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Overview

! Challenges in machine translation

! Classical machine translation

! A brief introduction to statistical MT



Challenges: Lexical Ambiguity
(Example from Dorr et. al, 1999)

Example 1:
bookthe ßight! reservar
read thebook! libro

Example 2:
the box was in thepen
the penwas on the table

Example 3:
kill a man! matar
kill a process! acabar



Challenges: Di! ering Word Orders

! English word order is subject Ð verb Ð object

! Japanese word order is subject Ð object Ð verb

English: IBM bought Lotus
Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said



Syntactic Structure is not Preserved Across
Translations(Example from Dorr et. al, 1999)

The bottle ßoated into the cave

!

La botella entro a la cuerva ßotando
(the bottle entered the cave ßoating)



Syntactic Ambiguity Causes Problems
(Example from Dorr et. al, 1999)

John hit the dog with the stick

+

John golpeo el perro con el palo/que tenia el palo



Pronoun Resolution(Example from Dorr et. al, 1999)

The computer outputs the data; it is fast.

!

La computadora imprime los datos;esrapida

The computer outputs the data; it is stored in ascii.

!

La computadora imprime los datos;estanalmacendos en ascii
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DirectMachine Translation

! Translation is word-by-word

! Very little analysis of the source text (e.g., no syntactic or
semantic analysis)

! Relies on a large bilingual directionary. For each word in the
source language, the dictionary specifies a set of rules for
translating that word

! After the words are translated, simple reordering rules are
applied (e.g., move adjectives after nouns when translating
from English to French)



An Example of a set of Direct Translation Rules

(From Jurafsky and Martin, edition 2, chapter 25. Originally from
a system from Panov 1960)

Rules for translatingmuchor manyinto Russian:

if preceding word ishow return skolÕko
else if preceding word isasreturn stolÕko zhe
else if word ismuch

if preceding word isveryreturn nil
else if following word is a nounreturn mnogo

else (word is many)
if preceding word is a preposition and following word is nounreturn mnogii
else return mnogo



Some Problems with Direct Machine Translation

! Lack of any analysis of the source language causes several
problems, for example:

! Di! cult or impossible to capture long-range reorderings

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said

! Words are translated without disambiguation of their
syntactic role
e.g., that can be a complementizer or determiner, and will
often be translated di" erently for these two cases

They saidthat ...

They like that ice-cream



Transfer-Based Approaches

Three phases in translation:

! Analysis:Analyze the source language sentence; for example,
build a syntactic analysis of the source language sentence.

! Transfer:Convert the source-language parse tree to a
target-language parse tree.

! Generation:Convert the target-language parse tree to an
output sentence.



Transfer-Based Approaches

! The Òparse treesÓ involved can vary from shallow analyses to
much deeper analyses (even semantic representations).

! The transfer rules might look quite similar to the rules for
direct translation systems. But they can now operate on
syntactic structures.

! ItÕs easier with these approaches to handle long-distance
reorderings

! The Systransystems are a classic example of this approach
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Interlingua-Based Translation

Two phases in translation:

! Analysis:Analyze the source language sentence into a
(language-independent) representation of its meaning.

! Generation:Convert the meaning representation into an
output sentence.



Interlingua-Based Translation

One Advantage: If we want to build a translation system that
translates betweenn languages, we need to developn analysis and
generation systems. With a transfer based system, weÕd need to
developO(n2) sets of translation rules.

Disadvantage: What would a language-independent
representation look like?



Interlingua-Based Translation

! How to represent di! erent concepts in an interlingua?

! Di! erent languages break down concepts in quite di! erent
ways:

German has two words forwall: one for an internal wall, one
for a wall that is outside

Japanese has two words forbrother: one for an elder brother,
one for a younger brother

Spanish has two words forleg: piernafor a humanÕs leg,pata
for an animalÕs leg, or the leg of a table

! An interlingua might end up simple being an intersection of
these di! erent ways of breaking down concepts, but that
doesnÕt seem very satisfactory...
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A Brief Introduction to Statistical MT

! Parallel corpora are available in several language pairs

! Basic idea: use a parallel corpus as a training set of
translation examples

! Classic example: IBM work on French-English translation,
using the Canadian Hansards. (1.7 million sentences of 30
words or less in length).

