Maximum Entropy Markov Models

Alan Ritter
CSE 5525

Many slides from Michael Collins

The Language Modeling Problem

- w_{i} is the i 'th word in a document
- Estimate a distribution $p\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right)$ given previous "history" w_{1}, \ldots, w_{i-1}.
- E.g., $w_{1}, \ldots, w_{i-1}=$

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

Trigram Models

- Estimate a distribution $p\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right)$ given previous "history" $w_{1}, \ldots, w_{i-1}=$

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical

- Trigram estimates:

$$
\begin{aligned}
q\left(\operatorname{model} \mid w_{1}, \ldots w_{i-1}\right)= & \lambda_{1} q_{M L}\left(\operatorname{model} \mid w_{i-2}=\text { any }, w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{2} q_{M L}\left(\text { model } \mid w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{3} q_{M L}(\text { model })
\end{aligned}
$$

where $\lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1, q_{M L}(y \mid x)=\frac{\operatorname{Count}(x, y)}{\operatorname{Count}(x)}$

Trigram Models

$$
\begin{aligned}
q\left(\operatorname{model} \mid w_{1}, \ldots w_{i-1}\right)= & \lambda_{1} q_{M L}\left(\text { model } \mid w_{i-2}=\text { any }, w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{2} q_{M L}\left(\text { model } \mid w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{3} q_{M L}(\text { model })
\end{aligned}
$$

- Makes use of only bigram, trigram, unigram estimates
- Many other "features" of w_{1}, \ldots, w_{i-1} may be useful, e.g.,:
$q_{M L}\left(\right.$ model $\quad \mid \quad w_{i-2}=$ any $)$
$q_{M L}$ (model | w_{i-1} is an adjective)
$q_{M L}\left(\right.$ model $\mid w_{i-1}$ ends in "ical")
$q_{M L}($ model $\quad \mid \quad$ author $=$ Chomsky $)$
$q_{M L}$ (model | "model" does not occur somewhere in $w_{1}, \ldots w_{i-1}$)
$q_{M L}\left(\right.$ model | "grammatical" occurs somewhere in $\left.w_{1}, \ldots w_{i-1}\right)$

A Naive Approach

$$
\begin{aligned}
& q\left(\text { model } \mid w_{1}, \ldots w_{i-1}\right)= \\
& \lambda_{1} q_{M L}\left(\text { model } \mid w_{i-2}=\text { any }, w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{2} q_{M L}\left(\text { model } \mid w_{i-1}=\text { statistical }\right)+ \\
& \lambda_{3} q_{M L}(\text { model })+ \\
& \lambda_{4} q_{M L}\left(\text { model } \mid w_{i-2}=\text { any }\right)+ \\
& \lambda_{5} q_{M L}\left(\text { model } \mid w_{i-1} \text { is an adjective }\right)+ \\
& \lambda_{6} q_{M L}\left(\text { model } \mid w_{i-1} \text { ends in "ical" }\right)+ \\
& \lambda_{7} q_{M L}(\text { model } \mid \text { author }=\text { Chomsky })+ \\
& \lambda_{8} q_{M L}\left(\text { model } \mid \text { "model" does not occur somewhere in } w_{1}, \ldots w_{i-1}\right)+ \\
& \lambda_{9} q_{M L}\left(\text { model } \mid \text { "grammatical" occurs somewhere in } w_{1}, \ldots w_{i-1}\right)
\end{aligned}
$$

This quickly becomes very unwieldy...

A Second Example: Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/ N Mulally/ N announced/ V first/ADJ quarter/ N results/ N ./.

N	$=$ Noun
V	$=$ Verb
P	$=$ Preposition
Adv	$=$ Adverb
Adj	$=$ Adjective

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- There are many possible tags in the position ?? $\{N N, N N S, ~ V t, ~ V i, ~ I N, ~ D T, \ldots\}$
- The task: model the distribution

$$
p\left(t_{i} \mid t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

where t_{i} is the i 'th tag in the sequence, w_{i} is the i 'th word

A Second Example: Part-of-Speech Tagging

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ
base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- The task: model the distribution

$$
p\left(t_{i} \mid t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

where t_{i} is the i 'th tag in the sequence, w_{i} is the i 'th word

- Again: many "features" of $t_{1}, \ldots, t_{i-1}, w_{1} \ldots w_{n}$ may be relevant

$$
\begin{array}{l|l}
q_{M L}(\mathrm{NN} & \left.w_{i}=\text { base }\right) \\
q_{M L}(\mathrm{NN} & \left.t_{i-1} \text { is JJ }\right) \\
q_{M L}(\mathrm{NN} & \left.w_{i} \text { ends in "e" }\right) \\
q_{M L}(\mathrm{NN} & \left.w_{i} \text { ends in "se" }\right) \\
q_{M L}(\mathrm{NN} & w_{i-1} \text { is "important") } \\
q_{M L}(\mathrm{NN} & w_{i+1} \text { is "from") }
\end{array}
$$

