Lecture 10: Machine Translation I

(many slides from Greg Durrett)

Alan Ritter

- MT and evaluation
- Word alignment
- Language models
- Phrase-based decoders
- Syntax-based decoders (probably next time)

This Lecture

People's Daily, August 30, 2017

People's Daily, August 30, 2017

People's Daily, August 30, 2017

Trump Pope family watch a hundred years a year in the White House balcony

People's Daily, August 30, 2017

Trump Pope family watch a hundred years a year in the White House balcony

I have a friend => 3x friend(x,self)

I have a friend => ∃x friend(x, self) => J'ai un ami

I have a friend => ∃x friend(x,self) => J'ai un ami J'ai une amie

I have a friend => ∃x friend(x, self) => J'ai un ami J'ai une amie

MT Ideally

May need information you didn't think about in your representation

I have a friend => ∃x friend(x,self) => J'ai un ami

Hard for semantic representations to cover everything

- J'ai une amie
- May need information you didn't think about in your representation

I have a friend => 3x friend(x, self) => J'ai un ami

Hard for semantic representations to cover everything

Everyone has a friend =>

- J'ai une amie
- May need information you didn't think about in your representation

I have a friend => 3x friend(x,self) => J'ai un ami

Hard for semantic representations to cover everything Everyone has a friend =>

- J'ai une amie
- May need information you didn't think about in your representation $\exists x \forall y \ friend(x, y)$ $\forall x \exists y friend(x, y)$

I have a friend => 3x friend(x,self) => J'ai un ami

Hard for semantic representations to cover everything Everyone has a friend =>

- J'ai une amie
- May need information you didn't think about in your representation ∃x∀y friend(x,y)
 ∀x∃y friend(x,y) => Tous a un ami

- I have a friend => ∃x friend(x,self) => J'ai un ami J'ai une amie
 - May need information you didn't think about in your representation Hard for semantic representations to cover everything
- ∃x∀y friend(x,y)
 ∀x∃y friend(x,y) => Tous a un ami Everyone has a friend =>
 - Can often get away without doing all disambiguation same ambiguities may exist in both languages

Levels of Transfer: Vauquois Triangle

Today: mostly phrase-based, some syntax

S	Yo lo haré mañana //////////////////////////////////	English (E)	P(E mañana)
		tomorrow	0.7
		morning	0.3

Slide credit: Dan Klein

Key idea: translation works better the bigger chunks you use

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
 - How to identify phrases? Word alignment over source-target bitext

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
 - How to identify phrases? Word alignment over source-target bitext
 - How to stitch together? Language model over target language

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
 - How to identify phrases? Word alignment over source-target bitext
 - How to stitch together? Language model over target language
 - Decoder takes phrases and a language model and searches over possible translations

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
 - How to identify phrases? Word alignment over source-target bitext
 - How to stitch together? Language model over target language
 - Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation) pairs, learn a ton of parameters in an end-to-end way)

cat ||| chat ||| 0.9 the cat ||| le chat ||| 0.8 dog ||| chien ||| 0.8 house ||| maison ||| 0.6 my house ||| ma maison ||| 0.9 language ||| langue ||| 0.9

Phrase table P(f|e)

Unlabeled English data

$P(e|f) \propto P(f|e)P(e)$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

		1-gram	2-gram	3-gram
hypothesis 1	I am exhausted	3/3	1/2	0/1
hypothesis 2	Tired is I	1/3	0/2	0/1
hypothesis 3	III	1/3	0/2	0/1
reference 1	I am tired			
reference 2	I am ready to sle	ep now a	and so e	xhausted

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

			1-gram	2-gram	3-gram
).	hypothesis 1	I am exhausted	3/3	1/2	0/1
	hypothesis 2	Tired is I	1/3	0/2	0/1
•	hypothesis 3	III	1/3	0/2	0/1
	reference 1	I am tired			
	reference 2	I am ready to sle	ep now a	nd so e	xhausted

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

BLEU= BP
$$\cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Fypically $n = 4$, $w_i = 1/4$

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

BLEU= BP
$$\cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Fypically $n = 4$, $w_i = 1/4$
BP = $\begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c < r \end{cases}$.