! Idea goes back to Warren Weaver (1949): suggested applying
statistical and cryptanalytic techniques to translation.



When I look at an article 
in Russian, I say: ÒThis 

is really written in 
English, but it has been 
coded in some strange 
symbols. I will now 
proceed to decode.Ó!

!

Warren Weaver (1949)





The Noisy Channel Model
! Goal: translation system from French to English

! Have a modelp(e| f ) which estimates conditional probability
of any English sentencee given the French sentencef . Use
the training corpus to set the parameters.

! A Noisy Channel Model has two components:

p(e) the language model

p(f | e) the translation model

! Giving:

p(e | f ) =
p(e, f )
p(f )

=
p(e)p(f | e)

!
e p(e)p(f | e)

and
argmaxep(e | f ) = argmaxep(e)p(f | e)



More About the Noisy Channel Model
I The language model p(e) could be a trigram model,

estimated from any data (parallel corpus not needed to
estimate the parameters)

I The translation model p(f | e) is trained from a parallel
corpus of French/English pairs.

I Note:
! The translation model is backwards!
! The language model can make up for deÞciencies of the

translation model.
! Later weÕll talk about how to buildp(f | e)
! Decoding, i.e., Þnding

argmaxep(e)p(f | e)

is also a challenging problem.



Example from Koehn and Knight tutorial

Translation from Spanish to English, candidate translations based
on p(Spanish | English ) alone:

Que hambre tengo yo
!
What hunger have p(s|e) = 0.000014
Hungry I am so p(s|e) = 0.000001
I am so hungry p(s|e) = 0.0000015
Have i that hunger p(s|e) = 0.000020
. . .



Example from Koehn and Knight tutorial (continued)

With p(Spanish | English ) ! p(English ):

Que hambre tengo yo
"
What hunger have p(s|e)p(e) = 0.000014! 0.000001
Hungry I am so p(s|e)p(e) = 0.000001! 0.0000014
I am so hungry p(s|e)p(e) = 0.0000015! 0.0001

Have i that hunger p(s|e)p(e) = 0.000020! 0.00000098

. . .



Recap: The Noisy Channel Model
! Goal: translation system from French to English

! Have a modelp(e| f ) which estimates conditional probability
of any English sentencee given the French sentencef . Use
the training corpus to set the parameters.

! A Noisy Channel Model has two components:

p(e) the language model

p(f | e) the translation model

! Giving:

p(e | f ) =
p(e, f )
p(f )

=
p(e)p(f | e)

!
e p(e)p(f | e)

and
argmaxep(e | f ) = argmaxep(e)p(f | e)



Roadmap for the Next Few Lectures

! IBM Models 1 and 2

! Phrase-basedmodels



Overview

! IBM Model 1

! IBM Model 2

! EM Training of Models 1 and 2



IBM Model 1: Alignments

! How do we modelp(f | e)?

! English sentencee hasl wordse1 . . . el ,
French sentencef hasm wordsf 1 . . . f m .

! An alignmenta identiÞes which English word each French
word originated from

! Formally, an alignmenta is { a1, . . . am} , where each
aj ! { 0. . . l} .

! There are(l + 1) m possible alignments.



IBM Model 1: Alignments

! e.g., l = 6, m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

! One alignment is
{ 2, 3, 4, 5, 6, 6, 6}

! Another (bad!) alignment is

{ 1, 1, 1, 1, 1, 1, 1}



Alignments in the IBM Models

! WeÕll deÞne models forp(a | e, m) andp(f | a, e, m),
giving

p(f, a | e, m) = p(a | e, m)p(f | a, e, m)

! Also,
p(f | e, m) =

!

a! A

p(a | e, m)p(f | a, e, m)

whereA is the set of all possible alignments



A By-Product: Most Likely Alignments

! Once we have a modelp(f, a | e, m) = p(a | e)p(f | a, e, m)
we can also calculate

p(a | f, e, m) =
p(f, a | e, m)

!
a! A p(f, a | e, m)

for any alignmenta

! For a givenf, e pair, we can also compute the most likely
alignment,

a" = arg max
a

p(a | f, e, m)

! Nowadays, the original IBM models are rarely (if ever) used
for translation, but they are used for recovering alignments



An Example Alignment

French:
le conseil a rendu son avis , et nous devons à présent adopter un
nouvel avis sur la base de la première position .

