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Challenges: Lexical Ambiguity

(Example from Dorr et. al, 1999)

Example 1:
book the flight ) reservar
read the book ) libro

Example 2:
the box was in the pen
the pen was on the table

Example 3:
kill a man ) matar
kill a process ) acabar



Challenges: Di↵ering Word Orders

I English word order is subject – verb – object

I Japanese word order is subject – object – verb

English: IBM bought Lotus
Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said



Syntactic Structure is not Preserved Across

Translations (Example from Dorr et. al, 1999)

The bottle floated into the cave

+

La botella entro a la cuerva flotando
(the bottle entered the cave floating)



Syntactic Ambiguity Causes Problems

(Example from Dorr et. al, 1999)

John hit the dog with the stick

+

John golpeo el perro con el palo/que tenia el palo



Pronoun Resolution (Example from Dorr et. al, 1999)

The computer outputs the data; it is fast.

+

La computadora imprime los datos; es rapida

The computer outputs the data; it is stored in ascii.

+

La computadora imprime los datos; estan almacendos en ascii
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Direct Machine Translation

I Translation is word-by-word

I Very little analysis of the source text (e.g., no syntactic or
semantic analysis)

I Relies on a large bilingual directionary. For each word in the
source language, the dictionary specifies a set of rules for
translating that word

I After the words are translated, simple reordering rules are
applied (e.g., move adjectives after nouns when translating
from English to French)



An Example of a set of Direct Translation Rules

(From Jurafsky and Martin, edition 2, chapter 25. Originally from
a system from Panov 1960)

Rules for translating much or many into Russian:

if preceding word is how return skol’ko

else if preceding word is as return stol’ko zhe

else if word is much

if preceding word is very return nil
else if following word is a noun return mnogo

else (word is many)
if preceding word is a preposition and following word is noun return mnogii

else return mnogo



Some Problems with Direct Machine Translation

I Lack of any analysis of the source language causes several
problems, for example:

I Di�cult or impossible to capture long-range reorderings

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said

I Words are translated without disambiguation of their
syntactic role
e.g., that can be a complementizer or determiner, and will
often be translated di↵erently for these two cases

They said that ...

They like that ice-cream



Transfer-Based Approaches

Three phases in translation:

I Analysis: Analyze the source language sentence; for example,
build a syntactic analysis of the source language sentence.

I Transfer: Convert the source-language parse tree to a
target-language parse tree.

I Generation: Convert the target-language parse tree to an
output sentence.



Transfer-Based Approaches

I The “parse trees” involved can vary from shallow analyses to
much deeper analyses (even semantic representations).

I The transfer rules might look quite similar to the rules for
direct translation systems. But they can now operate on
syntactic structures.

I It’s easier with these approaches to handle long-distance
reorderings

I The Systran systems are a classic example of this approach
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Interlingua-Based Translation

Two phases in translation:

I Analysis: Analyze the source language sentence into a
(language-independent) representation of its meaning.

I Generation: Convert the meaning representation into an
output sentence.



Interlingua-Based Translation

One Advantage: If we want to build a translation system that
translates between n languages, we need to develop n analysis and
generation systems. With a transfer based system, we’d need to
develop O(n2

) sets of translation rules.

Disadvantage: What would a language-independent
representation look like?



Interlingua-Based Translation

I How to represent di↵erent concepts in an interlingua?

I Di↵erent languages break down concepts in quite di↵erent
ways:

German has two words for wall: one for an internal wall, one
for a wall that is outside

Japanese has two words for brother: one for an elder brother,
one for a younger brother

Spanish has two words for leg: pierna for a human’s leg, pata
for an animal’s leg, or the leg of a table

I An interlingua might end up simple being an intersection of
these di↵erent ways of breaking down concepts, but that
doesn’t seem very satisfactory...
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A Brief Introduction to Statistical MT

I Parallel corpora are available in several language pairs

I Basic idea: use a parallel corpus as a training set of
translation examples

I Classic example: IBM work on French-English translation,
using the Canadian Hansards. (1.7 million sentences of 30
words or less in length).

