Relation Extraction

Many slides from Dan Jurafsky
Extracting relations from text

- **Company report:** “International Business Machines Corporation (IBM or the company) was incorporated in the State of New York on June 16, 1911, as the Computing-Tabulating-Recording Co. (C-T-R)…”

- **Extracted Complex Relation:**

<table>
<thead>
<tr>
<th>Relation Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-Founding</td>
<td>IBM</td>
</tr>
<tr>
<td>Location</td>
<td>New York</td>
</tr>
<tr>
<td>Date</td>
<td>June 16, 1911</td>
</tr>
<tr>
<td>Original-Name</td>
<td>Computing-Tabulating-Recording Co.</td>
</tr>
</tbody>
</table>

- **But we will focus on the simpler task of extracting relation** **triples**

 - Founding-year(IBM, 1911)
 - Founding-location(IBM, New York)
Leland Stanford Junior University, commonly referred to as Stanford University or simply Stanford, is an American private research university located in Stanford, California, near Palo Alto, California. Leland Stanford, a California railroad tycoon and politician, founded the university in 1891 in honor of his son, Leland Stanford, Jr., who died of typhoid two days before his 18th birthday. The university was established as a coeducational and non-denominational institution, but struggled financially after the senior Stanford's death two years before his 18th birthday. The university is organized into seven schools including academic schools of Engineering, Humanities, Law, Medicine, and Science. The university is home to a linear accelerator, one of the original four ARPA Networks, and has transformed itself into a major research university in computer science, mathematics, natural sciences, and social sciences. More than 50 Stanford faculty and alumni have won the Nobel Prize and Stanford has the largest number of Turing Award winners for a single institution. Stanford faculty and alumni have founded many notable technology companies including Cisco Systems, Google, Hewlett-Packard, LinkedIn, Rambus, Silicon Graphics, Sun Microsystems, Varian Associates, and Yahoo.

Stanford University
Leland Stanford Junior University
Stanford LOC-IN California
Stanford IS A research university
Stanford LOC-NEAR Palo Alto
Stanford FOUNDED IN 1891
Stanford FOUNDER Leland Stanford
Why Relation Extraction?

• Create new structured knowledge bases, useful for any app
• Augment current knowledge bases
 • Adding words to WordNet thesaurus, facts to FreeBase or DBPedia
• Support question answering
 • The granddaughter of which actor starred in the movie “E.T.”?
 (acted-in \(?x \) “E.T.”)(is-a \(?y \) actor)(granddaughter-of \(?x \ ?y \))
• But which relations should we extract?
Automated Content Extraction (ACE)

17 relations from 2008 “Relation Extraction Task”
Automated Content Extraction (ACE)

• Physical-Located PER-GPE
 He was in Tennessee

• Part-Whole-Subsidiary ORG-ORG
 XYZ, the parent company of ABC

• Person-Social-Family PER-PER
 John’s wife Yoko

• Org-AFF-Founder PER-ORG
 Steve Jobs, co-founder of Apple...
UMLS: Unified Medical Language System

- **134 entity types, 54 relations**

<table>
<thead>
<tr>
<th>Entity Type</th>
<th>Relation</th>
<th>Function Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury</td>
<td>disrupts</td>
<td>Physiological Function</td>
</tr>
<tr>
<td>Bodily Location</td>
<td>location-of</td>
<td>Biologic Function</td>
</tr>
<tr>
<td>Anatomical Structure</td>
<td>part-of</td>
<td>Organism</td>
</tr>
<tr>
<td>Pharmacologic Substance</td>
<td>causes</td>
<td>Pathological Function</td>
</tr>
<tr>
<td>Pharmacologic Substance</td>
<td>treats</td>
<td>Pathologic Function</td>
</tr>
</tbody>
</table>
Extracting UMLS relations from a sentence

Doppler echocardiography can be used to diagnose left anterior descending artery stenosis in patients with type 2 diabetes

Echocardiography, Doppler DIAGNOSES Acquired stenosis
Databases of Wikipedia Relations

Wikipedia Infobox

Relations extracted from Infobox

Stanford state California

Stanford motto “Die Luft der Freiheit weht”

<table>
<thead>
<tr>
<th>Type</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endowment</td>
<td>US$ 16.5 billion (2011) [3]</td>
</tr>
<tr>
<td>President</td>
<td>John L. Hennessy</td>
</tr>
<tr>
<td>Provost</td>
<td>John Etchemendy</td>
</tr>
<tr>
<td>Academic staff</td>
<td>1,910 [4]</td>
</tr>
<tr>
<td>Students</td>
<td>15,319</td>
</tr>
<tr>
<td>Undergraduates</td>
<td>6,878 [5]</td>
</tr>
<tr>
<td>Postgraduates</td>
<td>8,441 [5]</td>
</tr>
<tr>
<td>Location</td>
<td>Stanford, California, U.S.</td>
</tr>
<tr>
<td>Campus</td>
<td>Suburban, 8,180 acres (3,310 ha) [6]</td>
</tr>
<tr>
<td>Colors</td>
<td>Cardinal red and white</td>
</tr>
</tbody>
</table>
Relation databases that draw from Wikipedia

