
Probabilistic	Context	Free	
Grammars

!"#$%&'()*&%+,-.%!(/0"*'%1-''(#&

Overview

I Probabilistic Context-Free Grammars (PCFGs)

I The CKY Algorithm for parsing with PCFGs

A ProbabilisticContext-Free Grammar (PCFG)

S) NP VP 1.0
VP) Vi 0.4
VP) Vt NP 0.4
VP) VP PP 0.2
NP) DT NN 0.3
NP) NP PP 0.7
PP) P NP 1.0

Vi) sleeps 1.0
Vt) saw 1.0
NN) man 0.7
NN) woman 0.2
NN) telescope 0.1
DT) the 1.0
IN) with 0.5
IN) in 0.5

! Probability of a tree t with rules

↵1 ! �1,↵2 ! �2, . . . ,↵n ! �n

is p(t) =
Qn

i=1 q(↵i ! �i) where q(↵ ! �) is the probability
for rule ↵ ! �.

DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP

NP ! DT NN
0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP

DT ! the
1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP

NN ! dog
0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP

VP ! Vi
0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi

Vi ! laughs
0.5

the dog laughs

DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs

Properties of PCFGs

I Assigns a probability to eachleft-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentences, set of derivations for that sentence is
T (s). Then a PCFG assigns a probabilityp(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

I The most likely parse tree for a sentences is

arg max

t2T (s)
p(t)

Properties of PCFGs

I Assigns a probability to eachleft-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentences, set of derivations for that sentence is
T (s). Then a PCFG assigns a probabilityp(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

I The most likely parse tree for a sentences is

arg max
t! T (s)

p(t)

Properties of PCFGs

! Assigns a probability to eachleft-most derivation, or parse-tree,
allowed by the underlying CFG

! Say we have a sentences, set of derivations for that sentence is
T (s). Then a PCFG assigns a probabilityp(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

! The most likely parse tree for a sentences is

arg max

t2T (s)
p(t)

Data for Parsing Experiments: Treebanks
! Penn WSJ Treebank = 50,000 sentences with associated trees

! Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian

NNP

Utilities

NNPS

NP

had

VBD

1988

CD

revenue

NN

NP

of

IN

C$

$

1.16

CD

billion

CD

,

PUNC,

QP

NP

PP

NP

mainly

RB

ADVP

from

IN

its

PRP$

natural

JJ

gas

NN

and

CC

electric

JJ

utility

NN

businesses

NNS

NP

in

IN

Alberta

NNP

,

PUNC,

NP

where

WRB

WHADVP

the

DT

company

NN

NP

serves

VBZ

about

RB

800,000

CD

QP

customers

NNS

.

PUNC.

NP

VP

S

SBAR

NP

PP

NP

PP

VP

S

TOP

Canadian Utilities had 1988 revenue of C$ 1.16 billion ,
mainly from its natural gas and electric utility businesses in
Alberta , where the company serves about 800,000
customers .

Deriving a PCFG from a Treebank

I Given a set of example trees (a treebank), the underlying
CFG can simply be all rules seen in the corpus

I Maximum Likelihood estimates:

qML(↵ ! �) =
Count(↵ ! �)

Count(↵)

where the counts are taken from a training set of example
trees.

I If the training data is generated by a PCFG, then as the
training data size goes to infinity, the maximum-likelihood
PCFG will converge to the same distribution as the “true”
PCFG.

PCFGs

Booth and Thompson (1973) showed that a CFG with rule
probabilities correctly deÞnes a distribution over the set of
derivations provided that:

1. The rule probabilities deÞne conditional distributions over the
di! erent ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a Þnite
number of steps is 1. (This condition is not really a practical
concern.)

Parsing with a PCFG

! Given a PCFG and a sentences, deÞneT (s) to be the set of
trees withs as the yield.