Overview

- Log-linear models
- Parameter estimation in log-linear models
- Smoothing/regularization in log-linear models

The General Problem

- We have some input domain \mathcal{X}
- Have a finite label set \mathcal{Y}
- Aim is to provide a conditional probability $p(y \mid x)$ for any x, y where $x \in \mathcal{X}, y \in \mathcal{Y}$

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English".
It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

- y is an "outcome" w_{i}

Feature Vector Representations

- Aim is to provide a conditional probability $p(y \mid x)$ for "decision" y given "history" x
- A feature is a function $f_{k}(x, y) \in \mathbb{R}$ (Often binary features or indicator functions

$$
\left.f_{k}(x, y) \in\{0,1\}\right) .
$$

- Say we have m features f_{k} for $k=1 \ldots m$
\Rightarrow A feature vector $f(x, y) \in \mathbb{R}^{m}$ for any x, y

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g.,

Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English".
It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse.
Hence, in any statistical

- y is an "outcome" w_{i}
- Example features:

$$
\begin{aligned}
& f_{1}(x, y)= \begin{cases}1 & \text { if } y=\text { model } \\
0 & \text { otherwise }\end{cases} \\
& f_{2}(x, y)= \begin{cases}1 & \text { if } y=\text { model and } w_{i-1}=\text { statistical } \\
0 & \text { otherwise }\end{cases} \\
& f_{3}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-2}=\text { any, } w_{i-1}=\text { statistical } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f_{4}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-2}=\text { any } \\
0 & \text { otherwise }\end{cases} \\
& f_{5}(x, y)= \begin{cases}1 & \text { if } y=\text { model, } w_{i-1} \text { is an adjective } \\
0 & \text { otherwise }\end{cases} \\
& f_{6}(x, y)= \begin{cases}1 & \text { if } y=\text { model, } w_{i-1} \text { ends in "ical" } \\
0 & \text { otherwise }\end{cases} \\
& f_{7}(x, y)= \begin{cases}1 & \text { if } y=\text { model, author }=\text { Chomsky } \\
0 & \text { otherwise }\end{cases} \\
& f_{8}(x, y)
\end{aligned}=\left\{\begin{array}{ll}
1 & \text { if } y=\text { model, "model" is not in } w_{1}, \ldots w_{i-1} \\
0 & \text { otherwise }
\end{array}\right\} \begin{array}{ll}
1 & \text { if } y=\text { model, "grammatical" is in } w_{1}, \ldots w_{i-1} \\
0 & \text { otherwise }
\end{array}
$$

Defining Features in Practice

- We had the following "trigram" feature:

$$
f_{3}(x, y)= \begin{cases}1 & \text { if } y=\text { model }, w_{i-2}=\text { any, } w_{i-1}=\text { statistical } \\ 0 & \text { otherwise }\end{cases}
$$

- In practice, we would probably introduce one trigram feature for every trigram seen in the training data: i.e., for all trigrams (u, v, w) seen in training data, create a feature
$f_{N(u, v, w)}(x, y)= \begin{cases}1 & \text { if } y=w, w_{i-2}=u, w_{i-1}=v \\ 0 & \text { otherwise }\end{cases}$
where $N(u, v, w)$ is a function that maps each (u, v, w) trigram to a different integer

The POS-Tagging Example

- Each x is a "history" of the form $\left\langle t_{1}, t_{2}, \ldots, t_{i-1}, w_{1} \ldots w_{n}, i\right\rangle$
- Each y is a POS tag, such as NN, NNS, $\mathrm{Vt}, \mathrm{Vi}, \mathrm{IN}, \mathrm{DT}, \ldots$
- We have m features $f_{k}(x, y)$ for $k=1 \ldots m$

For example:

$$
\begin{aligned}
& f_{1}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& f_{2}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } y=\mathrm{VBG} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in Ratnaparkhi, 1996

- Word/tag features for all word/tag pairs, e.g.,

$$
f_{100}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } y=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}
$$

- Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

$$
\begin{aligned}
& f_{101}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } y=\text { VBG } \\
0 & \text { otherwise }\end{cases} \\
& f_{102}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { starts with pre and } y=\mathrm{NN} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in Ratnaparkhi, 1996

