for i = 1 . . . n, each (x

(i)
, y

(i)
) 2 X ⇥ Y :

v

ML

= argmax

v2Rm
L(v)

where

L(v) =

nX

i=1

log p(y

(i) | x(i)
; v) =

nX

i=1

v · f(x(i)
, y

(i)
)�

nX

i=1

log

X

y

02Y

e

v·f(x(i)
,y

0)

Calculating the Maximum-Likelihood Estimates
I Need to maximize:

L(v) =

nX

i=1

v · f(x(i), y(i))�
nX

i=1

log

X

y

02Y
e

v·f(x(i)
,y

0)

I Calculating gradients:

dL(v)

dv

k

=

nX

i=1

f

k

(x

(i)
, y

(i)
)�

nX

i=1

P
y

02Y f

k

(x

(i)
, y

0
)e

v·f(x(i)
,y

0)

P
z

02Y e

v·f(x(i)
,z

0)

=

nX

i=1

f

k

(x

(i)
, y

(i)
)�

nX

i=1

X

y

02Y

f

k

(x

(i)
, y

0
)

e

v·f(x(i)
,y

0)

P
z

02Y e

v·f(x(i)
,z

0)

=

nX

i=1

f

k

(x

(i)
, y

(i)
)

| {z }
Empirical counts

�
nX

i=1

X

y

02Y

f

k

(x

(i)
, y

0
)p(y

0 | x(i)
; v)

| {z }
Expected counts

Gradient Ascent Methods

I Need to maximize L(v) where

dL(v)

dv

=

nX

i=1

f(x

(i)
, y

(i)
)�

nX

i=1

X

y

02Y

f(x

(i)
, y

0
)p(y

0 | x(i)
; v)

Initialization: v = 0

Iterate until convergence:

I Calculate � =

dL(v)
dv

I Calculate �⇤ = argmax

�

L(v + ��) (Line
Search)

I Set v v + �⇤�

Conjugate Gradient Methods

I (Vanilla) gradient ascent can be very slow

I Conjugate gradient methods require calculation of gradient at
each iteration, but do a line search in a direction which is a

function of the current gradient, and the previous step

taken.

I Conjugate gradient packages are widely available
In general: they require a function

calc gradient(v) !
✓
L(v),

dL(v)

dv

◆

and that’s about it!

Overview

I Log-linear models

I Parameter estimation in log-linear models

I Smoothing/regularization in log-linear models

Smoothing in Log-Linear Models

I Say we have a feature:

f100(x, y) =

⇢
1 if current word w

i

is base and y = Vt

0 otherwise

I In training data, base is seen 3 times, with Vt every time

I Maximum likelihood solution satisfies
X

i

f100(x
(i)
, y

(i)
) =

X

i

X

y

p(y | x(i)
; v)f100(x

(i)
, y)

) p(Vt | x(i)
; v) = 1 for any history x

(i) where w

i

= base

) v100 ! 1 at maximum-likelihood solution (most likely)
) p(Vt | x; v) = 1 for any test data history x where w = base

Regularization
I Modified loss function

L(v) =

nX

i=1

v · f(x(i)
, y

(i)
)�

nX

i=1

log

X

y

02Y

e

v·f(x(i)
,y

0)��

2

mX

k=1

v

2
k

I Calculating gradients:

dL(v)

dv

k

=

nX

i=1

f

k

(x

(i)
, y

(i)
)

| {z }
Empirical counts

�
nX

i=1

X

y

02Y

f

k

(x

(i)
, y

0
)p(y

0 | x(i)
; v)

| {z }
Expected counts

��v

k

I Can run conjugate gradient methods as before

I Adds a penalty for large weights

Experiments with Regularization

I
[Chen and Rosenfeld, 1998]: apply log-linear models to
language modeling: Estimate q(w

i

| w
i�2, wi�1)

I Unigram, bigram, trigram features, e.g.,

f1(wi�2, wi�1, wi

) =

⇢
1 if trigram is (the,dog,laughs)
0 otherwise

f2(wi�2, wi�1, wi

) =

⇢
1 if bigram is (dog,laughs)
0 otherwise

f3(wi�2, wi�1, wi

) =

⇢
1 if unigram is (laughs)
0 otherwise

q(w

i

| w
i�2, wi�1) =

e

f(wi�2,wi�1,wi)·v
P

w

e

f(wi�2,wi�1,w)·v

Experiments with Gaussian Priors

I In regular (unregularized) log-linear models, if all n-gram
features are included, then it’s equivalent to
maximum-likelihood estimates!

q(w

i

| w
i�2, wi�1) =

Count(w

i�2, wi�1, wi

)

Count(w

i�2, wi�1)

I
[Chen and Rosenfeld, 1998]: with regularization, get very
good results. Performs as well as or better than standardly
used “discounting methods” (see lecture 2).