English:
the council has stated its position , and now , on the basis of the
first position , we again have to give our opinion .

Alignment:
the/le council/conseil has/à stated/rendu its/son position/avis ,/,
and/et now/présent ,/NULL on/sur the/le basis/base of/de the/la
first/première position/position ,/NULL we/nous again/NULL
have/devons to/a give/adopter our/nouvel opinion/avis ./.



IBM Model 1: Alignments

! In IBM model 1 all allignmentsa are equally likely:

p(a | e, m) =
1

(l + 1) m

! This is amajor simplifying assumption, but it gets things
started...



IBM Model 1: Translation Probabilities

! Next step: come up with an estimate for

p(f | a, e, m)

! In model 1, this is:

p(f | a, e, m) =
m!

j =1

t(f j | eaj )



! e.g., l = 6 , m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

! a = { 2, 3, 4, 5, 6, 6, 6}

p(f | a, e) = t(Le | the) !

t(programme | program) !

t(a | has) !

t(ete | been) !

t(mis | implemented) !

t(en | implemented) !

t(application | implemented)



IBM Model 1: The Generative Process

To generate a French string f from an English string e:

! Step 1: Pick an alignmenta with probability 1
(l+1) m

! Step 2: Pick the French words with probability

p(f | a, e, m) =
m!

j =1

t(f j | eaj )

The Þnal result:

p(f, a | e, m) = p(a | e, m)! p(f | a, e, m) =
1

(l + 1) m

m!

j =1

t(f j | eaj )



An Example Lexical Entry

English French Probability
position position 0.756715
position situation 0.0547918
position mesure 0.0281663
position vue 0.0169303
position point 0.0124795
position attitude 0.0108907

. . . de lasituationau niveau des n«egociations de l Õ ompi. . .

. . . of the currentpositionin the wipo negotiations. . .

nous ne sommes pas enmesurede d«ecider ,. . .
we are not in apositionto decide ,. . .

. . . le point de vuede la commission face à ce problème complexe .

. . . the commission Õspositionon this complex problem .
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IBM Model 2
! Only di! erence: we now introducealignment or distortion

parameters

q(i | j, l, m ) = Probability thatj Õth French word is connected

to iÕth English word, given sentence lengths of

e and f are l andm respectively

! DeÞne

p(a | e, m) =
m!

j =1

q(aj | j, l, m )

wherea = { a1, . . . am}
! Gives

p(f, a | e, m) =
m!

j =1

q(aj | j, l, m )t (f j | eaj )

! Note: Model 1 is a special case of Model 2, where
q(i | j, l, m ) = 1

l+1 for all i, j .



An Example

l = 6

m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

a = { 2, 3, 4, 5, 6, 6, 6}

p(a | e,7) = q(2 | 1, 6, 7) !

q(3 | 2, 6, 7) !

q(4 | 3, 6, 7) !

q(5 | 4, 6, 7) !

q(6 | 5, 6, 7) !

q(6 | 6, 6, 7) !

q(6 | 7, 6, 7)

p(f | a, e,7) = t (Le | the) !

t (programme | program) !

t (a | has) !

t (ete | been) !

t (mis | implemented) !

t (en | implemented) !

t (application | implemented)



An Example

l = 6

m = 7

e = And the program has been implemented

f = Le programme a ete mis en application

a = { 2, 3, 4, 5, 6, 6, 6}

p(f | a, e,7) = t (Le | the) !

t (programme | program) !

t (a | has) !

t (ete | been) !

t (mis | implemented) !

t (en | implemented) !

t (application | implemented)



IBM Model 2: The Generative Process

To generate a French string f from an English string e:

! Step 1: Pick an alignmenta = { a1, a2 . . . am} with
probability

m!

j =1

q(aj | j, l, m )

! Step 3: Pick the French words with probability

p(f | a, e, m) =
m!

j =1

t (f j | eaj )