- Contextual Features, e.g.,

$$
\begin{aligned}
& f_{103}(x, y)= \begin{cases}1 & \text { if }\left\langle t_{i-2}, t_{i-1}, y\right\rangle=\langle\mathrm{DT}, \mathrm{JJ}, \mathrm{~V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{104}(x, y)= \begin{cases}1 & \text { if }\left\langle t_{i-1}, y\right\rangle=\langle\mathrm{JJ}, \mathrm{~V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{105}(x, y)= \begin{cases}1 & \text { if }\langle y\rangle=\langle\mathrm{V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{106}(x, y)= \begin{cases}1 & \text { if previous word } w_{i-1}=\text { the and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& f_{107}(x, y)= \begin{cases}1 & \text { if next word } w_{i+1}=\text { the and } y=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Final Result

- We can come up with practically any questions (features) regarding history/tag pairs.
- For a given history $x \in \mathcal{X}$, each label in \mathcal{Y} is mapped to a different feature vector

```
f(\langleJJ, DT, \langle Hispaniola, ... \rangle, 6\rangle, Vt) = 1001011001001100110
f(\langleJJ, DT, \langle Hispaniola, ...\rangle, 6\rangle, JJ) = 0110010101011110010
f(\langleJJ, DT, < Hispaniola, ... \rangle, 6\rangle, NN) = 0001111101001100100
f(\langleJJ, DT, \langle Hispaniola, ... \rangle, 6\rangle, IN) = 0001011011000000010
```


Parameter Vectors

- Given features $f_{k}(x, y)$ for $k=1 \ldots m$, also define a parameter vector $v \in \mathbb{R}^{m}$
- Each (x, y) pair is then mapped to a "score"

$$
v \cdot f(x, y)=\sum_{k} v_{k} f_{k}(x, y)
$$

Language Modeling

- x is a "history" $w_{1}, w_{2}, \ldots w_{i-1}$, e.g., Third, the notion "grammatical in English" cannot be identified in any way with the notion "high order of statistical approximation to English". It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in an English discourse. Hence, in any statistical
- Each possible y gets a different score:

$$
\begin{array}{cc}
v \cdot f(x, \text { model })=5.6 & v \cdot f(x, \text { the })=-3.2 \\
v \cdot f(x, i s)=1.5 & v \cdot f(x, \text { of })=1.3 \\
v \cdot f(x, \text { models })=4.5 & \ldots
\end{array}
$$

Log-Linear Models

- We have some input domain \mathcal{X}, and a finite label set \mathcal{Y}. Aim is to provide a conditional probability $p(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (Often binary features or indicator functions $\left.f_{k}: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}\right)$.
- Say we have m features f_{k} for $k=1 \ldots m$ \Rightarrow A feature vector $f(x, y) \in \mathbb{R}^{m}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- We also have a parameter vector $v \in \mathbb{R}^{m}$
- We define

$$
p(y \mid x ; v)=\frac{e^{v \cdot f(x, y)}}{\sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}}
$$

Why the name?

$$
\log p(y \mid x ; v)=\underbrace{v \cdot f(x, y)}_{\text {Linear term }}-\underbrace{\log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}}_{\text {Normalization term }}
$$

Overview

- Log-linear models
- Parameter estimation in log-linear models
- Smoothing/regularization in log-linear models

Maximum-Likelihood Estimation

- Maximum-likelihood estimates given training sample $\left(x^{(i)}, y^{(i)}\right)$ for $i=1 \ldots n$, each $\left(x^{(i)}, y^{(i)}\right) \in \mathcal{X} \times \mathcal{Y}$:

$$
v_{M L}=\operatorname{argmax}_{v \in \mathbb{R}^{m} L(v)}
$$

where

$$
L(v)=\sum_{i=1}^{n} \log p\left(y^{(i)} \mid x^{(i)} ; v\right)=\sum_{i=1}^{n} v \cdot f\left(x^{(i)}, y^{(i)}\right)-\sum_{i=1}^{n} \log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x^{(i)}, y^{\prime}\right)}
$$

Calculating the Maximum-Likelihood Estimates

- Need to maximize:

$$
L(v)=\sum_{i=1}^{n} v \cdot f\left(x^{(i)}, y^{(i)}\right)-\sum_{i=1}^{n} \log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x^{(i)}, y^{\prime}\right)}
$$