I Downside: computing
P

w

e

f(wi�2,wi�1,w)·v is SLOW.

Log	Linear	Models	for	Tagging

Part-of-Speech Tagging
INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V
forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N
Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun
V = Verb
P = Preposition
Adv = Adverb
Adj = Adjective
. . .

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on
Wall Street, as their CEO Alan Mulally announced first quarter
results.

OUTPUT: Profits soared at [Company Boeing Co.], easily
topping forecasts on [Location Wall Street], as their CEO [Person
Alan Mulally] announced first quarter results.

Named Entity Extraction as Tagging

INPUT:
Profits soared at Boeing Co., easily topping forecasts on Wall Street,
as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA
topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA
their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA
quarter/NA results/NA ./NA

NA = No entity
SC = Start Company
CC = Continue Company
SL = Start Location
CL = Continue Location
. . .

Our Goal
Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD
join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN
Nov./NNP 29/CD ./.
2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP
N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC
chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP
,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN
this/DT British/JJ industrial/JJ conglomerate/NN ./.
. . .

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN
of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG
Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG
them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

I From the training set, induce a function/algorithm that maps new
sentences to their tag sequences.

Overview

I Recap: The Tagging Problem

I Log-linear taggers

Log-Linear Models for Tagging
I We have an input sentence w[1:n] = w1, w2, . . . , wn

(w
i

is the i’th word in the sentence)

I We have a tag sequence t[1:n] = t1, t2, . . . , tn

(t
i

is the i’th tag in the sentence)

I We’ll use an log-linear model to define

p(t1, t2, . . . , tn|w1, w2, . . . , wn

)

for any sentence w[1:n] and tag sequence t[1:n] of the same length.
(Note: contrast with HMM that defines p(t1 . . . tn, w1 . . . wn

))

I Then the most likely tag sequence for w[1:n] is

t

⇤
[1:n] = argmax

t[1:n]
p(t[1:n]|w[1:n])

Log-Linear Models for Tagging
I We have an input sentence w[1:n] = w1, w2, . . . , wn

(w
i

is the i’th word in the sentence)

I We have a tag sequence t[1:n] = t1, t2, . . . , tn

(t
i

is the i’th tag in the sentence)

I We’ll use an log-linear model to define

p(t1, t2, . . . , tn|w1, w2, . . . , wn

)

for any sentence w[1:n] and tag sequence t[1:n] of the same length.
(Note: contrast with HMM that defines p(t1 . . . tn, w1 . . . wn

))

I Then the most likely tag sequence for w[1:n] is

t

⇤
[1:n] = argmax

t[1:n]
p(t[1:n]|w[1:n])

Log-Linear Models for Tagging
I We have an input sentence w[1:n] = w1, w2, . . . , wn

(w
i

is the i’th word in the sentence)

I We have a tag sequence t[1:n] = t1, t2, . . . , tn

(t
i

is the i’th tag in the sentence)

I We’ll use an log-linear model to define

p(t1, t2, . . . , tn|w1, w2, . . . , wn

)

for any sentence w[1:n] and tag sequence t[1:n] of the same length.
(Note: contrast with HMM that defines p(t1 . . . tn, w1 . . . wn

))

I Then the most likely tag sequence for w[1:n] is

t

⇤
[1:n] = argmax

t[1:n]
p(t[1:n]|w[1:n])

Log-Linear Models for Tagging
I We have an input sentence w[1:n] = w1, w2, . . . , wn

(w
i

is the i’th word in the sentence)

I We have a tag sequence t[1:n] = t1, t2, . . . , tn

(t
i

is the i’th tag in the sentence)

I We’ll use an log-linear model to define

p(t1, t2, . . . , tn|w1, w2, . . . , wn

)

for any sentence w[1:n] and tag sequence t[1:n] of the same length.
(Note: contrast with HMM that defines p(t1 . . . tn, w1 . . . wn

))

I Then the most likely tag sequence for w[1:n] is

t

⇤
[1:n] = argmax

t[1:n]
p(t[1:n]|w[1:n])

How to model p(t
[1:n]|w[1:n])?