I Idea goes back to Warren Weaver (1949): suggested applying
statistical and cryptanalytic techniques to translation.



When I look at an article 
in Russian, I say: “This 

is really written in 
English, but it has been 
coded in some strange 
symbols. I will now 
proceed to decode.”!

!

Warren Weaver (1949)





The Noisy Channel Model

I Goal: translation system from French to English

I Have a model p(e | f) which estimates conditional probability
of any English sentence e given the French sentence f . Use
the training corpus to set the parameters.

I A Noisy Channel Model has two components:

p(e) the language model

p(f | e) the translation model

I Giving:

p(e | f) = p(e, f)

p(f)
=

p(e)p(f | e)P
e p(e)p(f | e)

and
argmaxep(e | f) = argmaxep(e)p(f | e)



More About the Noisy Channel Model
I The language model p(e) could be a trigram model,

estimated from any data (parallel corpus not needed to
estimate the parameters)

I The translation model p(f | e) is trained from a parallel
corpus of French/English pairs.

I Note:
I The translation model is backwards!
I The language model can make up for deficiencies of the

translation model.
I Later we’ll talk about how to build p(f | e)
I Decoding, i.e., finding

argmaxep(e)p(f | e)

is also a challenging problem.



Example from Koehn and Knight tutorial

Translation from Spanish to English, candidate translations based
on p(Spanish | English) alone:

Que hambre tengo yo
!
What hunger have p(s|e) = 0.000014
Hungry I am so p(s|e) = 0.000001
I am so hungry p(s|e) = 0.0000015
Have i that hunger p(s|e) = 0.000020
. . .



Example from Koehn and Knight tutorial (continued)

With p(Spanish | English)⇥ p(English):

Que hambre tengo yo
!
What hunger have p(s|e)p(e) = 0.000014 ⇥ 0.000001
Hungry I am so p(s|e)p(e) = 0.000001 ⇥ 0.0000014
I am so hungry p(s|e)p(e) = 0.0000015 ⇥ 0.0001

Have i that hunger p(s|e)p(e) = 0.000020 ⇥ 0.00000098

. . .



Recap: The Noisy Channel Model

I Goal: translation system from French to English

I Have a model p(e | f) which estimates conditional probability
of any English sentence e given the French sentence f . Use
the training corpus to set the parameters.

I A Noisy Channel Model has two components:

p(e) the language model

p(f | e) the translation model

I Giving:

p(e | f) = p(e, f)

p(f)
=

p(e)p(f | e)P
e p(e)p(f | e)

and
argmaxep(e | f) = argmaxep(e)p(f | e)



Roadmap for the Next Few Lectures

I IBM Models 1 and 2

I
Phrase-based models



Overview
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I EM Training of Models 1 and 2



IBM Model 1: Alignments

I How do we model p(f | e)?

I English sentence e has l words e1 . . . el,
French sentence f has m words f1 . . . fm.

I An alignment a identifies which English word each French
word originated from

I Formally, an alignment a is {a1, . . . am}, where each
aj 2 {0 . . . l}.

I There are (l + 1)

m possible alignments.



IBM Model 1: Alignments

I e.g., l = 6, m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

I One alignment is
{2, 3, 4, 5, 6, 6, 6}

I Another (bad!) alignment is

{1, 1, 1, 1, 1, 1, 1}



Alignments in the IBM Models

I We’ll define models for p(a | e,m) and p(f | a, e,m),
giving

p(f, a | e,m) = p(a | e,m)p(f | a, e,m)

I Also,
p(f | e,m) =

X

a2A

p(a | e,m)p(f | a, e,m)

where A is the set of all possible alignments



A By-Product: Most Likely Alignments

I Once we have a model p(f, a | e,m) = p(a | e)p(f | a, e,m)

we can also calculate

p(a | f, e,m) =

p(f, a | e,m)P
a2A p(f, a | e,m)

for any alignment a

I For a given f, e pair, we can also compute the most likely
alignment,

a⇤ = argmax

a
p(a | f, e,m)

I Nowadays, the original IBM models are rarely (if ever) used
for translation, but they are used for recovering alignments



An Example Alignment

French:
le conseil a rendu son avis , et nous devons à présent adopter un
nouvel avis sur la base de la première position .