- Calculating gradients:

$$
\begin{aligned}
\frac{d L(v)}{d v_{k}} & =\sum_{i=1}^{n} f_{k}\left(x^{(i)}, y^{(i)}\right)-\sum_{i=1}^{n} \frac{\sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x^{(i)}, y^{\prime}\right) e^{v \cdot f\left(x^{(i)}, y^{\prime}\right)}}{\sum_{z^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x^{(i)}, z^{\prime}\right)}} \\
& =\sum_{i=1}^{n} f_{k}\left(x^{(i)}, y^{(i)}\right)-\sum_{i=1}^{n} \sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x^{(i)}, y^{\prime}\right) \frac{e^{v \cdot f\left(x^{(i)}, y^{\prime}\right)}}{\sum_{z^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x^{(i)}, z^{\prime}\right)}} \\
& =\underbrace{\sum_{i=1}^{n} f_{k}\left(x^{(i)}, y^{(i)}\right)}_{\text {Empirical counts }}-\underbrace{\sum_{i=1}^{n} \sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x^{(i)}, y^{\prime}\right) p\left(y^{\prime} \mid x^{(i)} ; v\right)}_{\text {Expected counts }}
\end{aligned}
$$

Gradient Ascent Methods

- Need to maximize $L(v)$ where

$$
\frac{d L(v)}{d v}=\sum_{i=1}^{n} f\left(x^{(i)}, y^{(i)}\right)-\sum_{i=1}^{n} \sum_{y^{\prime} \in \mathcal{Y}} f\left(x^{(i)}, y^{\prime}\right) p\left(y^{\prime} \mid x^{(i)} ; v\right)
$$

Initialization: $v=0$
Iterate until convergence:

- Calculate $\Delta=\frac{d L(v)}{d v}$
- Calculate $\beta_{*}=\operatorname{argmax}_{\beta} L(v+\beta \Delta)$ (Line Search)
- Set $v \leftarrow v+\beta_{*} \Delta$

Conjugate Gradient Methods

- (Vanilla) gradient ascent can be very slow
- Conjugate gradient methods require calculation of gradient at each iteration, but do a line search in a direction which is a function of the current gradient, and the previous step taken.
- Conjugate gradient packages are widely available In general: they require a function

$$
\text { calc_gradient }(v) \rightarrow\left(L(v), \frac{d L(v)}{d v}\right)
$$

and that's about it!

Overview

- Log-linear models
- Parameter estimation in log-linear models
- Smoothing/regularization in log-linear models

Smoothing in Log-Linear Models

- Say we have a feature:

$$
f_{100}(x, y)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } y=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}
$$

- In training data, base is seen 3 times, with Vt every time
- Maximum likelihood solution satisfies

$$
\sum_{i} f_{100}\left(x^{(i)}, y^{(i)}\right)=\sum_{i} \sum_{y} p\left(y \mid x^{(i)} ; v\right) f_{100}\left(x^{(i)}, y\right)
$$

$\Rightarrow p\left(\mathrm{Vt} \mid x^{(i)} ; v\right)=1$ for any history $x^{(i)}$ where $w_{i}=$ base
$\Rightarrow v_{100} \rightarrow \infty$ at maximum-likelihood solution (most likely)
$\Rightarrow p(\mathrm{Vt} \mid x ; v)=1$ for any test data history x where $w=$ base

Regularization

- Modified loss function

$$
L(v)=\sum_{i=1}^{n} v \cdot f\left(x^{(i)}, y^{(i)}\right)-\sum_{i=1}^{n} \log \sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x^{(i)}, y^{\prime}\right)}-\frac{\lambda}{2} \sum_{k=1}^{m} v_{k}^{2}
$$

- Calculating gradients:

$$
\frac{d L(v)}{d v_{k}}=\underbrace{\sum_{i=1}^{n} f_{k}\left(x^{(i)}, y^{(i)}\right)}_{\text {Empirical counts }}-\underbrace{\sum_{i=1}^{n} \sum_{y^{\prime} \in \mathcal{Y}} f_{k}\left(x^{(i)}, y^{\prime}\right) p\left(y^{\prime} \mid x^{(i)} ; v\right)}_{\text {Expected counts }}-\lambda v_{k}
$$

- Can run conjugate gradient methods as before
- Adds a penalty for large weights

Experiments with Regularization

- [Chen and Rosenfeld, 1998]: apply log-linear models to language modeling: Estimate $q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$
- Unigram, bigram, trigram features, e.g.,

$$
\begin{aligned}
& f_{1}\left(w_{i-2}, w_{i-1}, w_{i}\right)= \begin{cases}1 & \text { if trigram is (the, dog, laughs) } \\
0 & \text { otherwise }\end{cases} \\
& f_{2}\left(w_{i-2}, w_{i-1}, w_{i}\right)= \begin{cases}1 & \text { if bigram is (dog, laughs) } \\
0 & \text { otherwise }\end{cases} \\
& f_{3}\left(w_{i-2}, w_{i-1}, w_{i}\right)= \begin{cases}1 & \text { if unigram is (laughs) } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{e^{f\left(w_{i-2}, w_{i-1}, w_{i}\right) \cdot v}}{\sum_{w} e^{f\left(w_{i-2}, w_{i-1}, w\right) \cdot v}}
$$