A Trigram Log-Linear Tagger:

p(t[1:n]|w[1:n]) =
Q

n

j=1 p(t
j

| w1 . . . wn

, t1 . . . tj�1) Chain rule

=

Q
n

j=1 p(tj | w1, . . . , wn

, t
j�2, tj�1)

Independence assumptions

I We take t0 = t�1 = *

I Independence assumption: each tag only depends on previous
two tags

p(t
j

|w1, . . . , wn

, t1, . . . , tj�1) = p(t
j

|w1, . . . , wn

, t
j�2, tj�1)

How to model p(t
[1:n]|w[1:n])?

A Trigram Log-Linear Tagger:

p(t[1:n]|w[1:n]) =
Q

n

j=1 p(t
j

| w1 . . . wn

, t1 . . . tj�1) Chain rule

=

Q
n

j=1 p(tj | w1, . . . , wn

, t
j�2, tj�1)

Independence assumptions

I We take t0 = t�1 = *

I Independence assumption: each tag only depends on previous
two tags

p(t
j

|w1, . . . , wn

, t1, . . . , tj�1) = p(t
j

|w1, . . . , wn

, t
j�2, tj�1)

How to model p(t
[1:n]|w[1:n])?

A Trigram Log-Linear Tagger:

p(t[1:n]|w[1:n]) =
Q

n

j=1 p(t
j

| w1 . . . wn

, t1 . . . tj�1) Chain rule

=

Q
n

j=1 p(tj | w1, . . . , wn

, t
j�2, tj�1)

Independence assumptions

I We take t0 = t�1 = *

I Independence assumption: each tag only depends on previous
two tags

p(t
j

|w1, . . . , wn

, t1, . . . , tj�1) = p(t
j

|w1, . . . , wn

, t
j�2, tj�1)

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

• There are many possible tags in the position ??
Y = {NN, NNS, Vt, Vi, IN, DT, . . . }

Representation: Histories

I A history is a 4-tuple ht�2, t�1, w[1:n], ii
I t�2, t�1 are the previous two tags.

I w[1:n] are the n words in the input sentence.

I i is the index of the word being tagged

I X is the set of all possible histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the
Western Hemisphere .

I t�2, t�1 = DT, JJ

I w[1:n] = hHispaniola, quickly, became, . . . , Hemisphere, .i
I i = 6

Recap: Feature Vector Representations in Log-Linear
Models

I We have some input domain X , and a finite label set Y . Aim
is to provide a conditional probability p(y | x) for any x 2 X
and y 2 Y .

I A feature is a function f : X ⇥ Y ! R
(Often binary features or indicator functions
f : X ⇥ Y ! {0, 1}).

I Say we have m features f
k

for k = 1 . . .m
) A feature vector f(x, y) 2 Rm for any x 2 X and y 2 Y .

An Example (continued)

I X is the set of all possible histories of form ht�2, t�1, w[1:n], ii
I Y = {NN, NNS, Vt, Vi, IN, DT, . . . }
I We have m features f

k

: X ⇥ Y ! R for k = 1 . . .m

For example:

f1(h, t) =

⇢
1 if current word w

i

is base and t = Vt
0 otherwise

f2(h, t) =

⇢
1 if current word w

i

ends in ing and t = VBG
0 otherwise

. . .

f1(hJJ, DT, h Hispaniola, . . . i, 6i,Vt) = 1

f2(hJJ, DT, h Hispaniola, . . . i, 6i,Vt) = 0

. . .

The Full Set of Features in [(Ratnaparkhi, 96)]

I Word/tag features for all word/tag pairs, e.g.,

f100(h, t) =

⇢
1 if current word w

i

is base and t = Vt
0 otherwise

I Spelling features for all prefixes/su�xes of length 4, e.g.,

f101(h, t) =

⇢
1 if current word w

i

ends in ing and t = VBG
0 otherwise

f102(h, t) =

⇢
1 if current word w

i

starts with pre and t = NN
0 otherwise

The Full Set of Features in [(Ratnaparkhi, 96)]

I Contextual Features, e.g.,

f103(h, t) =

⇢
1 if ht�2, t�1, ti = hDT, JJ, Vti
0 otherwise

f104(h, t) =

⇢
1 if ht�1, ti = hJJ, Vti
0 otherwise

f105(h, t) =

⇢
1 if hti = hVti
0 otherwise

f106(h, t) =

⇢
1 if previous word w

i�1 = the and t = Vt
0 otherwise

f107(h, t) =

⇢
1 if next word w

i+1 = the and t = Vt
0 otherwise

Log-Linear Models

I We have some input domain X , and a finite label set Y . Aim
is to provide a conditional probability p(y | x) for any x 2 X
and y 2 Y .

I A feature is a function f : X ⇥ Y ! R
(Often binary features or indicator functions
f : X ⇥ Y ! {0, 1}).