English:
the council has stated its position , and now , on the basis of the
first position , we again have to give our opinion .

Alignment:
the/le council/conseil has/à stated/rendu its/son position/avis ,/,
and/et now/présent ,/NULL on/sur the/le basis/base of/de the/la
first/première position/position ,/NULL we/nous again/NULL
have/devons to/a give/adopter our/nouvel opinion/avis ./.



IBM Model 1: Alignments

I In IBM model 1 all allignments a are equally likely:

p(a | e,m) =

1

(l + 1)

m

I This is a major simplifying assumption, but it gets things
started...



IBM Model 1: Translation Probabilities

I Next step: come up with an estimate for

p(f | a, e,m)

I In model 1, this is:

p(f | a, e,m) =

mY

j=1

t(fj | eaj)



I
e.g., l = 6, m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

I
a = {2, 3, 4, 5, 6, 6, 6}

p(f | a, e) = t(Le | the)⇥
t(programme | program)⇥
t(a | has)⇥
t(ete | been)⇥
t(mis | implemented)⇥
t(en | implemented)⇥
t(application | implemented)



IBM Model 1: The Generative Process

To generate a French string f from an English string e:

I Step 1: Pick an alignment a with probability 1
(l+1)m

I Step 2: Pick the French words with probability

p(f | a, e,m) =

mY

j=1

t(fj | eaj)

The final result:

p(f, a | e,m) = p(a | e,m)⇥p(f | a, e,m) =

1

(l + 1)

m

mY

j=1

t(fj | eaj)



An Example Lexical Entry

English French Probability
position position 0.756715
position situation 0.0547918
position mesure 0.0281663
position vue 0.0169303
position point 0.0124795
position attitude 0.0108907

. . . de la situation au niveau des négociations de l ’ ompi . . .

. . . of the current position in the wipo negotiations . . .

nous ne sommes pas en mesure de décider , . . .
we are not in a position to decide , . . .

. . . le point de vue de la commission face à ce problème complexe .

. . . the commission ’s position on this complex problem .
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IBM Model 2

I Only di↵erence: we now introduce alignment or distortion
parameters

q(i | j, l,m) = Probability that j’th French word is connected

to i’th English word, given sentence lengths of

e and f are l and m respectively

I Define

p(a | e,m) =

mY

j=1

q(aj | j, l,m)

where a = {a1, . . . am}
I Gives

p(f, a | e,m) =

mY

j=1

q(aj | j, l,m)t(fj | eaj)

I Note: Model 1 is a special case of Model 2, where
q(i | j, l,m) =

1
l+1 for all i, j.



An Example

l = 6

m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

a = {2, 3, 4, 5, 6, 6, 6}

p(a | e, 7) = q(2 | 1, 6, 7)⇥
q(3 | 2, 6, 7)⇥
q(4 | 3, 6, 7)⇥
q(5 | 4, 6, 7)⇥
q(6 | 5, 6, 7)⇥
q(6 | 6, 6, 7)⇥
q(6 | 7, 6, 7)

p(f | a, e, 7) = t(Le | the)⇥
t(programme | program)⇥
t(a | has)⇥
t(ete | been)⇥
t(mis | implemented)⇥
t(en | implemented)⇥
t(application | implemented)



An Example

l = 6

m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

a = {2, 3, 4, 5, 6, 6, 6}

p(f | a, e, 7) = t(Le | the)⇥
t(programme | program)⇥
t(a | has)⇥
t(ete | been)⇥
t(mis | implemented)⇥
t(en | implemented)⇥
t(application | implemented)



IBM Model 2: The Generative Process

To generate a French string f from an English string e:

