Probabilistic Context Free
Grammars

I"#$%& ()*&Y0+,-.% (/0" % 1-"(#&

Overview

» Probabilistic Context-Free Grammars (PCFGs)

» The CKY Algorithm for parsing with PCFGs

A ProbabilisticContext-Free Grammar (PCFG)

S — NP VP 10 Vi = sleeps 1.0

. Vt = saw 1.0
VP = i 0.4 NN = man 0.7
VP = Vt NP 0.4 NN = woman 0'2
Vb = Vb PP 0.2 NN = telescope 0.1
NP = DT NN |03 ST —tre P =
NP = NP PP 0.7 N = with 0'5
PP = P NP 1.0 N = i 0.5
' Probability of a tree t with rules

ap — B, an — Bay .o, 00 — By

is p(t) = [[;—, d(c; = B;) where q(cv — [3) is the probability
for rule o — 0.

DERIVATION RULES USED PROBABILITY
S

DERIVATION RULES USED PROBABILITY

> S! NPVP 10
NP VP

DERIVATION RULES USED PROBABILITY

> S! NP VP 1.0

NP VP NP ! DT NN 0-3

DT NN VP

DERIVATION
S

NP VP
DT NN VP
the NN VP

RULES USED

S!
NP !
DT !

NP VP
DT NN
the

PROBABILITY
1.0

0.3
1.0

DERIVATION
S

NP VP

DT NN VP
the NN VP
the dog VP

RULES USED
S — NP VP
NP — DT NN
DT — the
NN — dog

PROBABILITY
1.0

0.3
1.0
0.1

DERIVATION
S

NP VP

DT NN VP
the NN VP
the dog VP
the dog Vi

RULES USED
S! NPVP
NP ! DT NN
DT ! the
NN ! dog
VP! Vi

PROBABILITY
1.0

0.3
1.0
0.1
0.4

DERIVATION
S

NP VP

DT NN VP
the NN VP
the dog VP
the dog Vi

the dog laughs

RULES USED
S — NP VP
NP — DT NN
DT — the
NN — dog
VP — Vi

Vi — laughs

PROBABILITY
1.0

0.3
1.0
0.1
0.4
0.5

Properties of PCFGs

» Assigns a probability to eaclkeft-most derivation, or parse-tree,
allowed by the underlying CFG

Properties of PCFGs

» Assigns a probability to eacleft-most derivation or parse-tree,
allowed by the underlying CFG

» Say we have a sentence set of derivations for that sentence is
T (s). Then a PCFG assigns a probabilityt) to each member of
T(s). i.e., we now have a ranking in order of probability

Properties of PCFGs

I Assigns a probability to eacleft-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentencge set of derivations for that sentence is
7T (s). Then a PCFG assigns a probabilipyt) to each member of
T (s). i.e., we now have a ranking in order of probability.

' The most likely parse tree for a sentensas

arg max pl(t
gtET(S) p()

Data for Parsing Experiments: Treebanks

' Penn WSJ Treebank = 50,000 sentences with associated trees
' Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

NP BAR
NKP PUNC, WHADVP/\
WRB

Canadian Utilities had 1988 revenue of C$ 1.16 billion mainly from its natural gas and electric utility businesses in Alberta where the company serves about SOLOOO

Deriving a PCFG from a Treebank

» Given a set of example trees (a treebank), the underlying
CFG can simply be all rules seen in the corpus

» Maximum Likelihood estimates:

Count(a — [3)

e = f) = Count(«)

where the counts are taken from a training set of example
trees.

» If the training data is generated by a PCFG, then as the
training data size goes to infinity, the maximum-likelihood

PCFG will converge to the same distribution as the “true”
PCFG.

PCFGs

Booth and Thompson (1973) showed that a CFG with rule
probabilities correctly debPnes a distribution over the set of
derivations provided that:

1. The rule probabilities dePne conditional distributions over the
di! erent ways of rewriting each non-terminal.

2. A technical condition on the rule probabilities ensuring that
the probability of the derivation terminating in a Pnite
number of steps is 1. (This condition is not really a practical
concern.)