I Say we have m features f
k

for k = 1 . . .m
) A feature vector f(x, y) 2 Rm for any x 2 X and y 2 Y .

I We also have a parameter vector v 2 Rm

I We define
p(y | x; v) = ev·f(x,y)P

y

02Y ev·f(x,y0)

Training the Log-Linear Model

I To train a log-linear model, we need a training set (x
i

, y
i

) for
i = 1 . . . n. Then search for

v⇤ = argmax

v

0

BBBB@

X

i

log p(y
i

|x
i

; v)

| {z }
Log�Likelihood

� �

2

X

k

v2
k

| {z }
Regularizer

1

CCCCA

(see last lecture on log-linear models)

I Training set is simply all history/tag pairs seen in the training
data

The Viterbi Algorithm

Problem: for an input w1 . . . wn

, find

arg max

t1...tn

p(t1 . . . tn | w1 . . . wn

)

We assume that p takes the form

p(t1 . . . tn | w1 . . . wn

) =

nY

i=1

q(t
i

|t
i�2, ti�1, w[1:n], i)

(In our case q(t
i

|t
i�2, ti�1, w[1:n], i) is the estimate from a

log-linear model.)

The Viterbi Algorithm

I Define n to be the length of the sentence
I Define

r(t1 . . . tk) =
kY

i=1

q(t
i

|t
i�2, ti�1, w[1:n], i)

I Define a dynamic programming table

⇡(k, u, v) = maximum probability of a tag sequence ending

in tags u, v at position k

that is,

⇡(k, u, v) = max

ht1,...,tk�2i
r(t1 . . . tk�2, u, v)

A Recursive Definition

Base case:
⇡(0, *, *) = 1

Recursive definition:

For any k 2 {1 . . . n}, for any u 2 S
k�1 and v 2 S

k

:

⇡(k, u, v) = max

t2Sk�2

�
⇡(k � 1, t, u)⇥ q(v|t, u, w[1:n], k)

�

where S
k

is the set of possible tags at position k

The Viterbi Algorithm with Backpointers

Input: a sentence w1 . . . wn, log-linear model that provides q(v|t, u, w[1:n], i) for any
tag-trigram t, u, v, for any i 2 {1 . . . n}
Initialization: Set ⇡(0, *, *) = 1.
Algorithm:

I For k = 1 . . . n,

I For u 2 S
k�1, v 2 S

k

,

⇡(k, u, v) = max

t2Sk�2

�
⇡(k � 1, t, u)⇥ q(v|t, u, w[1:n], k)

�

bp(k, u, v) = arg max

t2Sk�2

�
⇡(k � 1, t, u)⇥ q(v|t, u, w[1:n], k)

�

I Set (tn�1, tn) = argmax(u,v) ⇡(n, u, v)

I For k = (n� 2) . . . 1, tk = bp(k + 2, tk+1, tk+2)

I
Return the tag sequence t1 . . . tn

FAQ Segmentation: McCallum et. al

I McCallum et. al compared HMM and log-linear taggers on a
FAQ Segmentation task

I Main point: in an HMM, modeling

p(word|tag)

is di�cult in this domain

FAQ Segmentation: McCallum et. al

<head>X-NNTP-POSTER: NewsHound v1.33

<head>

<head>Archive name: acorn/faq/part2

<head>Frequency: monthly

<head>

<question>2.6) What configuration of serial cable should I use

<answer>

<answer> Here follows a diagram of the necessary connections

<answer>programs to work properly. They are as far as I know t

<answer>agreed upon by commercial comms software developers fo

<answer>

<answer> Pins 1, 4, and 8 must be connected together inside

<answer>is to avoid the well known serial port chip bugs. The

FAQ Segmentation: Line Features

begins-with-number

begins-with-ordinal

begins-with-punctuation

begins-with-question-word

begins-with-subject

blank

contains-alphanum

contains-bracketed-number

contains-http

contains-non-space

contains-number

contains-pipe

contains-question-mark

ends-with-question-mark

first-alpha-is-capitalized

indented-1-to-4

indented-5-to-10

more-than-one-third-space

only-punctuation

prev-is-blank

prev-begins-with-ordinal

shorter-than-30

FAQ Segmentation: The Log-Linear Tagger

<head>X-NNTP-POSTER: NewsHound v1.33

<head>

<head>Archive name: acorn/faq/part2

<head>Frequency: monthly

<head>

<question>2.6) What configuration of serial cable should I use

Here follows a diagram of the necessary connections

) “tag=question;prev=head;begins-with-number”
“tag=question;prev=head;contains-alphanum”
“tag=question;prev=head;contains-nonspace”
“tag=question;prev=head;contains-number”
“tag=question;prev=head;prev-is-blank”

FAQ Segmentation: An HMM Tagger

<question>2.6) What configuration of serial cable should I use

I First solution for p(word | tag):

p(“2.6) What configuration of serial cable should I use” | question) =
e(2.6) | question)⇥
e(What | question)⇥
e(configuration | question)⇥
e(of | question)⇥
e(serial | question)⇥
. . .