I Step 1: Pick an alignment a = {a1, a2 . . . am} with
probability

mY

j=1

q(aj | j, l,m)

I Step 3: Pick the French words with probability

p(f | a, e,m) =

mY

j=1

t(fj | eaj)

The final result:

p(f, a | e,m) = p(a | e,m)p(f | a, e,m) =

mY

j=1

q(aj | j, l,m)t(fj | eaj)



Recovering Alignments
I If we have parameters q and t, we can easily recover the most

likely alignment for any sentence pair

I Given a sentence pair e1, e2, . . . , el, f1, f2, . . . , fm, define

aj = arg max

a2{0...l}
q(a|j, l,m)⇥ t(fj|ea)

for j = 1 . . .m

e = And the program has been implemented

f = Le programme a ete mis en application
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The Parameter Estimation Problem

I Input to the parameter estimation algorithm: (e(k), f (k)
) for

k = 1 . . . n. Each e(k) is an English sentence, each f (k) is a
French sentence

I Output: parameters t(f |e) and q(i|j, l,m)

I A key challenge: we do not have alignments on our
training examples, e.g.,

e(100) = And the program has been implemented

f (100)
= Le programme a ete mis en application



Parameter Estimation if the Alignments are Observed
I First: case where alignments are observed in training data.

E.g.,
e(100) = And the program has been implemented

f (100)
= Le programme a ete mis en application

a(100) = h2, 3, 4, 5, 6, 6, 6i

I Training data is (e(k), f (k), a(k)) for k = 1 . . . n. Each e(k) is
an English sentence, each f (k) is a French sentence, each a(k)

is an alignment
I Maximum-likelihood parameter estimates in this case are

trivial:

tML(f |e) =
Count(e, f)

Count(e)
qML(j|i, l,m) =

Count(j|i, l,m)

Count(i, l,m)



Input: A training corpus (f (k)
, e

(k)
, a

(k)) for k = 1 . . . n, where

f

(k) = f

(k)
1 . . . f

(k)
mk , e

(k) = e

(k)
1 . . . e

(k)
lk

, a

(k) = a

(k)
1 . . . a

(k)
mk .

Algorithm:

I
Set all counts c(. . .) = 0

I
For k = 1 . . . n

I
For i = 1 . . .mk, For j = 0 . . . lk,

c(e(k)j , f

(k)
i )  c(e(k)j , f

(k)
i ) + �(k, i, j)

c(e(k)j )  c(e(k)j ) + �(k, i, j)

c(j|i, l,m)  c(j|i, l,m) + �(k, i, j)

c(i, l,m)  c(i, l,m) + �(k, i, j)

where �(k, i, j) = 1 if a

(k)
i = j, 0 otherwise.

Output: tML(f |e) = c(e,f)
c(e) , qML(j|i, l,m) = c(j|i,l,m)

c(i,l,m)



Parameter Estimation with the EM Algorithm

I Training examples are (e(k), f (k)
) for k = 1 . . . n. Each e(k) is

an English sentence, each f (k) is a French sentence

I The algorithm is related to algorithm when alignments are
observed, but two key di↵erences:

1. The algorithm is iterative. We start with some initial (e.g.,

random) choice for the q and t parameters. At each iteration

we compute some “counts” based on the data together with

our current parameter estimates. We then re-estimate our

parameters with these counts, and iterate.

2. We use the following definition for �(k, i, j) at each iteration:

�(k, i, j) =
q(j|i, lk,mk)t(f

(k)
i |e(k)j )

Plk
j=0 q(j|i, lk,mk)t(f

(k)
i |e(k)j )



Input: A training corpus (f (k), e(k)) for k = 1 . . . n, where

f (k)
= f (k)

1 . . . f (k)
mk , e

(k)
= e(k)1 . . . e(k)lk

.

Initialization: Initialize t(f |e) and q(j|i, l,m) parameters (e.g.,
to random values).