Parsing with a PCFG

' Given a PCFG and a senterg;adebner (s) to be the set of
trees withs as the yield.

' Given a PCFG and a sentergiéhow do we bPnd

argt!rqu p(t)

Chomsky Normal Form

A context free grammar G = (N, ! ,R,S) in Chomsky
Normal Form is as follows

" N is a set of non-terminal symbols

1 Is a set of terminal symbols

I R 1s a set of rules which take one of two forms:

XYY for X " N, andYq, Yo" N
- X! Y forX " N,andY " !

S " N is a distinguished start symbol

A Dynamic Programming Algorithm

» Given a PCFG and a sentence s, how do we find

a t
2P0

» Notation:

n = number of words in the sentence
w; = ¢ th word in the sentence
N = the set of non-terminals in the grammar

S = the start symbol in the grammar

» Define a dynamic programming table

I 14,7, X] = maximum probability of a constituent with non-terminal X

spanning words 1 ... 5 inclusive

» Our goal is to calculate max;ers) p(t) =1 [1,n, 5]

An Example

the dog saw the man with the telescope

A Dynamic Programming Algorithm

| Base case debnition: forak=1...n, for X € N

i, L X | =qX — w;)

(note: debPng(X — w;) =0 if X — w; is not in the
grammar)

' Recursive debnition: foral=1...n,j =(i+1)...n,
X €N,

n(ij,X)= max (X = YZ)x7(i,s,Y) x (s +1,j,2))

sc{i.. (j—1)}

An Example

(6,5, X) = max (¢(X =Y 2) x!(i,5Y) x!(s+1,7,2))

sefi.. (j—1)}
the dog saw the man with the telescope

The Full Dynamic Programming Algorithm

Input: a sentence S= X;...X,, a PCFGG=(N, X, S,R,0).
Initialization:
For alli € {1...n}, for aIIIX €N,

. _ gX —x;) ifX =-x;€R
m(LLX) = 0 otherwise

Algorithm:
» Forl=1...(n—-1)
» Fori=1...(n—1)
» Set] =1+ |
» For all X € N, calculate
m(l,],X)= max (X = YZ) xn(l,s,Y) xn(s+1,],Z))

X =Y ZER,

st {i.. (j" 1)}

and

bp(i,j,X)=arg max (X —-YZ) xx(,s,Y)xnw(s+1,},Z))

st {i.. (j" 1)}

A Dynamic Programming Algorithm for the Sum
' Given a PCFG and a serpters;ehow do we bnd
p(t)
te7T(s)

' Notation:

n = number of words In the sentence

w, = iOth word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

. DePne a dynamic programming table

mli,J, X | = sum of probabilities for constituent with non-termiixal
spanning words. . .| inclusive

' Qur goal is to calculate ._., p(t) = «[1,n,S]

Summary

. PCFGs augments CFGs by including a probability for each
rule in the grammar.

' The probabillity for a parse tree is the product of probabilities
for the rules In the tree

' To build a PCFG-parsed parser:

1. Learn a PCFG from a treebank
2. Given a test data sentence, use the CKY algorithm to

compute the highest probability tree for the sentence under
the PCFG

D*3H)H$Y4" & (H5

Unlabeled Dependency Parses

AN

root John saw a movie
' root Is a specialoot symbol

' Each dependency is a pdih, m) whereh is the index of a head
word, m is the index of a modiber word. In the bgures, we
represent a dependengr, m) by a directed edge fromh to m.

' Dependencies in the above example @¢e2), (2,1), (2,4), and
(4, 3). (We take O to be the root symbol.)

All Dependency Parses John saw Mary

root John sa Mary @
&/\ root John saw Mary
root John saw Mary

DN~

root John saw Mary foot John saw Mary

A More Complex Example

AN

root John saw a movie that he liked today

Conditions on Dependency Structures

A DA

root John sa movie that he liked today

' The dependency arcs formdaected treewith the root
symbol at the root of the tree.
(DePnition: A directed tree rooted abot is a tree, where for
every wordv other than the root, there is a directed path
from root to w.)