I i.e. have a language model for each tag

FAQ Segmentation: McCallum et. al

I Second solution: first map each sentence to string of features:

<question>2.6) What configuration of serial cable should I use

)

<question>begins-with-number contains-alphanum contains-nonspace

contains-number prev-is-blank

I Use a language model again:

p(“2.6) What configuration of serial cable should I use” | question) =
e(begins-with-number | question)⇥
e(contains-alphanum | question)⇥
e(contains-nonspace | question)⇥
e(contains-number | question)⇥
e(prev-is-blank | question)⇥

FAQ Segmentation: Results

Method Precision Recall
ME-Stateless 0.038 0.362
TokenHMM 0.276 0.140
FeatureHMM 0.413 0.529
MEMM 0.867 0.681

I Precision and recall results are for recovering segments

I ME-stateless is a log-linear model that treats every sentence
seperately (no dependence between adjacent tags)

I TokenHMM is an HMM with first solution we’ve just seen
I FeatureHMM is an HMM with second solution we’ve just seen
I MEMM is a log-linear trigram tagger (MEMM stands for

“Maximum-Entropy Markov Model”)

FAQ Segmentation: Results

Method Precision Recall
ME-Stateless 0.038 0.362
TokenHMM 0.276 0.140
FeatureHMM 0.413 0.529
MEMM 0.867 0.681

I Precision and recall results are for recovering segments
I ME-stateless is a log-linear model that treats every sentence

seperately (no dependence between adjacent tags)

I TokenHMM is an HMM with first solution we’ve just seen
I FeatureHMM is an HMM with second solution we’ve just seen
I MEMM is a log-linear trigram tagger (MEMM stands for

“Maximum-Entropy Markov Model”)

FAQ Segmentation: Results

Method Precision Recall
ME-Stateless 0.038 0.362
TokenHMM 0.276 0.140
FeatureHMM 0.413 0.529
MEMM 0.867 0.681

I Precision and recall results are for recovering segments
I ME-stateless is a log-linear model that treats every sentence

seperately (no dependence between adjacent tags)
I TokenHMM is an HMM with first solution we’ve just seen

I FeatureHMM is an HMM with second solution we’ve just seen
I MEMM is a log-linear trigram tagger (MEMM stands for

“Maximum-Entropy Markov Model”)

FAQ Segmentation: Results

Method Precision Recall
ME-Stateless 0.038 0.362
TokenHMM 0.276 0.140
FeatureHMM 0.413 0.529
MEMM 0.867 0.681

I Precision and recall results are for recovering segments
I ME-stateless is a log-linear model that treats every sentence

seperately (no dependence between adjacent tags)
I TokenHMM is an HMM with first solution we’ve just seen
I FeatureHMM is an HMM with second solution we’ve just seen

I MEMM is a log-linear trigram tagger (MEMM stands for
“Maximum-Entropy Markov Model”)

FAQ Segmentation: Results

Method Precision Recall
ME-Stateless 0.038 0.362
TokenHMM 0.276 0.140
FeatureHMM 0.413 0.529
MEMM 0.867 0.681

I Precision and recall results are for recovering segments
I ME-stateless is a log-linear model that treats every sentence

seperately (no dependence between adjacent tags)
I TokenHMM is an HMM with first solution we’ve just seen
I FeatureHMM is an HMM with second solution we’ve just seen
I MEMM is a log-linear trigram tagger (MEMM stands for

“Maximum-Entropy Markov Model”)

Summary

I Key ideas in log-linear taggers:
I Decompose

p(t1 . . . tn|w1 . . . wn

) =

nY

i=1

p(t

i

|t
i�2, ti�1, w1 . . . wn

)

I Estimate
p(t

i

|t
i�2, ti�1, w1 . . . wn

)

using a log-linear model
I For a test sentence w1 . . . wn

, use the Viterbi algorithm to
find

arg max

t1...tn

nY

i=1

p(t

i

|t
i�2, ti�1, w1 . . . wn

)

!

I Key advantage over HMM taggers: flexibility in the features
they can use