Experiments with Gaussian Priors

- In regular (unregularized) log-linear models, if all n-gram features are included, then it's equivalent to maximum-likelihood estimates!

$$
q\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{\operatorname{Count}\left(w_{i-2}, w_{i-1}, w_{i}\right)}{\operatorname{Count}\left(w_{i-2}, w_{i-1}\right)}
$$

- [Chen and Rosenfeld, 1998]: with regularization, get very good results. Performs as well as or better than standardly used "discounting methods" (see lecture 2).
- Downside: computing $\sum_{w} e^{f\left(w_{i-2}, w_{i-1}, w\right) \cdot v}$ is SLOW.

Log Linear Models for Tagging

Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/ N announced/ V first/ADJ quarter/ N results/ N ./.

N	$=$ Noun
V	$=$ Verb
P	$=$ Preposition
Adv	$=$ Adverb
Adj	$=$ Adjective

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

Named Entity Extraction as Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

NA	$=$ No entity
SC	$=$ Start Company
CC	$=$ Continue Company
SL	$=$ Start Location
CL	$=$ Continue Location

Our Goal

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.
2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./. 3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

- From the training set, induce a function/algorithm that maps new sentences to their tag sequences.

Overview

- Recap: The Tagging Problem
- Log-linear taggers

Log-Linear Models for Tagging

- We have an input sentence $w_{[1: n]}=w_{1}, w_{2}, \ldots, w_{n}$ (w_{i} is the i 'th word in the sentence)

Log-Linear Models for Tagging

- We have an input sentence $w_{[1: n]}=w_{1}, w_{2}, \ldots, w_{n}$ (w_{i} is the i 'th word in the sentence)
- We have a tag sequence $t_{[1: n]}=t_{1}, t_{2}, \ldots, t_{n}$ (t_{i} is the i 'th tag in the sentence)

Log-Linear Models for Tagging

- We have an input sentence $w_{[1: n]}=w_{1}, w_{2}, \ldots, w_{n}$ (w_{i} is the i 'th word in the sentence)
- We have a tag sequence $t_{[1: n]}=t_{1}, t_{2}, \ldots, t_{n}$ (t_{i} is the i 'th tag in the sentence)
- We'll use an log-linear model to define

$$
p\left(t_{1}, t_{2}, \ldots, t_{n} \mid w_{1}, w_{2}, \ldots, w_{n}\right)
$$

for any sentence $w_{[1: n]}$ and tag sequence $t_{[1: n]}$ of the same length. (Note: contrast with HMM that defines $p\left(t_{1} \ldots t_{n}, w_{1} \ldots w_{n}\right)$)

Log-Linear Models for Tagging

- We have an input sentence $w_{[1: n]}=w_{1}, w_{2}, \ldots, w_{n}$ (w_{i} is the i 'th word in the sentence)
- We have a tag sequence $t_{[1: n]}=t_{1}, t_{2}, \ldots, t_{n}$ (t_{i} is the i 'th tag in the sentence)
- We'll use an log-linear model to define

$$
p\left(t_{1}, t_{2}, \ldots, t_{n} \mid w_{1}, w_{2}, \ldots, w_{n}\right)
$$

for any sentence $w_{[1: n]}$ and tag sequence $t_{[1: n]}$ of the same length. (Note: contrast with HMM that defines $p\left(t_{1} \ldots t_{n}, w_{1} \ldots w_{n}\right)$)

- Then the most likely tag sequence for $w_{[1: n]}$ is

$$
t_{[1: n]}^{*}=\operatorname{argmax}_{t_{[1: n]}} p\left(t_{[1: n]} \mid w_{[1: n]}\right)
$$

How to model $p\left(t_{[1: n]} \mid w_{[1: n]}\right)$?

A Trigram Log-Linear Tagger:

$p\left(t_{[1: n]} \mid w_{[1: n]}\right)=\prod_{j=1}^{n} p\left(t_{j} \mid w_{1} \ldots w_{n}, t_{1} \ldots t_{j-1}\right) \quad$ Chain rule

How to model $p\left(t_{[1: n]} \mid w_{[1: n]}\right)$?

