
Probabilistic	Context	Free	
Grammars

Many	slides	from	Michael	Collins



Overview

I Probabilistic Context-Free Grammars (PCFGs)

I The CKY Algorithm for parsing with PCFGs



A Probabilistic Context-Free Grammar (PCFG)

S ) NP VP 1.0
VP ) Vi 0.4
VP ) Vt NP 0.4
VP ) VP PP 0.2
NP ) DT NN 0.3
NP ) NP PP 0.7
PP ) P NP 1.0

Vi ) sleeps 1.0
Vt ) saw 1.0
NN ) man 0.7
NN ) woman 0.2
NN ) telescope 0.1
DT ) the 1.0
IN ) with 0.5
IN ) in 0.5

I Probability of a tree t with rules

↵1 ! �1,↵2 ! �2, . . . ,↵n ! �n

is p(t) =
Qn

i=1 q(↵i ! �i) where q(↵ ! �) is the probability
for rule ↵ ! �.



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP

NP ! DT NN
0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP

DT ! the
1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP

NN ! dog
0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP

VP ! Vi
0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi

Vi ! laughs
0.5

the dog laughs



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs



Properties of PCFGs

I Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentence s, set of derivations for that sentence is
T (s). Then a PCFG assigns a probability p(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

I The most likely parse tree for a sentence s is

arg max

t2T (s)
p(t)



Properties of PCFGs

I Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentence s, set of derivations for that sentence is
T (s). Then a PCFG assigns a probability p(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

I The most likely parse tree for a sentence s is

arg max

t2T (s)
p(t)



Properties of PCFGs

I Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentence s, set of derivations for that sentence is
T (s). Then a PCFG assigns a probability p(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

I The most likely parse tree for a sentence s is

arg max

t2T (s)
p(t)



Data for Parsing Experiments: Treebanks

I Penn WSJ Treebank = 50,000 sentences with associated trees

I Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian

NNP

Utilities

NNPS

NP

had

VBD

1988

CD

revenue

NN

NP

of

IN

C$

$

1.16

CD

billion

CD

,

PUNC,

QP

NP

PP

NP

mainly

RB

ADVP

from

IN

its

PRP$

natural

JJ

gas

NN

and

CC

electric

JJ

utility

NN

businesses

NNS

NP

in

IN

Alberta

NNP

,

PUNC,

NP

where

WRB

WHADVP

the

DT

company

NN

NP

serves

VBZ

about

RB

800,000

CD

QP

customers

NNS

.

PUNC.

NP

VP

S

SBAR

NP

PP

NP

PP

VP

S

TOP

Canadian Utilities had 1988 revenue of C$ 1.16 billion ,

mainly from its natural gas and electric utility businesses in

Alberta , where the company serves about 800,000

customers .



Deriving a PCFG from a Treebank

I Given a set of example trees (a treebank), the underlying
CFG can simply be all rules seen in the corpus

I Maximum Likelihood estimates:

qML(↵ ! �) =
Count(↵ ! �)

Count(↵)

where the counts are taken from a training set of example
trees.

I If the training data is generated by a PCFG, then as the
training data size goes to infinity, the maximum-likelihood
PCFG will converge to the same distribution as the “true”
PCFG.



PCFGs

Booth and Thompson (1973) showed that a CFG with rule
probabilities correctly defines a distribution over the set of
derivations provided that:

1. The rule probabilities define conditional distributions over the
di↵erent ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a finite
number of steps is 1. (This condition is not really a practical
concern.)



Parsing with a PCFG

I Given a PCFG and a sentence s, define T (s) to be the set of
trees with s as the yield.

I Given a PCFG and a sentence s, how do we find

arg max

t2T (s)
p(t)



Chomsky Normal Form

A context free grammar G = (N,⌃, R, S) in Chomsky
Normal Form is as follows

I N is a set of non-terminal symbols

I
⌃ is a set of terminal symbols

I R is a set of rules which take one of two forms:
I

X ! Y1Y2 for X 2 N , and Y1, Y2 2 N

I
X ! Y for X 2 N , and Y 2 ⌃

I S 2 N is a distinguished start symbol



A Dynamic Programming Algorithm
I Given a PCFG and a sentence s, how do we find

max

t2T (s)
p(t)

I Notation:

n = number of words in the sentence

wi = i’th word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

I Define a dynamic programming table

⇡[i, j,X] = maximum probability of a constituent with non-terminal X

spanning words i . . . j inclusive

I Our goal is to calculate maxt2T (s) p(t) = ⇡[1, n, S]



An Example

the dog saw the man with the telescope



A Dynamic Programming Algorithm

I Base case definition: for all i = 1 . . . n, for X 2 N

⇡[i, i, X] = q(X ! wi)

(note: define q(X ! wi) = 0 if X ! wi is not in the
grammar)

I Recursive definition: for all i = 1 . . . n, j = (i+ 1) . . . n,
X 2 N ,

⇡(i, j,X) = max

X!Y Z2R,

s2{i...(j�1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y )⇥ ⇡(s+ 1, j, Z))



An Example

⇡(i, j,X) = max

X!Y Z2R,

s2{i...(j�1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y )⇥ ⇡(s+ 1, j, Z))

the dog saw the man with the telescope



The Full Dynamic Programming Algorithm
Input: a sentence s = x1 . . . xn, a PCFG G = (N,⌃, S,R, q).
Initialization:
For all i 2 {1 . . . n}, for all X 2 N ,

⇡(i, i,X) =

⇢
q(X ! xi) if X ! xi 2 R

0 otherwise

Algorithm:

I For l = 1 . . . (n� 1)

I For i = 1 . . . (n� l)

I Set j = i+ l

I For all X 2 N , calculate

⇡(i, j,X) = max

X!Y Z2R,

s2{i...(j�1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y )⇥ ⇡(s+ 1, j, Z))

and

bp(i, j,X) = arg max

X!Y Z2R,

s2{i...(j�1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y )⇥ ⇡(s+ 1, j, Z))

Output: Return ⇡(1, n, S) = maxt2T (s) p(t), and backpointers bp

which allow recovery of argmaxt2T (s) p(t).



