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Administrivia

» Course website:
http://aritter.github.io/courses/5525 fall19.html

» Piazza: link on the course website

» My office hours: Friday 4-5pm DL 595

» TA: Ashutosh Baheti; Office hours: Wednesday 1-2pm, DL 574



http://aritter.github.io/courses/5525_fall19.html

Course Requirements

» Probability
» Linear Algebra

» Calculus
» Programming / Python experience

» Prior exposure to machine learning very helpful but not required



Course Requirements

» Probability
» Linear Algebra

» Calculus
» Programming / Python experience

» Prior exposure to machine learning very helpful but not required

There will be a lot of math and programming!
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Enrollment

» Homework 1 is out now (due August 30):
» Please look at the assighment well before then

» If this seems like it’ll be challenging for you, come and talk to me (this is smaller-
scale than the later assignments, which are smaller-scale than the final project)



Texts

» 2 great textbooks for NLP
» There will be assigned readings from both

» Both freely available online

Natural Language Processing

Speech and Language Processing (srd ed. draft)
Dan Jurafsky and James H. Martin

Jacob Eisenstein


https://web.stanford.edu/~jurafsky/slp3/
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

What’s the goal of NLP?
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» Example: dialogue systems
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— valuable American
company?
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is the target value
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What's the goal of NLP?

» Be able to solve problems that require deep understanding of text

» Example: dial m |
ample: dialogue systems do computation

recognize

recognize marketCap / Sifi, what's the most

is the target value - valuable American oredicate
Apple B :fw
] | 'S

resolve
references

—~
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POLITICS

Google Critic Ousted From Think Tank Funded by the Tech Giant

WASHINGTON — In the hours after European antitrust regulators levied a
record $2.7 billion fine against Google in late June, an influential
Washington think tank learned what can happen when a tech giant that

shapes public policy debates with its enormous wealth is criticized.

But not long after one of New America’s scholars posted a statement on the

think tank’s website praising the European Union’s penalty against Google,
Mr. Schmidt, who had been chairman of New America until 2016,
communicated his displeasure with the statement to the group’s president,
Anne-Marie Slaughter, according to the scholar.

Ms. Slaughter told Mr. Lynn that “the time has come for Open Markets and
New America to part ways,” according to an email from Ms. Slaughter to
Mr. Lynn. The email suggested that the entire Open Markets team — nearly

10 full-time employees and unpaid fellows — would be exiled from New
America.
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Translate
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People’s Daily, August 30, 2017
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NLP Analysis Pipeline

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Text ~ Text Analysis ~ Annotations @ Applications

Syntactic parses Summarize

Coreference resolution
> >

Entity disambiguation

Extract informationé

~ Answer questions

Discourse analysis

ldentify sentiment

Translate
» NLP is about building these pieces! S

» All of these components are modeled with statistical
approaches trained with machine learning
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How do we use these representations?

Text Text Analy5|s Appllcatlons

Extract syntactic features

__ Tree-structured neural networks

5 ; Tree transducers (for machine

end-to-end models

» Main question: What representations do we need for language? What do
we want to know about it?

» Boils down to: what ambiguities do we need to resolve?



Why is language hard?

(and how can we handle that?)
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Language is Ambiguous!

» Hector Levesque (2011): “Winograd schema challenge” (hamed after Terry
Winograd, the creator of SHRDLU)

they advocated

The city council refused the demonstrators a permit because they violence

they feared

» This is so complicated that it’s an Al challenge problem! (Al-complete)

» Referential/semantic ambiguity
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Language is Ambiguous!

» Headlines
» Teacher Strikes Idle Kids
» Hospitals Sued by 7 Foot Doctors
» Ban on Nude Dancing on Governor’s Desk
» lragi Head Seeks Arms
» Stolen Painting Found by Tree
» Kids Make Nutritious Snacks
» Local HS Dropouts Cut in Half

» Syntactic/semantic ambiguity: parsing needed to resolve these, but need context
to figure out which parse is correct

slide credit: Dan Klein
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Language is Really Ambiguous!

» There aren’t just one or two possibilities which are resolved pragmatically

It is really nice out

il fait vraiment beau . It's really nice
The weather is beautiful

It is really beautiful outside
He makes truly beautiful

He makes truly boyfriend

It fact actually handsome

» Combinatorially many possibilities, many you won’t even register as ambiguities,
but systems still have to resolve them



What do we need to understand language?

» Lots of data!

SOURCE Cela constituerait une solution transitoire qui permettrait de

conduire a terme a une charte a valeur contraignante.