- Resource Description Framework (RDF) triples

 subject predicate object

 Golden Gate Park location San Francisco
dbpedia:Golden_Gate_Park dbpedia-owl:location dbpedia:San_Francisco

- DBPedia: 1 billion RDF triples, 385 from English Wikipedia

- Frequent Freebase relations:

 people/person/nationality, location/location/contains

 people/person/profession, people/person/place-of-birth

 biology/organism_higher_classification film/film/genre
Ontological relations

Examples from the WordNet Thesaurus

• **IS-A (hyponym):** subsumption between classes
 • Giraffe **IS-A** ruminant **IS-A** ungulate **IS-A** mammal **IS-A** vertebrate **IS-A** animal...

• **Instance-of:** relation between individual and class
 • San Francisco **instance-of** city
How to build relation extractors

1. Hand-written patterns
2. Supervised machine learning
3. Semi-supervised and unsupervised
 • Bootstrapping (using seeds)
 • Distant supervision
 • Unsupervised learning from the web
Relation Extraction

What is relation extraction?
Relation Extraction

Using patterns to extract relations
Rules for extracting IS-A relation

Early intuition from **Hearst (1992)**

- “Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use”

- What does *Gelidium* mean?
- How do you know?
Rules for extracting IS-A relation

Early intuition from Hearst (1992)

• “Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use”

• What does Gelidium mean?
• How do you know?"
Hearst’s Patterns for extracting IS-A relations

(Hearst, 1992): Automatic Acquisition of Hyponyms

“Y such as X ((, X)* (, and|or) X)”
“such Y as X”
“X or other Y”
“X and other Y”
“Y including X”
“Y, especially X”
Hearst’s Patterns for extracting IS-A relations

<table>
<thead>
<tr>
<th>Hearst pattern</th>
<th>Example occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>X and other Y</td>
<td>...temples, treasuries, and other important civic buildings.</td>
</tr>
<tr>
<td>X or other Y</td>
<td>Bruises, wounds, broken bones or other injuries...</td>
</tr>
<tr>
<td>Y such as X</td>
<td>The bow lute, such as the Bambara ndang...</td>
</tr>
<tr>
<td>Such Y as X</td>
<td>...such authors as Herrick, Goldsmith, and Shakespeare.</td>
</tr>
<tr>
<td>Y including X</td>
<td>...common-law countries, including Canada and England...</td>
</tr>
<tr>
<td>Y, especially X</td>
<td>European countries, especially France, England, and Spain...</td>
</tr>
</tbody>
</table>
Extracting Richer Relations Using Rules

• Intuition: relations often hold between specific entities
 • located-in (ORGANIZATION, LOCATION)
 • founded (PERSON, ORGANIZATION)
 • cures (DRUG, DISEASE)
• Start with Named Entity tags to help extract relation!
Named Entities aren’t quite enough. Which relations hold between 2 entities?

- Drug
- Cure?
- Prevent?
- Cause?
- Disease
What relations hold between 2 entities?

PERSON

ORGANIZATION
Extracting Richer Relations Using Rules and Named Entities

Who holds what office in what organization?

PERSON, POSITION of ORG

- George Marshall, Secretary of State of the United States

PERSON (named | appointed | chose | etc.) PERSON Prep? POSITION

- Truman appointed Marshall Secretary of State

PERSON [be]? (named | appointed | etc.) Prep? ORG POSITION

- George Marshall was named US Secretary of State
Hand-built patterns for relations

• Plus:
 • Human patterns tend to be high-precision
 • Can be tailored to specific domains

• Minus
 • Human patterns are often low-recall
 • A lot of work to think of all possible patterns!
 • Don’t want to have to do this for every relation!
 • We’d like better accuracy
Relation Extraction

Using patterns to extract relations
Relation Extraction

Supervised relation extraction
Supervised machine learning for relations

- Choose a set of relations we’d like to extract
- Choose a set of relevant named entities
- Find and label data
 - Choose a representative corpus
 - Label the named entities in the corpus
 - Hand-label the relations between these entities
 - Break into training, development, and test
- Train a classifier on the training set
How to do classification in supervised relation extraction

1. Find all pairs of named entities (usually in same sentence)
2. Decide if 2 entities are related
3. If yes, classify the relation