! Given a PCFG and a sentences, how do we Þnd

arg max
t! T (s)

p(t)

Chomsky Normal Form

A context free grammar G = (N, ! , R, S) in Chomsky
Normal Form is as follows

! N is a set of non-terminal symbols

! ! is a set of terminal symbols

! R is a set of rules which take one of two forms:
! X ! Y1Y2 for X " N , and Y1, Y2 " N
! X ! Y for X " N , and Y " !

! S " N is a distinguished start symbol

A Dynamic Programming Algorithm
I Given a PCFG and a sentence s, how do we find

max

t2T (s)
p(t)

I Notation:

n = number of words in the sentence

wi = i’th word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

I Define a dynamic programming table

! [i, j,X] = maximum probability of a constituent with non-terminal X

spanning words i . . . j inclusive

I Our goal is to calculate maxt2T (s) p(t) = ! [1, n, S]

An Example

the dog saw the man with the telescope

A Dynamic Programming Algorithm

! Base case deÞnition: for alli = 1 . . . n, for X 2 N

⇡[i, i, X] = q(X ! wi)

(note: deÞneq(X ! wi) = 0 if X ! wi is not in the
grammar)

! Recursive deÞnition: for alli = 1 . . . n, j = (i + 1) . . . n,
X 2 N ,

⇡(i, j, X) = max

X! Y Z" R,

s2{i... (j �1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y)⇥ ⇡(s+ 1, j, Z))

An Example

! (i, j,X) = max
X!Y Z2R,

s2{i... (j �1)}

(q(X ! Y Z) ⇥ ! (i, s, Y) ⇥ ! (s + 1 , j, Z))

the dog saw the man with the telescope

The Full Dynamic Programming Algorithm
Input: a sentence s = x1 . . . xn, a PCFG G = (N, ⌃, S, R, q).
Initialization:
For all i 2 {1. . . n}, for all X 2 N ,

⇡(i, i, X) =
!

q(X ! xi) if X ! xi 2 R
0 otherwise

Algorithm:

I For l = 1 . . . (n � 1)

I For i = 1 . . . (n � l)
I Set j = i + l
I For all X 2 N , calculate

⇡(i, j, X) = max
X!Y Z2R,

s! { i... (j " 1) }

(q(X ! Y Z) ⇥ ⇡(i, s, Y) ⇥ ⇡(s + 1 , j, Z))

and

bp(i, j, X) = arg max
X!Y Z2R,

s! { i... (j " 1) }

(q(X ! Y Z) ⇥ ⇡(i, s, Y) ⇥ ⇡(s + 1 , j, Z))

Output: Return ⇡(1, n, S) = max t2T (s) p(t), and backpointers bp
which allow recovery of arg maxt2T (s) p(t).

A Dynamic Programming Algorithm for the Sum
! Given a PCFG and a sentences, how do we Þnd

!

t2T (s)

p(t)

! Notation:

n = number of words in the sentence

wi = iÕth word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

! DeÞne a dynamic programming table

⇡[i, j, X] = sum of probabilities for constituent with non-terminalX

spanning wordsi . . . j inclusive

! Our goal is to calculate
"

t2T (s) p(t) = ⇡[1, n, S]

Summary

! PCFGs augments CFGs by including a probability for each
rule in the grammar.

! The probability for a parse tree is the product of probabilities
for the rules in the tree

! To build a PCFG-parsed parser:

1. Learn a PCFG from a treebank
2. Given a test data sentence, use the CKY algorithm to

compute the highest probability tree for the sentence under
the PCFG

2*3*#)*#/$%4",&(#5

Unlabeled Dependency Parses

root John saw a movie

! root is a specialroot symbol

! Each dependency is a pair(h, m) whereh is the index of a head
word, m is the index of a modiÞer word. In the Þgures, we
represent a dependency(h, m) by a directed edge fromh to m.

! Dependencies in the above example are(0, 2), (2, 1), (2, 4), and
(4, 3). (We take 0 to be the root symbol.)

