Probabilistic Context Free
Grammars

Many slides from Michael Collins

Overview

» Probabilistic Context-Free Grammars (PCFGs)

» The CKY Algorithm for parsing with PCFGs

A Probabilistic Context-Free Grammar (PCFG)

S — NP VP 10 Vi = sleeps 1.0
. Vt = saw 1.0
VP = Vi 0.4 NN = man 07
VP = Vt NP |04 NN ijan 0
Vb = VP PP 0.2 NN = telescope 0.1
NP = DT NN |03 ST —tre P =
NP = NP PP 0.7 N = with 0'5
PP = P NP 1.0 N = i 0.5
» Probability of a tree ¢ with rules
&1%617&2%527"'7an_>6n

is p(t) = [[;—; 9(a; = B;) where g(av — [3) is the probability
for rule o — 0.

DERIVATION RULES USED PROBABILITY
S

DERIVATION RULES USED PROBABILITY

> S — NP VP 10
NP VP

DERIVATION RULES USED PROBABILITY

> S — NP VP 10

NP VP NP — DT NN 03

DT NN VP

DERIVATION
S

NP VP
DT NN VP
the NN VP

RULES USED
S — NP VP
NP — DT NN
DT — the

PROBABILITY
1.0

0.3
1.0

DERIVATION
S

NP VP

DT NN VP
the NN VP
the dog VP

RULES USED
S — NP VP
NP — DT NN
DT — the
NN — dog

PROBABILITY
1.0

0.3
1.0
0.1

DERIVATION
S

NP VP

DT NN VP
the NN VP
the dog VP
the dog Vi

RULES USED
S — NP VP
NP — DT NN
DT — the
NN — dog
VP — Vi

PROBABILITY
1.0

0.3
1.0
0.1
0.4

DERIVATION
S

NP VP

DT NN VP
the NN VP
the dog VP
the dog Vi

the dog laughs

RULES USED
S — NP VP
NP — DT NN
DT — the
NN — dog
VP — Vi

Vi — laughs

PROBABILITY
1.0

0.3
1.0
0.1
0.4
0.5

Properties of PCFGs

» Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

Properties of PCFGs

» Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

» Say we have a sentence s, set of derivations for that sentence is
T (s). Then a PCFG assigns a probability p(¢) to each member of
T (s). i.e., we now have a ranking in order of probability.

Properties of PCFGs

» Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

» Say we have a sentence s, set of derivations for that sentence is
7T (s). Then a PCFG assigns a probability p(¢) to each member of
T (s). i.e., we now have a ranking in order of probability.

» The most likely parse tree for a sentence s is

arg max pl(t
gtET(S)p()

Data for Parsing Experiments: Treebanks
» Penn WSJ Treebank = 50,000 sentences with associated trees

» Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

ND/TTP\\,
P
Nmps VWP

P
cD/\N I/\P RB NP/\PP

‘P PRPS JJ NN cC J N s |NANP
%NC, N/\SBAR
NKNP PUNC, WHA‘DVP/\S
WLB N/\P

O e T

/mc.

RAD

Canadian Utilities had 1988 revenue of C$ 1.16 billion , mainly from its natural gas and electric utility businessesin Alberta , where the company serves about BOLOOO customers .

Deriving a PCFG from a Treebank

» Given a set of example trees (a treebank), the underlying
CFG can simply be all rules seen in the corpus

» Maximum Likelihood estimates:

Count(a — [3)

e = f) = Count(«)

where the counts are taken from a training set of example
trees.

» If the training data is generated by a PCFG, then as the
training data size goes to infinity, the maximum-likelihood

PCFG will converge to the same distribution as the “true”
PCFG.

PCFGs

Booth and Thompson (1973) showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivations provided that:

1. The rule probabilities define conditional distributions over the
different ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite
number of steps is 1. (This condition is not really a practical
concern.)