• Why the extra step?
 • Faster classification training by eliminating most pairs
 • Can use distinct feature-sets appropriate for each task.
Automated Content Extraction (ACE)

17 sub-relations of 6 relations from 2008 “Relation Extraction Task”
American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.
Word Features for Relation Extraction

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said

- Headwords of M1 and M2, and combination
 - Airlines
 - Wagner
 - Airlines-Wagner

- Bag of words and bigrams in M1 and M2
 \{American, Airlines, Tim, Wagner, American Airlines, Tim Wagner\}

- Words or bigrams in particular positions left and right of M1/M2
 - M2: -1 spokesman
 - M2: +1 said

- Bag of words or bigrams between the two entities
 \{a, AMR, of, immediately, matched, move, spokesman, the, unit\}
Named Entity Type and Mention Level Features for Relation Extraction

American Airlines, a unit of AMR, immediately matched the move, spokesman **Tim Wagner** said

- **Mention 1**
- **Mention 2**

- Named-entity types
 - M1: ORG
 - M2: PERSON

- Concatenation of the two named-entity types
 - ORG-PERSON

- Entity Level of M1 and M2 (NAME, NOMINAL, PRONOUN)
 - M1: NAME [it or he would be PRONOUN]
 - M2: NAME [the company would be NOMINAL]
American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said

- Base syntactic chunk sequence from one to the other
  ```
  NP  NP  PP  VP  NP  NP
  ```

- Constituent path through the tree from one to the other
  ```
  NP  ↑  NP  ↑  S  ↑  S  ↓  NP
  ```

- Dependency path
  ```
  Airlines  <- matched  ->  Wagner  ->  said
  ```
Gazetteer and trigger word features for relation extraction

• Trigger list for family: kinship terms
 • parent, wife, husband, grandparent, etc. [from WordNet]

• Gazetteer:
 • Lists of useful geo or geopolitical words
 • Country name list
 • Other sub-entities
American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

<table>
<thead>
<tr>
<th>Entity-based features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity$_1$ type</td>
<td>ORG</td>
</tr>
<tr>
<td>Entity$_1$ head</td>
<td>airlines</td>
</tr>
<tr>
<td>Entity$_2$ type</td>
<td>PERS</td>
</tr>
<tr>
<td>Entity$_2$ head</td>
<td>Wagner</td>
</tr>
<tr>
<td>Concatenated types</td>
<td>ORGPERS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word-based features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Between-entity bag of words</td>
<td>{ a, unit, of, AMR, Inc., immediately, matched, the, move, spokesman }</td>
</tr>
<tr>
<td>Word(s) before Entity$_1$</td>
<td>NONE</td>
</tr>
<tr>
<td>Word(s) after Entity$_2$</td>
<td>said</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syntactic features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituent path</td>
<td>NP → NP → S → S → NP</td>
</tr>
<tr>
<td>Base syntactic chunk path</td>
<td>NP → NP → PP → NP → VP → NP → NP</td>
</tr>
<tr>
<td>Typed-dependency path</td>
<td>Airlines ←${subj}$ matched ←${comp}$ said →$_{subj}$ Wagner</td>
</tr>
</tbody>
</table>
Classifiers for supervised methods

• Now you can use any classifier you like
 • MaxEnt
 • Naïve Bayes
 • SVM
 • ...

• Train it on the training set, tune on the dev set, test on the test set
Evaluation of Supervised Relation Extraction

• Compute P/R/F₁ for each relation

\[
P = \frac{\text{# of correctly extracted relations}}{\text{Total # of extracted relations}}
\]

\[
R = \frac{\text{# of correctly extracted relations}}{\text{Total # of gold relations}}
\]

\[
F_1 = \frac{2PR}{P + R}
\]
Summary: Supervised Relation Extraction

- Can get high accuracies with enough hand-labeled training data, if test similar enough to training
- Labeling a large training set is expensive
- Supervised models are brittle, don’t generalize well to different genres
Relation Extraction

Supervised relation extraction
Relation Extraction

Semi-supervised and unsupervised relation extraction
Seed-based or bootstrapping approaches to relation extraction

• No training set? Maybe you have:
 • A few seed tuples or
 • A few high-precision patterns

• Can you use those seeds to do something useful?
 • Bootstrapping: use the seeds to directly learn to populate a relation
Relation Bootstrapping (Hearst 1992)

• Gather a set of seed pairs that have relation R

• Iterate:
 1. Find sentences with these pairs
 2. Look at the context between or around the pair and generalize the context to create patterns
 3. Use the patterns for grep for more pairs
Bootstrapping

• <Mark Twain, Elmira> Seed tuple
 • Grep (google) for the environments of the seed tuple
 “Mark Twain is buried in Elmira, NY.”
 X is buried in Y
 “The grave of Mark Twain is in Elmira”
 The grave of X is in Y
 “Elmira is Mark Twain’s final resting place”
 Y is X’s final resting place.