The Þnal result:

p(f, a | e, m) = p(a | e, m)p(f | a, e, m) =
m!

j =1

q(aj | j, l, m )t (f j | eaj )



Recovering Alignments
! If we have parametersq andt, we can easily recover the most

likely alignment for any sentence pair

! Given a sentence paire1, e2, . . . , el , f 1, f 2, . . . , f m , deÞne

aj = arg max
a! { 0...l }

q(a|j, l, m ) ! t(f j |ea)

for j = 1 . . . m

e = And the program has been implemented

f = Le programme a ete mis en application
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The Parameter Estimation Problem
! Input to the parameter estimation algorithm:(e(k) , f (k) ) for

k = 1 . . . n. Eache(k) is an English sentence, eachf (k) is a
French sentence

! Output: parameterst(f |e) andq(i |j, l, m )

! A key challenge:we do not have alignments on our
training examples, e.g.,

e(100) = And the program has been implemented

f (100) = Le programme a ete mis en application



Parameter Estimation if the Alignments are Observed
! First: case where alignments are observed in training data.

E.g.,
e(100) = And the program has been implemented

f (100) = Le programme a ete mis en application

a(100) = !2, 3, 4, 5, 6, 6, 6"

! Training data is(e(k) , f (k) , a(k) ) for k = 1 . . . n. Eache(k) is
an English sentence, eachf (k) is a French sentence, eacha(k)

is an alignment
! Maximum-likelihood parameter estimates in this case are

trivial:

tML (f |e) =
Count(e, f )

Count(e)
qML (j |i, l, m ) =

Count(j |i, l, m )
Count(i, l, m )



Input: A training corpus(f (k ) , e(k ) , a(k ) ) for k = 1 . . . n, where
f (k ) = f (k )

1 . . . f (k )
m k , e(k ) = e(k )

1 . . . e(k )
l k

, a(k ) = a(k )
1 . . . a(k )

m k .

Algorithm:

! Set all countsc(. . .) = 0

! For k = 1 . . . n

! For i = 1 . . . mk, For j = 0 . . . lk ,

c(e(k)
j , f (k)

i ) ! c(e(k)
j , f (k)

i ) + ! (k, i, j )

c(e(k)
j ) ! c(e(k)

j ) + ! (k, i, j )

c(j |i, l, m ) ! c(j |i, l, m ) + ! (k, i, j )

c(i, l, m ) ! c(i, l, m ) + ! (k, i, j )

where! (k, i, j ) = 1 if a(k)
i = j , 0 otherwise.

Output: tML (f |e) = c(e,f )
c(e) , qML (j |i, l, m ) = c( j | i,l,m )

c( i,l,m )



Parameter Estimation with the EM Algorithm

! Training examples are(e(k) , f (k) ) for k = 1 . . . n. Eache(k) is
an English sentence, eachf (k) is a French sentence

! The algorithm is related to algorithm when alignments are
observed, but two key di! erences:

1. The algorithm isiterative. We start with some initial (e.g.,
random) choice for theq and t parameters. At each iteration
we compute some ÒcountsÓ based on the data together with
our current parameter estimates. We then re-estimate our
parameters with these counts, and iterate.

2. We use the following deÞnition for! (k, i, j ) at each iteration:

! (k, i, j ) =
q(j |i, l k , mk)t(f (k)

i |e(k)
j )

! lk
j =0 q(j |i, l k , mk)t(f (k)

i |e(k)
j )



Input: A training corpus(f (k) , e(k) ) for k = 1 . . . n, where
f (k) = f (k)

1 . . . f (k)
mk , e(k) = e(k)

1 . . . e(k)
lk

.

Initialization: Initializet(f |e) andq(j |i, l, m ) parameters (e.g.,
to random values).