' There are no Ocrossing dependenciesO.
Dependency structures with no crossing dependencies are
sometimes referred to gsojective structures.

Dependency Parsing Resources

' CoNLL 2006 conference had a Oshared taskO with dependency
parsing of 12 languages (Arabic, Chinese, Czech, Danish, Dutch,
German, Japanese, Portuguese, Slovene, Spanish, Swedish,
Turkish). 19 di erent groups developed dependency parsing
systems. (See also CoNLL 2007).

' PhD thesis on the topic: Ryan McDonal@iscriminative Training
and Spanning Tree Algorithms for Dependency Parsiogiversity
of Pennsylvania.

' For some languages, e.g., Czech, there are Odependency banksO
available which contain training data in the form of sentences
paired with dependency structures

' For other languages, we can extract dependency structures from
treebanks

S(told,V)

NP(Hillary,NNP)
|

NNP
|
Hillary
V(told,VBD)
|
VBD
told

Unlabeled Dependencies:

(0,2) (for root ! told)
(2,1) (for told ! Hillary)
(2,3) (fortold ! Clinton)
(2,4) (for told ! that)

VP(told,VBD)

NP(Clinton,NNP) SBAR(that, COMP)
|
NNP
|
Clinton COlMP S
that /\
NP(she,PRP) VP(was,Vt)
|
PRP _
| Vit NP(president,NN)
she | |
was NN
president

(4,6) (forthat! was)
(6,5) (for was! she)
(6,7) (for was! president)

E! ciency of Dependency Parsing

. PCFG parsing i©(n3G?) wheren is the length of the
sentence(is the number of non-terminals in the grammar

' Lexicalized PCFG parsing@¢n>G?>) wheren is the length
of the sentence(is the number of non-terminals in the

grammar.

' Unlabeled dependency parsin@is?).

GLMs for Dependency parsing

| X IS a sentence
' GEN (x) Is set of all dependency structures %or

- f(X,y) Is a feature vector for a sentenggaired with a
dependency parse

GLMs for Dependency parsing

' To run the perceptron algorithm, we must be able to
el ciently calculate

arg max af (x,y)
y! GEN (x)

' Local feature vectors: deIDIne
f(x,y) = g(x, h, m)
(h,m)!y

whereg(x, h, m) maps a sentence and a dependency
(h, m) to a local feature vector

' Can then use dynamic programming t(l) calculate

arg max af(x,y) =arg max ag(x,h, m
gy! GEN (x) (y) g y! GEN (x) (hm)! y g()

Debnition of Local Feature Vectors

! Features from McDonald et al. (2005):

Note: debnew; to be theiOth word in the sentench, to be
the part-of-speech (POS) tag for theOth word.
Unigramfeatures: ldentity ofwy,. ldentity of wy,. ldentity of
t,. ldentity of t,,.

Bigram features: Identity of the 4-tupléwy, Wm, th, tm".
ldentity of sub-sets of this 4-tuple, e.g., identity of the pair
lWh, W .

Contextual featuresildentity of the 4-tuple

Ith, th+1,tm! 1, tm". Similar features which consideg, 1
andtm+1, giving 4 possible feature types.

In-between featurestdentity of triples!t,,t, t " for any tag
t seen between words and m.

Results from McDonald (2005)

Method Accuracy
Collins (1997) 91.4%

1st order dependency 90.7%
2nd order dependency 91.5%

' Accuracy Is percentage of correct unlabeled dependencies

. Collins (1997) is result from a lexicalized context-free parser,
with dependencies extracted from the parserOs output

' 1st order dependency Is the method just described.
2nd order dependency is a model that uses richer
representations.

' Advantages of the dependency parsing approaches: simplicity,
el ciency O(n3) parsing time).