For s = 1 . . . S
I Set all counts c(. . .) = 0

I For k = 1 . . . n
I

For i = 1 . . .mk, For j = 0 . . . lk

c(e(k)j , f

(k)
i )  c(e(k)j , f

(k)
i ) + �(k, i, j)

c(e(k)j )  c(e(k)j ) + �(k, i, j)

c(j|i, l,m)  c(j|i, l,m) + �(k, i, j)

c(i, l,m)  c(i, l,m) + �(k, i, j)

where

�(k, i, j) =
q(j|i, lk,mk)t(f

(k)
i |e(k)j )

Plk
j=0 q(j|i, lk,mk)t(f

(k)
i |e(k)j )

I Recalculate the parameters:

t(f |e) = c(e, f)

c(e)
q(j|i, l,m) =

c(j|i, l,m)

c(i, l,m)



�(k, i, j) =
q(j|i, lk,mk)t(f

(k)
i |e(k)j )

Plk
j=0 q(j|i, lk,mk)t(f

(k)
i |e(k)j )

e(100) = And the program has been implemented

f (100)
= Le programme a ete mis en application



Justification for the Algorithm
I Training examples are (e(k), f (k)

) for k = 1 . . . n. Each e(k) is
an English sentence, each f (k) is a French sentence

I The log-likelihood function:

L(t, q) =
nX

k=1

log p(f (k)|e(k)) =
nX

k=1

log

X

a

p(f (k), a|e(k))

I The maximum-likelihood estimates are

argmax

t,q
L(t, q)

I The EM algorithm will converge to a local maximum of the
log-likelihood function



Summary
I Key ideas in the IBM translation models:

I
Alignment variables

I
Translation parameters, e.g., t(chien|dog)

I
Distortion parameters, e.g., q(2|1, 6, 7)

I The EM algorithm: an iterative algorithm for training the q
and t parameters

I Once the parameters are trained, we can recover the most
likely alignments on our training examples

e = And the program has been implemented

f = Le programme a ete mis en application



Phrase-Based	Translation



Overview

I Learning phrases from alignments

I A phrase-based model

I Decoding in phrase-based models



Phrase-Based Models

I First stage in training a phrase-based model is extraction of a
phrase-based (PB) lexicon

I A PB lexicon pairs strings in one language with strings in
another language, e.g.,

nach Kanada $ in Canada
zur Konferenz $ to the conference
Morgen $ tomorrow
fliege $ will fly
. . .



An Example (from tutorial by Koehn and Knight)

I A training example (Spanish/English sentence pair):

Spanish: Maria no daba una bofetada a la bruja verde

English: Mary did not slap the green witch

I Some (not all) phrase pairs extracted from this example:

(Maria $ Mary), (bruja $ witch), (verde $ green),
(no $ did not), (no daba una bofetada $ did not slap),
(daba una bofetada a la $ slap the)

I We’ll see how to do this using alignments from the IBM
models (e.g., from IBM model 2)



Recap: IBM Model 2

I IBM model 2 defines a distribution p(a, f |e,m) where f is
foreign (French) sentence, e is an English sentence, a is an
alignment, m is the length of the foreign sentence

I A useful by-product: once we’ve trained the model, for any
(f, e) pair, we can calculate

a

⇤
= argmax

a
p(a|f, e,m) = argmax

a
p(a, f |e,m)

under the model. a⇤ is the most likely alignment

English: Mary did not slap the green witch

Spanish: Maria no daba una bofetada a la bruja verde



Representation as Alignment Matrix

Maria no daba una bof’ a la bruja verde

Mary •
did •
not •
slap • • •
the •
green •
witch •

(Note: “bof”’ = “bofetada”)

In IBM model 2, each foreign (Spanish) word is aligned to exactly one

English word. The matrix shows these alignments.