A Trigram Log-Linear Tagger:

$p\left(t_{[1: n]} \mid w_{[1: n]}\right)=\prod_{j=1}^{n} p\left(t_{j} \mid w_{1} \ldots w_{n}, t_{1} \ldots t_{j-1}\right) \quad$ Chain rule

$$
=\prod_{j=1}^{n} p\left(t_{j} \mid w_{1}, \ldots, w_{n}, t_{j-2}, t_{j-1}\right)
$$

Independence assumptions

- We take $t_{0}=t_{-1}=*$

How to model $p\left(t_{[1: n]} \mid w_{[1: n]}\right)$?

A Trigram Log-Linear Tagger:

$$
p\left(t_{[1: n]} \mid w_{[1: n]}\right)=\prod_{j=1}^{n} p\left(t_{j} \mid w_{1} \ldots w_{n}, t_{1} \ldots t_{j-1}\right) \quad \text { Chain rule }
$$

$$
=\prod_{j=1}^{n} p\left(t_{j} \mid w_{1}, \ldots, w_{n}, t_{j-2}, t_{j-1}\right)
$$

Independence assumptions

- We take $t_{0}=t_{-1}=$ *
- Independence assumption: each tag only depends on previous two tags

$$
p\left(t_{j} \mid w_{1}, \ldots, w_{n}, t_{1}, \ldots, t_{j-1}\right)=p\left(t_{j} \mid w_{1}, \ldots, w_{n}, t_{j-2}, t_{j-1}\right)
$$

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- There are many possible tags in the position ??
$\mathcal{Y}=\{\mathrm{NN}, \mathrm{NNS}, \mathrm{Vt}, \mathrm{Vi}, \mathrm{IN}, \mathrm{DT}, \ldots\}$

Representation: Histories

- A history is a 4-tuple $\left\langle t_{-2}, t_{-1}, w_{[1: n]}, i\right\rangle$
- t_{-2}, t_{-1} are the previous two tags.
- $w_{[1: n]}$ are the n words in the input sentence.
- i is the index of the word being tagged
- \mathcal{X} is the set of all possible histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere.

- $t_{-2}, t_{-1}=\mathrm{DT}, \mathrm{JJ}$
- $w_{[1: n]}=\langle$ Hispaniola,quickly, became, ..., Hemisphere, ..
- $i=6$

Recap: Feature Vector Representations in Log-Linear Models

- We have some input domain \mathcal{X}, and a finite label set \mathcal{Y}. Aim is to provide a conditional probability $p(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (Often binary features or indicator functions $f: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\})$.
- Say we have m features f_{k} for $k=1 \ldots m$
\Rightarrow A feature vector $f(x, y) \in \mathbb{R}^{m}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.

An Example (continued)

- \mathcal{X} is the set of all possible histories of form $\left\langle t_{-2}, t_{-1}, w_{[1: n]}, i\right\rangle$
- $\mathcal{Y}=\{\mathrm{NN}, \mathrm{NNS}, \mathrm{Vt}, \mathrm{Vi}, \mathrm{IN}, \mathrm{DT}, \ldots\}$
- We have m features $f_{k}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ for $k=1 \ldots m$

For example:

$$
\begin{aligned}
& f_{1}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } t=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& f_{2}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } t=\mathrm{VBG} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in [(Ratnaparkhi, 96)]

- Word/tag features for all word/tag pairs, e.g.,

$$
f_{100}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } t=\mathrm{Vt} \\ 0 & \text { otherwise }\end{cases}
$$

- Spelling features for all prefixes/suffixes of length ≤ 4, e.g.,

$$
\begin{aligned}
& f_{101}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } t=\text { VBG } \\
0 & \text { otherwise }\end{cases} \\
& f_{102}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { starts with pre and } t=\mathrm{NN} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The Full Set of Features in [(Ratnaparkhi, 96)]

- Contextual Features, e.g.,

$$
\begin{aligned}
& f_{103}(h, t)= \begin{cases}1 & \text { if }\left\langle t_{-2}, t_{-1}, t\right\rangle=\langle\mathrm{DT}, \mathrm{JJ}, \mathrm{~V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{104}(h, t)= \begin{cases}1 & \text { if }\left\langle t_{-1}, t\right\rangle=\langle\mathrm{JJ}, \mathrm{~V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{105}(h, t)= \begin{cases}1 & \text { if }\langle t\rangle=\langle\mathrm{V} \mathrm{t}\rangle \\
0 & \text { otherwise }\end{cases} \\
& f_{106}(h, t)= \begin{cases}1 & \text { if previous word } w_{i-1}=\text { the and } t=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& f_{107}(h, t)= \begin{cases}1 & \text { if next word } w_{i+1}=\text { the and } t=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Log-Linear Models