For s = 1 . . . S
! Set all countsc(. . .) = 0
! For k = 1 . . . n

! For i = 1 . . . mk, For j = 0 . . . lk

c(e(k)
j , f (k)

i ) ! c(e(k)
j , f (k)

i ) + ! (k, i, j )

c(e(k)
j ) ! c(e(k)

j ) + ! (k, i, j )

c(j |i, l, m ) ! c(j |i, l, m ) + ! (k, i, j )

c(i, l, m ) ! c(i, l, m ) + ! (k, i, j )

where

! (k, i, j ) =
q(j |i, l k , mk)t(f (k)

i |e(k)
j )

! lk
j =0 q(j |i, l k , mk)t(f (k)

i |e(k)
j )

! Recalculate the parameters:

t(f |e) =
c(e, f )
c(e)

q(j |i, l, m ) =
c(j |i, l, m )
c(i, l, m )



! (k, i, j ) =
q(j |i, l k , mk)t(f (k)

i |e(k)
j )

! lk
j =0 q(j |i, l k , mk)t(f (k)

i |e(k)
j )

e(100) = And the program has been implemented

f (100) = Le programme a ete mis en application



JustiÞcation for the Algorithm
! Training examples are(e(k) , f (k) ) for k = 1 . . . n. Eache(k) is

an English sentence, eachf (k) is a French sentence

! The log-likelihood function:

L(t, q) =
n!

k=1

logp(f (k) |e(k) ) =
n!

k=1

log
!

a

p(f (k) , a|e(k) )

! The maximum-likelihood estimates are

arg max
t,q

L(t, q)

! The EM algorithm will converge to alocal maximumof the
log-likelihood function



Summary
! Key ideas in the IBM translation models:

! Alignment variables
! Translation parameters, e.g.,t(chien|dog)
! Distortion parameters, e.g.,q(2|1, 6, 7)

! The EM algorithm: an iterative algorithm for training theq
and t parameters

! Once the parameters are trained, we can recover the most
likely alignments on our training examples

e = And the program has been implemented

f = Le programme a ete mis en application
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Overview

! Learning phrases from alignments

! A phrase-based model

! Decoding in phrase-based models



Phrase-Based Models

! First stage in training a phrase-based model is extraction of a
phrase-based (PB) lexicon

! A PB lexicon pairs strings in one language with strings in
another language, e.g.,

nach Kanada ! in Canada
zur Konferenz ! to the conference
Morgen ! tomorrow
ßiege ! will ßy
. . .



An Example (from tutorial by Koehn and Knight)

! A training example (Spanish/English sentence pair):

Spanish: Maria no daba una bofetada a la bruja verde

English: Mary did not slap the green witch

! Some (not all) phrase pairs extracted from this example:

(Maria ! Mary), (bruja ! witch), (verde! green),
(no ! did not), (no daba una bofetada! did not slap),
(daba una bofetada a la! slap the)

! WeÕll see how to do this usingalignmentsfrom the IBM
models (e.g., from IBM model 2)



Recap: IBM Model 2

! IBM model 2 deÞnes a distributionp(a, f |e, m) wheref is
foreign (French) sentence,e is an English sentence,a is an
alignment, m is the length of the foreign sentence

! A useful by-product: once weÕve trained the model, for any
(f, e) pair, we can calculate

a! = arg max
a

p(a|f, e, m) = arg max
a

p(a, f |e, m)

under the model.a! is themost likely alignment

English: Mary did not slap the green witch

Spanish: Maria no daba una bofetada a la bruja verde



Representation as Alignment Matrix

Maria no daba una bofÕ a la bruja verde
Mary ¥
did ¥
not ¥
slap ¥ ¥ ¥
the ¥
green ¥
witch ¥

(Note: ÒbofÓÕ = ÒbofetadaÓ)

In IBM model 2, each foreign (Spanish) word is aligned to exactly one
English word. The matrix shows these alignments.



Finding Alignment Matrices

! Step 1: train IBM model 2 forp(f | e), and come up with
most likely alignment for each(e, f ) pair

! Step 2: train IBM model 2 forp(e | f ) and come up with
most likely alignment for each(e, f ) pair

! We now have two alignments:
take intersection of the two alignments as a starting
point



Alignment from p(f | e) model:
Maria no daba una bofÕ a la bruja verde

Mary ¥
did ¥
not ¥
slap ¥ ¥ ¥
the ¥
green ¥
witch ¥

Alignment from p(e | f ) model:
Maria no daba una bofÕ a la bruja verde

Mary ¥
did ¥
not ¥
slap ¥
the ¥
green ¥
witch ¥



Intersection of the two alignments:
Maria no daba una bofÕ a la bruja verde

Mary ¥
did
not ¥
slap ¥
the ¥
green ¥
witch ¥

The intersection of the two alignments has been found to be a
very reliable starting point