• Use those patterns to grep for new tuples
• Iterate
Dipre: Extract <author,book> pairs

Start with 5 seeds:

<table>
<thead>
<tr>
<th>Author</th>
<th>Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isaac Asimov</td>
<td>The Robots of Dawn</td>
</tr>
<tr>
<td>David Brin</td>
<td>Startide Rising</td>
</tr>
<tr>
<td>James Gleick</td>
<td>Chaos: Making a New Science</td>
</tr>
<tr>
<td>Charles Dickens</td>
<td>Great Expectations</td>
</tr>
<tr>
<td>William Shakespeare</td>
<td>The Comedy of Errors</td>
</tr>
</tbody>
</table>

Find Instances:

- The Comedy of Errors, by William Shakespeare, was
- The Comedy of Errors, by William Shakespeare, is
- The Comedy of Errors, one of William Shakespeare's earliest attempts
- The Comedy of Errors, one of William Shakespeare's most

Extract patterns (group by middle, take longest common prefix/suffix)

$$?x , \text{ by } ?y , ?x , \text{ one of } ?y 's $$

Now iterate, finding new seeds that match the pattern
Snowball

E. Agichtein and L. Gravano 2000. Snowball: Extracting Relations from Large Plain-Text Collections. ICDL

• Similar iterative algorithm

<table>
<thead>
<tr>
<th>Organization</th>
<th>Location of Headquarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>Redmond</td>
</tr>
<tr>
<td>Exxon</td>
<td>Irving</td>
</tr>
<tr>
<td>IBM</td>
<td>Armonk</td>
</tr>
</tbody>
</table>

• Group instances w/similar prefix, middle, suffix, extract patterns
 • But require that X and Y be named entities
 • And compute a confidence for each pattern

.69 ORGANIZATION {'s, in, headquarters} LOCATION

.75 LOCATION {in, based} ORGANIZATION
Distant Supervision

Snow, Jurafsky, Ng. 2005. Learning syntactic patterns for automatic hypernym discovery. NIPS 17
Fei Wu and Daniel S. Weld. 2007. Autonomously Semantifying Wikipeida. CIKM 2007
Mintz, Bills, Snow, Jurafsky. 2009. Distant supervision for relation extraction without labeled data. ACL09

• Combine bootstrapping with supervised learning
 • Instead of 5 seeds,
 • Use a large database to get huge # of seed examples
 • Create lots of features from all these examples
 • Combine in a supervised classifier
Distant supervision paradigm

• Like supervised classification:
 • Uses a classifier with lots of features
 • Supervised by detailed hand-created knowledge
 • Doesn’t require iteratively expanding patterns

• Like unsupervised classification:
 • Uses very large amounts of unlabeled data
 • Not sensitive to genre issues in training corpus
Distantly supervised learning of relation extraction patterns

For each relation

For each tuple in big database

Find sentences in large corpus with both entities

Extract frequent features (parse, words, etc)

Train supervised classifier using thousands of patterns

Born-In

<Edwin Hubble, Marshfield>
<Albert Einstein, Ulm>

Hubble was born in Marshfield
Einstein, born (1879), Ulm
Hubble’s birthplace in Marshfield

PER was born in LOC
PER, born (XXXX), LOC
PER’s birthplace in LOC

P(born-in | f₁, f₂, f₃, …, f₇₀₀₀₀)
Unsupervised relation extraction

M. Banko, M. Cararella, S. Soderland, M. Broadhead, and O. Etzioni. 2007. Open information extraction from the web. IJCAI

• Open Information Extraction:
 • extract relations from the web with no training data, no list of relations

1. Use parsed data to train a “trustworthy tuple” classifier
2. Single-pass extract all relations between NPs, keep if trustworthy
3. Assessor ranks relations based on text redundancy

 (FCI, specializes in, software development)
 (Tesla, invented, coil transformer)
Evaluation of Semi-supervised and Unsupervised Relation Extraction

• Since it extracts totally new relations from the web
 • There is no gold set of correct instances of relations!
 • Can’t compute precision (don’t know which ones are correct)
 • Can’t compute recall (don’t know which ones were missed)

• Instead, we can approximate precision (only)
 • Draw a random sample of relations from output, check precision manually
 \[\hat{P} = \frac{\text{# of correctly extracted relations in the sample}}{\text{Total # of extracted relations in the sample}} \]
 • Can also compute precision at different levels of recall.
 • Precision for top 1000 new relations, top 10,000 new relations, top 100,000
 • In each case taking a random sample of that set

• But no way to evaluate recall
Relation Extraction

Semi-supervised and unsupervised relation extraction