- We have some input domain \mathcal{X}, and a finite label set \mathcal{Y}. Aim is to provide a conditional probability $p(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (Often binary features or indicator functions $f: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\})$.
- Say we have m features f_{k} for $k=1 \ldots m$
\Rightarrow A feature vector $f(x, y) \in \mathbb{R}^{m}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- We also have a parameter vector $v \in \mathbb{R}^{m}$
- We define

$$
p(y \mid x ; v)=\frac{e^{v \cdot f(x, y)}}{\sum_{y^{\prime} \in \mathcal{Y}} e^{v \cdot f\left(x, y^{\prime}\right)}}
$$

Training the Log-Linear Model

- To train a log-linear model, we need a training set $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$. Then search for

$$
v^{*}=\operatorname{argmax}_{v}(\underbrace{\sum_{i} \log p\left(y_{i} \mid x_{i} ; v\right)}_{\text {Log-Likelihood }}-\underbrace{\frac{\lambda}{2} \sum_{k} v_{k}^{2}}_{\text {Regularizer }})
$$

(see last lecture on log-linear models)

- Training set is simply all history/tag pairs seen in the training data

The Viterbi Algorithm

Problem: for an input $w_{1} \ldots w_{n}$, find

$$
\arg \max _{t_{1} \ldots t_{n}} p\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)
$$

We assume that p takes the form

$$
p\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} q\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{[1: n]}, i\right)
$$

(In our case $q\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{[1: n]}, i\right)$ is the estimate from a log-linear model.)

The Viterbi Algorithm

- Define n to be the length of the sentence
- Define

$$
r\left(t_{1} \ldots t_{k}\right)=\prod_{i=1}^{k} q\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{[1: n]}, i\right)
$$

- Define a dynamic programming table
$\pi(k, u, v)=$ maximum probability of a tag sequence ending in tags u, v at position k
that is,

$$
\pi(k, u, v)=\max _{\left\langle t_{1}, \ldots, t_{k-2}\right\rangle} r\left(t_{1} \ldots t_{k-2}, u, v\right)
$$

A Recursive Definition

Base case:

$$
\pi\left(0,{ }^{*}, *\right)=1
$$

Recursive definition:

For any $k \in\{1 \ldots n\}$, for any $u \in \mathcal{S}_{k-1}$ and $v \in \mathcal{S}_{k}$:

$$
\pi(k, u, v)=\max _{t \in \mathcal{S}_{k-2}}\left(\pi(k-1, t, u) \times q\left(v \mid t, u, w_{[1: n]}, k\right)\right)
$$

where \mathcal{S}_{k} is the set of possible tags at position k

The Viterbi Algorithm with Backpointers

Input: a sentence $w_{1} \ldots w_{n}$, log-linear model that provides $q\left(v \mid t, u, w_{[1: n]}, i\right)$ for any tag-trigram t, u, v, for any $i \in\{1 \ldots n\}$
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$.

Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{S}_{k-1}, v \in \mathcal{S}_{k}$,

$$
\begin{aligned}
\pi(k, u, v) & =\max _{t \in \mathcal{S}_{k-2}}\left(\pi(k-1, t, u) \times q\left(v \mid t, u, w_{[1: n]}, k\right)\right) \\
b p(k, u, v) & =\arg \max _{t \in \mathcal{S}_{k-2}}\left(\pi(k-1, t, u) \times q\left(v \mid t, u, w_{[1: n]}, k\right)\right)
\end{aligned}
$$

- Set $\left(t_{n-1}, t_{n}\right)=\arg \max _{(u, v)} \pi(n, u, v)$
- For $k=(n-2) \ldots 1, t_{k}=b p\left(k+2, t_{k+1}, t_{k+2}\right)$
- Return the tag sequence $t_{1} \ldots t_{n}$

FAQ Segmentation: McCallum et. al

- McCallum et. al compared HMM and log-linear taggers on a FAQ Segmentation task
- Main point: in an HMM, modeling

$$
p(\text { word } \mid \text { tag })
$$

is difficult in this domain

FAQ Segmentation: McCallum et. al

<head>X-NNTP-POSTER: NewsHound v1. 33
<head>
<head>Archive name: acorn/faq/part2
<head>Frequency: monthly
<head>
<question>2.6) What configuration of serial cable should I use <answer>
<answer> Here follows a diagram of the necessary connections <answer>programs to work properly. They are as far as I know t <answer>agreed upon by commercial comms software developers fo <answer>
<answer> Pins 1, 4, and 8 must be connected together inside <answer>is to avoid the well known serial port chip bugs. The