A Dynamic Programming Algorithm for the Sum
I Given a PCFG and a sentence s, how do we findX

t2T (s)

p(t)

I Notation:

n = number of words in the sentence

wi = i’th word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

I Define a dynamic programming table

⇡[i, j,X] = sum of probabilities for constituent with non-terminal X

spanning words i . . . j inclusive

I Our goal is to calculate
P

t2T (s) p(t) = ⇡[1, n, S]



Summary

I PCFGs augments CFGs by including a probability for each
rule in the grammar.

I The probability for a parse tree is the product of probabilities
for the rules in the tree

I To build a PCFG-parsed parser:

1. Learn a PCFG from a treebank
2. Given a test data sentence, use the CKY algorithm to

compute the highest probability tree for the sentence under
the PCFG



Dependency	Parsing



Unlabeled Dependency Parses

root John saw a movie

I
root is a special root symbol

I Each dependency is a pair (h,m) where h is the index of a head
word, m is the index of a modifier word. In the figures, we
represent a dependency (h,m) by a directed edge from h to m.

I Dependencies in the above example are (0, 2), (2, 1), (2, 4), and
(4, 3). (We take 0 to be the root symbol.)



All Dependency Parses for John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary

root John saw Mary



A More Complex Example

saw a movieJohnroot he liked todaythat



Conditions on Dependency Structures

saw a movieJohnroot he liked todaythat

I
The dependency arcs form a directed tree, with the root

symbol at the root of the tree.

(Definition: A directed tree rooted at root is a tree, where for

every word w other than the root, there is a directed path

from root to w.)

I
There are no “crossing dependencies”.

Dependency structures with no crossing dependencies are

sometimes referred to as projective structures.



Dependency Parsing Resources

I CoNLL 2006 conference had a “shared task” with dependency
parsing of 12 languages (Arabic, Chinese, Czech, Danish, Dutch,
German, Japanese, Portuguese, Slovene, Spanish, Swedish,
Turkish). 19 di↵erent groups developed dependency parsing
systems. (See also CoNLL 2007).

I PhD thesis on the topic: Ryan McDonald, Discriminative Training

and Spanning Tree Algorithms for Dependency Parsing, University
of Pennsylvania.

I For some languages, e.g., Czech, there are “dependency banks”
available which contain training data in the form of sentences
paired with dependency structures

I For other languages, we can extract dependency structures from
treebanks



S(told,V)

NP(Hillary,NNP)

NNP

Hillary

VP(told,VBD)

V(told,VBD)

VBD

told

NP(Clinton,NNP)

NNP

Clinton

SBAR(that,COMP)

COMP

that

S

NP(she,PRP)

PRP

she

VP(was,Vt)

Vt

was

NP(president,NN)

NN

president

Unlabeled Dependencies:

(0,2) (for root ! told)
(2,1) (for told ! Hillary)
(2,3) (for told ! Clinton)
(2,4) (for told ! that)

(4,6) (for that ! was)
(6,5) (for was ! she)
(6,7) (for was ! president)



E�ciency of Dependency Parsing

I
PCFG parsing is O(n3G3

) where n is the length of the

sentence, G is the number of non-terminals in the grammar

I
Lexicalized PCFG parsing is O(n5G3

) where n is the length

of the sentence, G is the number of non-terminals in the

grammar.

I
Unlabeled dependency parsing is O(n3

).



GLMs for Dependency parsing

I x is a sentence

I GEN(x) is set of all dependency structures for x

I f(x, y) is a feature vector for a sentence x paired with a

dependency parse y



GLMs for Dependency parsing

I
To run the perceptron algorithm, we must be able to

e�ciently calculate

arg max

y2GEN(x)
w · f(x, y)

I
Local feature vectors: define

f(x, y) =
X

(h,m)2y

g(x, h,m)

where g(x, h,m) maps a sentence x and a dependency

(h,m) to a local feature vector

I
Can then use dynamic programming to calculate

arg max

y2GEN(x)
w · f(x, y) = arg max

y2GEN(x)

X

(h,m)2y

w · g(x, h,m)



Definition of Local Feature Vectors

I Features from McDonald et al. (2005):

I Note: define w
i

to be the i’th word in the sentence, t
i

to be
the part-of-speech (POS) tag for the i’th word.

I
Unigram features: Identity of w

h

. Identity of w
m

. Identity of
t
h

. Identity of t
m

.
I

Bigram features: Identity of the 4-tuple hw
h

, w
m

, t
h

, t
m

i.
Identity of sub-sets of this 4-tuple, e.g., identity of the pair
hw

h

, w
m

i.
I

Contextual features: Identity of the 4-tuple
ht

h

, t
h+1, tm�1, tmi. Similar features which consider t

h�1

and t
m+1, giving 4 possible feature types.

I
In-between features: Identity of triples ht

h

, t, t
m

i for any tag
t seen between words h and m.



Results from McDonald (2005)

Method Accuracy

Collins (1997) 91.4%

1st order dependency 90.7%

2nd order dependency 91.5%

I
Accuracy is percentage of correct unlabeled dependencies

I
Collins (1997) is result from a lexicalized context-free parser,

with dependencies extracted from the parser’s output

I
1st order dependency is the method just described.

2nd order dependency is a model that uses richer

representations.

I
Advantages of the dependency parsing approaches: simplicity,

e�ciency (O(n3
) parsing time).