Finding Alignment Matrices

I Step 1: train IBM model 2 for p(f | e), and come up with
most likely alignment for each (e, f) pair

I Step 2: train IBM model 2 for p(e | f) and come up with
most likely alignment for each (e, f) pair

I We now have two alignments:
take intersection of the two alignments as a starting

point



Alignment from p(f | e) model:

Maria no daba una bof’ a la bruja verde

Mary •
did •
not •
slap • • •
the •
green •
witch •

Alignment from p(e | f) model:

Maria no daba una bof’ a la bruja verde

Mary •
did •
not •
slap •
the •
green •
witch •



Intersection of the two alignments:

Maria no daba una bof’ a la bruja verde

Mary •
did

not •
slap •
the •
green •
witch •

The intersection of the two alignments has been found to be a

very reliable starting point



Heuristics for Growing Alignments

I Only explore alignment in union of p(f | e) and p(e | f)
alignments

I Add one alignment point at a time

I Only add alignment points which align a word that currently
has no alignment

I At first, restrict ourselves to alignment points that are
“neighbors” (adjacent or diagonal) of current alignment
points

I Later, consider other alignment points



The final alignment, created by taking the intersection of the two
alignments, then adding new points using the growing heuristics:

Maria no daba una bof’ a la bruja verde

Mary •
did •
not •
slap • • •
the • •
green •
witch •

Note that the alignment is no longer many-to-one: potentially multiple

Spanish words can be aligned to a single English word, and vice versa.



Extracting Phrase Pairs from the Alignment Matrix
Maria no daba una bof’ a la bruja verde

Mary •
did •
not •
slap • • •
the • •
green •
witch •
I

A phrase-pair consists of a sequence of English words, e, paired
with a sequence of foreign words, f

I
A phrase-pair (e, f) is consistent if: 1) there is at least one word

in e aligned to a word in f ; 2) there are no words in f aligned to

words outside e; 3) there are no words in e aligned to words

outside f
e.g., (Mary did not, Maria no) is consistent. (Mary did, Maria no)

is not consistent

I
We extract all consistent phrase pairs from the training example.



Probabilities for Phrase Pairs

I For any phrase pair (f, e) extracted from the training data,
we can calculate

t(f |e) = Count(f, e)

Count(e)

e.g.,

t(daba una bofetada | slap) = Count(daba una bofetada, slap)

Count(slap)



An Example Phrase Translation Table

An example from Koehn, EACL 2006 tutorial. (Note that we have
t(e|f) not t(f |e) in this example.)

I Phrase Translations for den Vorschlag

English t(e|f) English t(e|f)
the proposal 0.6227 the suggestions 0.0114

’s proposal 0.1068 the proposed 0.0114

a proposal 0.0341 the motion 0.0091

the idea 0.0250 the idea of 0.0091

this proposal 0.0227 the proposal , 0.0068

proposal 0.0205 its proposal 0.0068

of the proposal 0.0159 it 0.0068

the proposals 0.0159 ... ...



Overview

I Learning phrases from alignments

I A phrase-based model

I Decoding in phrase-based models



Phrase-Based Systems: A Sketch

Today we shall be debating the reopening of the Mont Blanc tunnel

Heute werden wir uber die Wiederero↵nung
des Mont-Blanc-Tunnels diskutieren

Score = log q(Today | *, *)| {z }
Language model

+ log t(Heute | Today)| {z }
Phrase model

+ ⌘ ⇥ 0| {z }
Distortion model



Phrase-Based Systems: A Sketch

Today we shall be debating the reopening of the Mont Blanc tunnel

Heute werden wir uber die Wiederero↵nung
des Mont-Blanc-Tunnels diskutieren

Score = log q(we|*, Today) + log q(shall|Today, we) + log q(be|we, shall)| {z }
Language model

+ log t(werden wir | we shall be)| {z }
Phrase model
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Distortion model



Phrase-Based Systems: A Sketch

Today we shall be debating the reopening of the Mont Blanc tunnel
Heute werden wir uber die Wiederero↵nung
des Mont-Blanc-Tunnels diskutieren

Score = log q(debating|shall, be)| {z }
Language model

+ log t(diskutieren | debating)| {z }
Phrase model

+ ⌘ ⇥ 6| {z }
Distortion model
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Decoding



Phrase-based Translation

An example sentence:

wir müssen auch diese kritik ernst nehmen

A phrase-based lexicon contains phrase entries (f, e) where f is a sequence of

one or more foreign words, e is a sequence of one or more English words.