Parsing with a PCFG

» Given a PCFG and a sentence s, define 7 (s) to be the set of
trees with s as the yield.

» Given a PCFG and a sentence s, how do we find

arg max p(¢)

Chomsky Normal Form

A context free grammar G = (N, X, R,.S) in Chomsky
Normal Form is as follows

» IV is a set of non-terminal symbols

» X Is a set of terminal symbols

» [Is a set of rules which take one of two forms:

» X - Y7Y, for X € N, and Yi,.Yo € N
» X Y for X e N,and Y € X

» S € N is a distinguished start symbol

A Dynamic Programming Algorithm

» Given a PCFG and a sentence s, how do we find

a t
2P0

» Notation:

n = number of words in the sentence
w; = ¢ th word in the sentence
N = the set of non-terminals in the grammar

S = the start symbol in the grammar

» Define a dynamic programming table

wli, 7, X] = maximum probability of a constituent with non-terminal X

spanning words 1 ... 5 inclusive

» Our goal is to calculate max;e7s) p(t) = 7m[1,n, 5]

An Example

the dog saw the man with the telescope

A Dynamic Programming Algorithm

» Base case definition: forallz=1...n, for X €¢ N

mli, 1, X] = ¢(X — w;)

(note: define ¢(X — w;) =0 if X — w; is not in the
grammar)

» Recursive definition: foralli=1...n, j=(+1)...n,
X €N,

(i, 5, X) = max (¢(X = YZ)x7(i,sY)xn(s+1,5,2))

se{i...(j—1)}

An Example

n(i,5,X) = max (¢(X = YZ)xn(i,s,Y) x7(s+ 1,5, 7))

se{i...(j—1)}
the dog saw the man with the telescope

The Full Dynamic Programming Algorithm

Input: a sentence s=xz;...2,, a PCFG G = (N,X, 5, R, q).
Initialization:
Foralli € {1...n}, forall X € N,

m(i i, X) = { (X = @) X =z € R
0 otherwise
Algorithm:
» Fori=1...(n—1)
» Fori=1...(n—1)

» Set) =1+

» For all X € N, calculate
(1,7, X)= max (¢(X = YZ) xn(i,s,Y)xm(s+1,5,72))

s€fi...(j—1)}

and
bp(i,j,X) =arg max (¢(X =-YZ)x7w(isY)xn(s+1,5,2))

X—>YZER,

se{i...(j—1)}

A Dynamic Programming Algorithm for the Sum
» Given a PCFG and a sentence s, how do we find
> p(t)
teT(s)
» Notation:
n = number of words in the sentence
w; = ¢ th word in the sentence
N = the set of non-terminals in the grammar

S = the start symbol in the grammar

» Define a dynamic programming table

m|i,7,X]| = sum of probabilities for constituent with non-terminal X

spanning words ¢ ... j inclusive

» Qur goal is to calculate) , ., p(t) = w[l,n, S|

Summary

» PCFGs augments CFGs by including a probability for each
rule in the grammar.

» The probability for a parse tree is the product of probabilities
for the rules in the tree

» To build a PCFG-parsed parser:

1. Learn a PCFG from a treebank
2. Given a test data sentence, use the CKY algorithm to
compute the highest probability tree for the sentence under

the PCFG

Dependency Parsing

Unlabeled Dependency Parses

root John saw a movie

» root is a special root symbol

» Each dependency is a pair (h, m) where h is the index of a head
word, m is the index of a modifier word. In the figures, we

represent a dependency (h, m) by a directed edge from h to m.

» Dependencies in the above example are (0,2), (2,1), (2,4), and
(4,3). (We take 0 to be the root symbol.)

All Dependency Parses for John saw Mary

root John saw Mary @
&/\ root John saw Mary
root John saw Mary

DN~

root John saw Mary toot John saw Mary

A More Complex Example

A AN

root John saw a movie that he liked today

Conditions on Dependency Structures

A DA

root John sa movie that he liked today

» The dependency arcs form a directed tree, with the root
symbol at the root of the tree.
(Definition: A directed tree rooted at root is a tree, where for
every word w other than the root, there is a directed path
from root to w.)