Heuristics for Growing Alignments

! Only explore alignment in union of p(f | e) and p(e | f )
alignments

! Add one alignment point at a time

! Only add alignment points which align a word that currently
has no alignment

! At first, restrict ourselves to alignment points that are
“neighbors” (adjacent or diagonal) of current alignment
points

! Later, consider other alignment points



The Þnal alignment, created by taking the intersection of the two
alignments, then adding new points using the growing heuristics:

Maria no daba una bofÕ a la bruja verde
Mary •
did •
not •
slap • • •
the • •
green •
witch •

Note that the alignment is no longer many-to-one: potentially multiple
Spanish words can be aligned to a single English word, and vice versa.



Extracting Phrase Pairs from the Alignment Matrix
Maria no daba una bofÕ a la bruja verde

Mary ¥
did ¥
not ¥
slap ¥ ¥ ¥
the ¥ ¥
green ¥
witch ¥

! A phrase-pair consists of a sequence of English words,e, paired
with a sequence of foreign words,f

! A phrase-pair(e, f ) is consistentif: 1) there is at least one word
in e aligned to a word inf ; 2) there are no words inf aligned to
words outsidee; 3) there are no words ine aligned to words
outsidef
e.g., (Mary did not, Maria no) is consistent. (Mary did, Maria no)
is not consistent

! We extract all consistent phrase pairs from the training example.



Probabilities for Phrase Pairs

! For any phrase pair(f, e) extracted from the training data,
we can calculate

t(f |e) =
Count(f, e)
Count(e)

e.g.,

t(daba una bofetada| slap) =
Count(daba una bofetada, slap)

Count(slap)



An Example Phrase Translation Table
An example from Koehn, EACL 2006 tutorial. (Note that we have
t(e|f ) not t(f |e) in this example.)

! Phrase Translations forden Vorschlag

English t(e|f) English t(e|f)
the proposal 0.6227 the suggestions 0.0114
Õs proposal 0.1068 the proposed 0.0114
a proposal 0.0341 the motion 0.0091
the idea 0.0250 the idea of 0.0091
this proposal 0.0227 the proposal , 0.0068
proposal 0.0205 its proposal 0.0068
of the proposal 0.0159 it 0.0068
the proposals 0.0159 ... ...



Overview

! Learning phrases from alignments

! A phrase-based model

! Decoding in phrase-based models



Phrase-Based Systems: A Sketch

Today we shall be debating the reopening of the Mont Blanc tunnel

Heute werden wir uber die Wiederero! nung
des Mont-Blanc-Tunnels diskutieren

Score = log q(Today| *, * )
! "# $
Language model

+ logt(Heute| Today)
! "# $

Phrase model

+ ! ! 0! "# $
Distortion model



Phrase-Based Systems: A Sketch

Today we shall bedebating the reopening of the Mont Blanc tunnel
Heute werden wir uber die Wiederero! nung

des Mont-Blanc-Tunnels diskutieren

Score = log q(we|*, Today) + log q(shall|Today, we) + log q(be|we, shall)
! "# $

Language model

+ logt(werden wir| we shall be)
! "# $

Phrase model

+ ! ! 0! "# $
Distortion model



Phrase-Based Systems: A Sketch

Today we shall be debatingthe reopening of the Mont Blanc tunnel
Heute werden wiruber die Wiederero! nung

des Mont-Blanc-Tunnels diskutieren

Score = log q(debating|shall, be)
! "# $

Language model

+ logt(diskutieren| debating)
! "# $

Phrase model

+ ! ! 6! "# $
Distortion model



Phrase-Based Systems: A Sketch

Today we shall be debating the reopeningof the Mont Blanc tunnel

Heute werden wiruber die Wiederero! nung
des Mont-Blanc-Tunnelsdiskutieren



Phrase-Based Systems: A Sketch

Today we shall be debating the reopening
of the Mont Blanc tunnel

Heute werden wir uber die Wiederero! nung
des Mont-Blanc-Tunnelsdiskutieren
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Phrase-based Translation
An example sentence:

wir m¬ussen auch diese kritik ernst nehmen

A phrase-based lexicon contains phrase entries(f, e ) wheref is a sequence of
one or more foreign words,e is a sequence of one or more English words.
Example phrase entries that are relevant to our example:

(wir m¬ussen, we must)

(wir m¬ussen auch, we must also)

(ernst, seriously)

Each phrase(f, e ) has a scoreg(f, e ). E.g.,

g(f, e ) = log
!