Example phrase entries that are relevant to our example:

(wir müssen, we must)

(wir müssen auch, we must also)

(ernst, seriously)

Each phrase (f, e) has a score g(f, e). E.g.,

g(f, e) = log

✓
Count(f, e)

Count(e)

◆



Phrase-based Models: Definitions

I
A phrase-based model consists of:

1. A phrase-based lexicon, consisting of entries (f, e) such as

(wir müssen, we must)

Each lexical entry has a score g(f, e), e.g.,

g(wir müssen, we must) = log

✓
Count(wir müssen, we must)

Count(we must)

◆

2. A trigram language model, with parameters q(w|u, v). E.g.,
q(also|we, must).

3. A “distortion parameter” ⌘ (typically negative).



Phrase-based Translation: Definitions

An example sentence:

wir müssen auch diese kritik ernst nehmen

I
For a particular input (source-language) sentence x1 . . . xn

, a

phrase is a tuple (s, t, e), signifying that the subsequence

x

s

. . . x

t

in the source language sentence can be translated as

the target-language string e, using an entry from the

phrase-based lexicon. E.g., (1, 2,we must)

I P is the set of all phrases for a sentence.

I
For any phrase p, s(p), t(p) and e(p) are its three

components. g(p) is the score for a phrase.



Definitions

I
A derivation y is a finite sequence of phrases, p1, p2, . . . pL,

where each p

j

for j 2 {1 . . . L} is a member of P .

I
The length L can be any positive integer value.

I
For any derivation y we use e(y) to refer to the underlying

translation defined by y. E.g.,

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

and

e(y) = we must also take this criticism seriously



Valid Derivations

I
For an input sentence x = x1 . . . xn

, we use Y(x) to refer to

the set of valid derivations for x.

I Y(x) is the set of all finite length sequences of phrases

p1p2 . . . pL such that:

I
Each p

k

for k 2 {1 . . . L} is a member of the set of phrases

P for x1 . . . xn.

I
Each word in x is translated exactly once.

I
For all k 2 {1 . . . (L� 1)}, |t(p

k

) + 1� s(p

k+1)|  d where

d � 0 is a parameter of the model. In addition, we must

have |1� s(p1)|  d



Examples

wir müssen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

y = (1, 3, we must also), (1, 2, we must), (4, 5, this criticism), (6, 6, seriously)

y = (1, 2, we must), (7, 7, take), (3, 3, also), (4, 5, this criticism), (6, 6, seriously)



Examples
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Examples

wir müssen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

y = (1, 3, we must also), (1, 2, we must), (4, 5, this criticism), (6, 6, seriously)

y = (1, 2, we must), (7, 7, take), (3, 3, also), (4, 5, this criticism), (6, 6, seriously)



Scoring Derivations

The optimal translation under the model for a source-language

sentence x will be

arg max

y2Y(x)
f(y)

In phrase-based systems, the score for any derivation y is

calculated as follows:

h(e(y)) +

LX

k=1

g(p

k

) +

L�1X

k=0

⌘ ⇥ |t(p
k

) + 1� s(p

k+1)|

where the parameter ⌘ is the distortion penalty (typically

negative). (We define t(p0) = 0).

h(e(y)) is the trigram language model score. g(p

k

) is the

phrase-based score for p

k

.



An Example

wir müssen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)



Decoding Algorithm: Definitions

I
A state is a tuple

(e1, e2, b, r,↵)

where e1, e2 are English words, b is a bit-string of length n, r

is an integer specifying the end-point of the last phrase in the

state, and ↵ is the score for the state.

I
The initial state is

q0 = (⇤, ⇤, 0n, 0, 0)

where 0

n

is bit-string of length n, with n zeroes.