FAQ Segmentation: Line Features

```
begins-with-number
begins-with-ordinal
begins-with-punctuation
begins-with-question-word
begins-with-subject
blank
contains-alphanum
contains-bracketed-number
contains-http
contains-non-space
contains-number
contains-pipe
contains-question-mark
ends-with-question-mark
first-alpha-is-capitalized
indented-1-to-4
```


FAQ Segmentation: The Log-Linear Tagger

<head>X-NNTP-POSTER: NewsHound v1.33
<head>
<head>Archive name: acorn/faq/part2
<head>Frequency: monthly
<head>
<question>2.6) What configuration of serial cable should I use

Here follows a diagram of the necessary connections
\Rightarrow "tag=question;prev=head;begins-with-number"
"tag=question;prev=head;contains-alphanum"
"tag=question;prev=head;contains-nonspace"
"tag=question;prev=head;contains-number"
"tag=question;prev=head;prev-is-blank"

FAQ Segmentation: An HMM Tagger

<question>2.6) What configuration of serial cable should I use

- First solution for $p($ word \mid tag $)$:
p ("2.6) What configuration of serial cable should I use" | question) $=$ $e(2.6) \mid$ question $) \times$
$e($ What | question $) \times$
$e($ configuration \mid question $) \times$
$e(o f \mid$ question $) \times$
$e($ serial \mid question $) \times$
- i.e. have a language model for each $t a g$

FAQ Segmentation: McCallum et. al

- Second solution: first map each sentence to string of features:
<question>2.6) What configuration of serial cable should I use
\Rightarrow
<question>begins-with-number contains-alphanum contains-nonspace contains-number prev-is-blank
- Use a language model again:
p ("2.6) What configuration of serial cable should I use" | question) $=$
e (begins-with-number | question) \times
$e($ contains-alphanum | question) \times
$e($ contains-nonspace | question $) \times$
$e($ contains-number \mid question $) \times$
$e($ prev-is-blank | question $) \times$

FAQ Segmentation: Results

Method	Precision	Recall
ME-Stateless	0.038	0.362
TokenHMM	0.276	0.140
FeatureHMM	0.413	0.529
MEMM	0.867	0.681

- Precision and recall results are for recovering segments

FAQ Segmentation: Results

Method	Precision	Recall
ME-Stateless	0.038	0.362
TokenHMM	0.276	0.140
FeatureHMM	0.413	0.529
MEMM	0.867	0.681

- Precision and recall results are for recovering segments
- ME-stateless is a log-linear model that treats every sentence seperately (no dependence between adjacent tags)

FAQ Segmentation: Results

Method	Precision	Recall
ME-Stateless	0.038	0.362
TokenHMM	0.276	0.140
FeatureHMM	0.413	0.529
MEMM	0.867	0.681

- Precision and recall results are for recovering segments
- ME-stateless is a log-linear model that treats every sentence seperately (no dependence between adjacent tags)
- TokenHMM is an HMM with first solution we've just seen

FAQ Segmentation: Results

Method	Precision	Recall
ME-Stateless	0.038	0.362
TokenHMM	0.276	0.140
FeatureHMM	0.413	0.529
MEMM	0.867	0.681

- Precision and recall results are for recovering segments
- ME-stateless is a log-linear model that treats every sentence seperately (no dependence between adjacent tags)
- TokenHMM is an HMM with first solution we've just seen
- FeatureHMM is an HMM with second solution we've just seen

FAQ Segmentation: Results

Method	Precision	Recall
ME-Stateless	0.038	0.362
TokenHMM	0.276	0.140
FeatureHMM	0.413	0.529
MEMM	0.867	0.681

- Precision and recall results are for recovering segments
- ME-stateless is a log-linear model that treats every sentence seperately (no dependence between adjacent tags)
- TokenHMM is an HMM with first solution we've just seen
- FeatureHMM is an HMM with second solution we've just seen
- MEMM is a log-linear trigram tagger (MEMM stands for "Maximum-Entropy Markov Model")

Summary

- Key ideas in log-linear taggers:
- Decompose

$$
p\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

- Estimate

$$
p\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

using a log-linear model

- For a test sentence $w_{1} \ldots w_{n}$, use the Viterbi algorithm to find

$$
\arg \max _{t_{1} \ldots t_{n}}\left(\prod_{i=1}^{n} p\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{1} \ldots w_{n}\right)\right)
$$

- Key advantage over HMM taggers: flexibility in the features they can use