Count(f, e )
Count(e)

"



Phrase-based Models: DeÞnitions

! A phrase-based model consists of:

1. A phrase-based lexicon, consisting of entries(f, e ) such as

(wir m¬ussen, we must)

Each lexical entry has a scoreg(f, e ), e.g.,

g(wir m¬ussen, we must) = log
!

Count(wir m¬ussen, we must)
Count(we must)

"

2. A trigram language model, with parametersq(w|u, v). E.g.,
q(also|we, must).

3. A Òdistortion parameterÓ! (typically negative).



Phrase-based Translation: DeÞnitions

An example sentence:

wir m¬ussen auch diese kritik ernst nehmen

! For a particular input (source-language) sentencex1 . . . xn , a
phrase is a tuple(s, t, e), signifying that the subsequence
xs . . . xt in the source language sentence can be translated as
the target-language stringe, using an entry from the
phrase-based lexicon. E.g.,(1, 2, we must)

! P is the set of all phrases for a sentence.
! For any phrasep, s(p), t(p) ande(p) are its three

components.g(p) is the score for a phrase.



DeÞnitions

! A derivationy is a Þnite sequence of phrases,p1, p2, . . . pL ,
where eachpj for j ! { 1. . . L} is a member ofP.

! The lengthL can be any positive integer value.
! For any derivationy we usee(y) to refer to the underlying

translation deÞned by y. E.g.,

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

and

e(y) = we must also take this criticism seriously



Valid Derivations

! For an input sentencex = x1 . . . xn , we useY(x) to refer to
the set of valid derivations forx.

! Y(x) is the set of all Þnite length sequences of phrases
p1p2 . . . pL such that:

! Eachpk for k ! { 1 . . . L } is a member of the set of phrases
P for x1 . . . xn .

! Each word inx is translated exactly once.

! For all k ! { 1 . . . (L " 1)} , |t(pk) + 1 " s(pk+1 )| # d where
d $ 0 is a parameter of the model. In addition, we must
have|1 " s(p1)| # d



Examples

wir m¬ussen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

y = (1, 3, we must also), (1, 2, we must), (4, 5, this criticism), (6, 6, seriously)

y = (1, 2, we must), (7, 7, take), (3, 3, also), (4, 5, this criticism), (6, 6, seriously)



Examples

wir m¬ussen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

y = (1, 3, we must also), (1, 2, we must), (4, 5, this criticism), (6, 6, seriously)

y = (1, 2, we must), (7, 7, take), (3, 3, also), (4, 5, this criticism), (6, 6, seriously)



Examples

wir m¬ussen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)

y = (1, 3, we must also), (1, 2, we must), (4, 5, this criticism), (6, 6, seriously)

y = (1, 2, we must), (7, 7, take), (3, 3, also), (4, 5, this criticism), (6, 6, seriously)



Scoring Derivations
The optimal translation under the model for a source-language
sentencex will be

arg max
y! Y(x)

f (y)

In phrase-based systems, the score for any derivation y is
calculated as follows:

h(e(y)) +
L!

k=1

g(pk) +
L " 1!

k=0

! ! |t(pk) + 1 " s(pk+1 )|

where the parameter! is the distortion penalty (typically
negative). (We deÞnet(p0) = 0 ).

h(e(y)) is the trigram language model score.g(pk) is the
phrase-based score forpk.



An Example

wir m¬ussen auch diese kritik ernst nehmen

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously)



Decoding Algorithm: DeÞnitions

! A state is a tuple
(e1, e2, b, r, ! )

wheree1, e2 are English words,b is a bit-string of lengthn, r
is an integer specifying the end-point of the last phrase in the
state, and! is the score for the state.