All Dependency Parses forJohn saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

A More Complex Example

saw a movieJohnroot he liked todaythat

Conditions on Dependency Structures

saw a movieJohnroot he liked todaythat

! The dependency arcs form adirected tree, with the root
symbol at the root of the tree.
(DeÞnition: A directed tree rooted atroot is a tree, where for
every wordw other than the root, there is a directed path
from root to w.)

! There are no Òcrossing dependenciesÓ.
Dependency structures with no crossing dependencies are
sometimes referred to asprojective structures.

Dependency Parsing Resources

! CoNLL 2006 conference had a Òshared taskÓ with dependency
parsing of 12 languages (Arabic, Chinese, Czech, Danish, Dutch,
German, Japanese, Portuguese, Slovene, Spanish, Swedish,
Turkish). 19 di! erent groups developed dependency parsing
systems. (See also CoNLL 2007).

! PhD thesis on the topic: Ryan McDonald,Discriminative Training
and Spanning Tree Algorithms for Dependency Parsing, University
of Pennsylvania.

! For some languages, e.g., Czech, there are Òdependency banksÓ
available which contain training data in the form of sentences
paired with dependency structures

! For other languages, we can extract dependency structures from
treebanks

S(told,V)

NP(Hillary,NNP)

NNP

Hillary

VP(told,VBD)

V(told,VBD)

VBD

told

NP(Clinton,NNP)

NNP

Clinton

SBAR(that,COMP)

COMP

that

S

NP(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP(president,NN)

NN

president

Unlabeled Dependencies:
(0,2) (for root ! told)
(2,1) (for told ! Hillary)
(2,3) (for told ! Clinton)
(2,4) (for told ! that)

(4,6) (for that ! was)
(6,5) (for was ! she)
(6,7) (for was ! president)

E! ciency of Dependency Parsing

! PCFG parsing isO(n3G3) wheren is the length of the
sentence,G is the number of non-terminals in the grammar

! Lexicalized PCFG parsing isO(n5G3) wheren is the length
of the sentence,G is the number of non-terminals in the
grammar.

! Unlabeled dependency parsing isO(n3).

GLMs for Dependency parsing

! x is a sentence

! GEN (x) is set of all dependency structures forx

! f (x, y) is a feature vector for a sentencex paired with a
dependency parsey

GLMs for Dependency parsing

! To run the perceptron algorithm, we must be able to
e! ciently calculate

arg max
y! GEN (x)

w áf (x, y)

! Local feature vectors: deÞne

f (x, y) =
!

(h,m)! y

g(x, h, m)

whereg(x, h, m) maps a sentencex and a dependency
(h, m) to a local feature vector

! Can then use dynamic programming to calculate

arg max
y! GEN (x)

w áf (x, y) = arg max
y! GEN (x)

!

(h,m)! y

w ág(x, h, m)

DeÞnition of Local Feature Vectors

! Features from McDonald et al. (2005):

! Note: deÞnewi to be the iÕth word in the sentence,t i to be
the part-of-speech (POS) tag for theiÕth word.

! Unigramfeatures: Identity ofwh. Identity of wm . Identity of
th. Identity of tm .

! Bigram features: Identity of the 4-tuple!wh, wm , th, tm ".
Identity of sub-sets of this 4-tuple, e.g., identity of the pair
!wh, wm ".

! Contextual features:Identity of the 4-tuple
! th, th+1 , tm! 1, tm ". Similar features which considerth! 1

and tm+1 , giving 4 possible feature types.
! In-between features:Identity of triples! th, t, t m " for any tag

t seen between wordsh and m.

Results from McDonald (2005)

Method Accuracy
Collins (1997) 91.4%
1st order dependency 90.7%
2nd order dependency 91.5%

! Accuracy is percentage of correct unlabeled dependencies

! Collins (1997) is result from a lexicalized context-free parser,
with dependencies extracted from the parserÕs output

! 1st order dependency is the method just described.
2nd order dependency is a model that uses richer
representations.

! Advantages of the dependency parsing approaches: simplicity,
e! ciency (O(n3) parsing time).