States, and the Search Space

wir müssen auch diese kritik ernst nehmen

(⇤, ⇤, 0000000, 0, 0)



Transitions

I
We have ph(q) for any state q, which returns set of phrases

that are allowed to follow state q = (e1, e2, b, r,↵).

I
For a phrase p to be a member of ph(q), it must satisfy the

following conditions:

I
p must not overlap with the bit-string b. I.e., we need b

i

= 0

for i 2 {s(p) . . . t(p)}.

I
The distortion limit must not be violated. More formally, we

must have |r + 1� s(p)|  d where d is the distortion limit.



An Example of the Transition Function

wir müssen auch diese kritik ernst nehmen

(must, also, 1110000, 3,�2.5)

In addition, we define next(q, p) to be the state formed by

combining state q with phrase p.



An Example of the Transition Function

wir müssen auch diese kritik ernst nehmen

(must, also, 1110000, 3,�2.5)

In addition, we define next(q, p) to be the state formed by

combining state q with phrase p.



The next function

Formally, if q = (e1, e2, b, r,↵), and p = (s, t, ✏1 . . . ✏M), then

next(q, p) is the state q

0
= (e

0
1, e

0
2, b

0
, r

0
,↵

0
) defined as follows:

I
First, for convenience, define ✏�1 = e1, and ✏0 = e2.

I
Define e

0
1 = ✏

M�1, e
0
2 = ✏

M

.

I
Define b

0
i

= 1 for i 2 {s . . . t}. Define b

0
i

= b

i

for i /2 {s . . . t}
I

Define r

0
= t

I
Define

↵

0
= ↵ + g(p) +

MX

i=1

log q(✏

i

|✏
i�2, ✏i�1) + ⌘ ⇥ |r + 1� s|



The Equality Function

I
The function

eq(q, q

0
)

returns true or false.

I
Assuming q = (e1, e2, b, r,↵), and q

0
= (e

0
1, e

0
2, b

0
, r

0
,↵

0
),

eq(q, q

0
) is true if and only if e1 = e

0
1, e2 = e

0
2, b = b

0
and

r = r

0
.



The Decoding Algorithm

I
Inputs: sentence x1 . . . xn

. Phrase-based model (L, h, d, ⌘).
The phrase-based model defines the functions ph(q) and

next(q, p).

I
Initialization: set Q0 = {q0}, Qi

= ; for i = 1 . . . n.

I
For i = 0 . . . n� 1

I
For each state q 2 beam(Q

i

), for each phrase p 2 ph(q):

(1) q

0
= next(q, p)

(2) Add(Q

i

, q

0
, q, p) where i = len(q

0
)

I
Return: highest scoring state in Q

n

. Backpointers can be

used to find the underlying sequence of phrases (and the

translation).



Definition of Add(Q, q

0
, q, p)

I
If there is some q

00 2 Q such that eq(q

00
, q

0
) = True:

I
If ↵(q

0
) > ↵(q

00
)

I
Q = {q0} [Q \ {q00}

I
set bp(q

0
) = (q, p)

I
Else return

I
Else

I
Q = Q [ {q0}

I
set bp(q

0
) = (q, p)



Definition of beam(Q)

Define

↵

⇤
= argmax

q2Q
↵(q)

i.e., ↵

⇤
is the highest score for any state in Q.

Define � � 0 to be the beam-width parameter

Then

beam(Q) = {q 2 Q : ↵(q) � ↵

⇤ � �}



The Decoding Algorithm

I
Inputs: sentence x1 . . . xn

. Phrase-based model (L, h, d, ⌘).
The phrase-based model defines the functions ph(q) and

next(q, p).

I
Initialization: set Q0 = {q0}, Qi

= ; for i = 1 . . . n.

I
For i = 0 . . . n� 1

I
For each state q 2 beam(Q

i

), for each phrase p 2 ph(q):

(1) q

0
= next(q, p)

(2) Add(Q

i

, q

0
, q, p) where i = len(q

0
)

I
Return: highest scoring state in Q

n

. Backpointers can be

used to find the underlying sequence of phrases (and the

translation).