That would be an interim solution which would make it possible to

HUMAN work towards a binding charter in the long term .
[this] [constitueralit] [assistance] [transitoire] [who] [permettrait]
1x DATA [licences] [to] [terme] [to] [a] [charter] [to] [value] [contraignhante] [.]
1 Ox DATA [itf] [would] [a solution] [transitional] [which] [would] [of] [lead]
% [to] [term] [to a] [charter] [to] [value] [binding] [.]
100x DATA [this] [would be] [a transitional solution] [which would] [lead to] [a

charter] [legally binding] [.]

1000x DATA [that would pe]_[a transitional solution] [which would] [eventually
lead to] [a binding charter] [.]

slide credit: Dan Klein
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What do we need to understand language?

» World knowledge: have access to information beyond the training data

r

DOJ rgreenlightsj [Disneyj- Fox\merger

AN

metaphor;

ua op rovesn Q)AQ%ISNEP

Department of Justice

i-'»

FOX

» What is a green light? How do we understand what
“green lighting” does?
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» Grounding: learn what fundamental concepts actually mean in a data-driven way

¢H ue
— YellowishGreen

0 Yellowish Green data

Question: What object 1s right of 7
OZ

o
o

Probability

Golland et al. (2010) McMahan and Stone (2015)
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What do we need to understand language?

» Linguistic structure

» ...but computers probably won’t understand language the same way humans do

» However, linguistics tells us what phenomena we need to be able to deal with
and gives us hints about how language works

a. John has been having a lot of trouble arranging his vacation.

b. He cannot find anyone to take over his responsibilities. (he = John)
Cp = John; C¢ = {John}

c. He called up Mike yesterday to work out a plan. (he = John)
Cp = John; C; = {John, Mike} (CONTINUE)

d. Mike has annoyed him a lot recently.
Cp = John; C; = {Mike, John} (RETAIN)

e. He called John at 5 AM on Friday last week. (he = Mike) |
Cp = Mike; Cs = {Mike, John} (SHIFT) Centering Theory
Grosz et al. (1995)



What techniques do we use?
(to combine data, knowledge, linguistics, etc.)
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Structured Prediction

» All of these techniques are data-driven! Some data is naturally occurring, but may
need to label

» Supervised techniques work well on very little data

=3

» Even neural nets can do pretty well!

annotation .
(two hours!)

N

better system!

unsupervised
learning

“Learning a Part-of-Speech Tagger from Two Hours of Annotation”
Garrette and Baldridge (2013)
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Does manual structure have a place?

» Neural nets don’t always work out of domain!

» Coreference: rule-based systems are
still about as good as deep learning
out-of-domain

» LORELEI: transition point below which phrase-
based systems are better

» Why is this? Inductive bias!

» Can multi-task learning help?

CoNLL
AVg. Fl
Newswire
rule-based 09.60
berkeley 61.24
cort 63.37
deep-coref [conll] 65.39
deep-coref [lea] 65.60
Wikipedia
perkeley 01.01
cort 49.94
deep-coref [conll] H2.65
deep-coref [lea] 53.14
deep-coref 51.01

Moosavi and Strube (2017)
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Does manual structure have a place?

Translate

Trump Pope family watch'a hundred years a year in the White House balcony

» Maybe manual structure would help...
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Where are we?

» NLP consists of: analyzing and building representations for text, solving problems
involving text

» These problems are hard because language is ambiguous, requires drawing on
data, knowledge, and linguistics to solve

» Knowing which techniques use requires understanding dataset size, problem
complexity, and a lot of tricks!

» NLP encompasses all of these things
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encoders

Goldberg 9-11, Kim

Neural Nets IV: Neural CRFs
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» Cover fundamental machine learning techniques used in NLP

» Understand how to look at language data and approach linguistic phenomena

» Cover modern NLP problems encountered in the literature: what are the active
research topics in 20187

» Make you a “producer” rather than a “consumer” of NLP tools

» The four assignments should teach you what you need to know to
understand nearly any system in the literature
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Assignments

» 4 Homework Assignments
» Implementation-oriented, with an open-ended component to each
» Homework 1 (Naive Bayes for sentiment classification) is out NOW
» ~2 weeks per assignment, 3 “slip days” for automatic extensions

These projects require understanding of the concepts, ability to write performant
code, and ability to think about how to debug complex systems. They are
challenging, so start early!



Final Project

» Final project (20%)
» Groups of 3-4 preferred, 1 is possible.
» Good idea to talk to run your project idea by me in office hours or email.
» 4 page report + final project presentation.