! The initial state is

q0 = ( ! , ! , 0n, 0, 0)

where0n is bit-string of lengthn, with n zeroes.



States, and the Search Space

wir m¬ussen auch diese kritik ernst nehmen

(! , ! , 0000000, 0, 0)



Transitions

! We haveph(q) for any stateq, which returns set of phrases
that are allowed to follow stateq = ( e1, e2, b, r, ! ).

! For a phrasep to be a member ofph(q), it must satisfy the
following conditions:

! p must not overlap with the bit-stringb. I.e., we needbi = 0
for i ! { s(p) . . . t(p)} .

! The distortion limit must not be violated. More formally, we
must have|r + 1 " s(p)| # d whered is the distortion limit.



An Example of the Transition Function

wir m¬ussen auch diese kritik ernst nehmen

(must, also, 1110000, 3, ! 2.5)

In addition, we deÞnenext(q, p) to be the state formed by
combining stateq with phrasep.



An Example of the Transition Function

wir m¬ussen auch diese kritik ernst nehmen

(must, also, 1110000, 3, ! 2.5)

In addition, we deÞnenext(q, p) to be the state formed by
combining stateq with phrasep.



Thenext function

Formally, ifq = ( e1, e2, b, r, ! ), andp = ( s, t, "1 . . . "M ), then
next(q, p) is the stateq! = ( e!

1, e!
2, b!, r !, ! !) deÞned as follows:

! First, for convenience, deÞne"" 1 = e1, and"0 = e2.
! DeÞnee!

1 = "M " 1, e!
2 = "M .

! DeÞneb!
i = 1 for i ! { s . . . t} . DeÞneb!

i = bi for i /! { s . . . t}
! DeÞner ! = t
! DeÞne

! ! = ! + g(p) +
M!

i =1

logq("i |"i " 2, "i " 1) + # " |r + 1 # s|



The Equality Function

! The function
eq(q, q!)

returns true or false.

! Assumingq = ( e1, e2, b, r, ! ), andq! = ( e!
1, e!

2, b!, r !, ! !),
eq(q, q!) is true if and only ife1 = e!

1, e2 = e!
2, b= b! and

r = r !.



The Decoding Algorithm

! Inputs: sentencex1 . . . xn . Phrase-based model(L , h, d, ! ).
The phrase-based model deÞnes the functionsph(q) and
next(q, p).

! Initialization: setQ0 = { q0} , Qi = ! for i = 1 . . . n.
! For i = 0 . . . n " 1

! For each stateq # beam(Qi ), for each phrasep # ph(q):
(1) q! = next(q, p)
(2) Add(Qi , q!, q, p) wherei = len(q!)

! Return: highest scoring state inQn. Backpointers can be
used to Þnd the underlying sequence of phrases (and the
translation).



DeÞnition of Add(Q, q!, q, p)

! If there is someq!! " Q such thateq(q!!, q!) = True:
! If ! (q!) > ! (q!!)

! Q = { q!} # Q \ { q!! }
! set bp(q!) = ( q, p)

! Else return

! Else
! Q = Q # { q!}
! set bp(q!) = ( q, p)



DeÞnition of beam(Q)

DeÞne
! ! = arg max

q" Q
! (q)

i.e., ! ! is the highest score for any state inQ.

DeÞne" ! 0 to be thebeam-widthparameter
Then

beam(Q) = { q " Q : ! (q) ! ! ! # " }



The Decoding Algorithm

! Inputs: sentencex1 . . . xn . Phrase-based model(L , h, d, ! ).
The phrase-based model deÞnes the functionsph(q) and
next(q, p).

! Initialization: setQ0 = { q0} , Qi = ! for i = 1 . . . n.
! For i = 0 . . . n " 1

! For each stateq # beam(Qi ), for each phrasep # ph(q):
(1) q! = next(q, p)
(2) Add(Qi , q!, q, p) wherei = len(q!)

! Return: highest scoring state inQn. Backpointers can be
used to Þnd the underlying sequence of phrases (and the
translation).