» There are no “crossing dependencies’.
Dependency structures with no crossing dependencies are
sometimes referred to as projective structures.

Dependency Parsing Resources

» CoNLL 2006 conference had a “shared task” with dependency
parsing of 12 languages (Arabic, Chinese, Czech, Danish, Dutch,
German, Japanese, Portuguese, Slovene, Spanish, Swedish,
Turkish). 19 different groups developed dependency parsing
systems. (See also CoNLL 2007).

» PhD thesis on the topic: Ryan McDonald, Discriminative Training
and Spanning Tree Algorithms for Dependency Parsing, University
of Pennsylvania.

» For some languages, e.g., Czech, there are “dependency banks”
available which contain training data in the form of sentences
paired with dependency structures

» For other languages, we can extract dependency structures from
treebanks

S(told,V)

NP(Hillary, NNP)
|

NNP
|
Hillary
V(told,VBD)
|
VBD
|
told

Unlabeled Dependencies:

(0,2) (for root — told)
(2,1) (for told — Hillary)
(2,3) (for told — Clinton)
(2,4) (for told — that)

VP(told,VBD)

NP(Clinton,NNP) SBAR(that, COMP)
|
NNP
|
Clinton CO|MP S
that /\
NP(she,PRP) VP (was,Vt)
|
PRP
| Vit NP (president,NN)
she | |
was NN
|
president

(4,6) (for that — was)
(6,5) (for was — she)
(6,7) (for was — president)

Efficiency of Dependency Parsing

» PCFG parsing is O(n?’G?) where n is the length of the
sentence, (G is the number of non-terminals in the grammar

» Lexicalized PCFG parsing is O(n°G?) where n is the length
of the sentence, (G is the number of non-terminals in the

grammar.

» Unlabeled dependency parsing is O(n?).

GLMs for Dependency parsing

» T IS a sentence
» GEN(x) is set of all dependency structures for x

» f(x,y) is a feature vector for a sentence x paired with a
dependency parse y

GLMs for Dependency parsing

» To run the perceptron algorithm, we must be able to
efficiently calculate

arg 1ma 1 (x,
5 yEGEliT((a:) (y)

» Local feature vectors: define
(h,m)ey

where g(x, h, m) maps a sentence x and a dependency
(h,m) to a local feature vector

» Can then use dynamic programming to calculate

a a - f = a a : h
rg max w-f(ry) —arg max (h%):ey g(z, h,m)

Definition of Local Feature Vectors

» Features from McDonald et al. (2005):

>

Note: define w; to be the 2'th word in the sentence, ¢; to be
the part-of-speech (POS) tag for the ¢'th word.

Unigram features: ldentity of wy. ldentity of w,,. ldentity of
tp. ldentity of £,,.

Bigram features: Identity of the 4-tuple (wp, Wy, th, tm).
|dentity of sub-sets of this 4-tuple, e.g., identity of the pair
(Wh, Wi) -

Contextual features: ldentity of the 4-tuple
(thythat,tm—1,tm). Similar features which consider t;_4
and t,,.1, giving 4 possible feature types.

In-between features: ldentity of triples (ty,t,t,,) for any tag
t seen between words h and m.

Results from McDonald (2005)

Method Accuracy
Collins (1997) 91.4%
1st order dependency 90.7%
2nd order dependency 91.5%

» Accuracy is percentage of correct unlabeled dependencies

» Collins (1997) is result from a lexicalized context-free parser,
with dependencies extracted from the parser’s output

» 1st order dependency is the method just described.
2nd order dependency is a model that uses richer
representations.

» Advantages of the dependency parsing approaches: simplicity,
efficiency (O(n?) parsing time).