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Fypically $n = 4$, $w_i = 1/4$
BP = $\begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c < r \end{cases}$ r = length of reference c = length of prediction

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

BLEU= BP
$$\cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
. Fypically $n = 4$, $w_i = 1/4$

 $BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases} \quad r = \text{length of reference} \\ c = \text{length of prediction} \end{cases}$

Does this capture fluency and adequacy?

- Better methods with human-in-the-loop
- HTER: human-assisted translation error rate
- If you're building real MT systems, you do user studies. In academia, you mostly use BLEU

BLEU Score

Human Judgments

slide from G. Doddington (NIST)

Word Alignment

- Input: a bitext, pairs of translated sentences
 - nous acceptons votre opinion . ||| we accept your view
 - nous allons changer d'avis ||| we are going to change our minds

- Input: a bitext, pairs of translated sentences
 - nous acceptons votre opinion . [] we accept your view
 - nous allons changer d'avis ||| we are going to change our minds

•

- Input: a bitext, pairs of translated sentences
 - nous acceptons votre opinion . [] we accept your view
 - nous allons changer d'avis ||| we are going to change our minds
- Output: alignments between words in each sentence

nous votre opinion

- Input: a bitext, pairs of translated sentences
 - nous acceptons votre opinion . [] we accept your view
 - nous allons changer d'avis ||| we are going to change our minds
- Output: alignments between words in each sentence

acceptons

- Input: a bitext, pairs of translated sentences
 - nous acceptons votre opinion . [] we accept your view
 - nous allons changer d'avis ||| we are going to change our minds
- Output: alignments between words in each sentence
 - We will see how to turn these into phrases

nous acceptons votre opinion

•

1-to-Many Alignments

"English" sentence according to a model

Models P(f|e): probability of "French" sentence being generated from

- "English" sentence according to a model
- Latent variable model: $P(\mathbf{f}|\mathbf{e}) = \sum_{i=1}^{n} P(\mathbf{f}|\mathbf{e})$

Models P(f|e): probability of "French" sentence being generated from

$$\sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f} | \mathbf{a}, \mathbf{e}) P(\mathbf{a})$$

- Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model
- Latent variable model: $P(\mathbf{f}|\mathbf{e}) = \sum_{i=1}^{n} P(\mathbf{f}|\mathbf{e})$

Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

$$\sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \sum_{\mathbf{a}} P(\mathbf{f} | \mathbf{a}, \mathbf{e}) P(\mathbf{a})$$

Each French word is aligned to at most one English word n $P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod P(f_i|e_{a_i})P(a_i)$ i=1

IBM Model 1

Each French word is aligned to at most one English word n $P(\mathbf{f}, \mathbf{a}|\mathbf{e}) = \prod P(f_i|e_{a_i})P(a_i)$ i=1Thank you , I shall do so gladly . e

IBM Model 1

Each French word is aligned to at most one English word n $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod P(f_i | e_{a_i}) P(a_i)$ i=1Thank you e 5 2 6 a 0

IBM Model 1

Each French word is aligned to at most one English word ${n}$ $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod P(f_i | e_{a_i}) P(a_i)$ i=1Thank you **e** a 6 5

IBM Model 1

Each French word is aligned to at most one English word n $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod P(f_i | e_{a_i}) P(a_i)$ i=1Thank you **e** a 6 5

Set P(a) uniformly (no prior over good alignments)

IBM Model 1

Each French word is aligned to at most one English word n $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod P(f_i | e_{a_i}) P(a_i)$ i=1Thank you **e** a 6 5

Set P(a) uniformly (no prior over good alignments)

 $P(f_i|e_{a_i})$: word translation probability table

IBM Model 1

HMM for Alignment

Sequential dependence between a's to capture monotonicity \boldsymbol{n} $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod P(f_i | e_{a_i}) P(a_i | a_{i-1})$ i=1Thank you **e** a 6

HMM for Alignment

Sequential dependence between a's to capture monotonicity \mathcal{N} $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod P(f_i | e_{a_i}) P(a_i | a_{i-1})$ i=1Thank you **e** a 6

Alignment dist parameterized by jump size: $P(a_j - a_{j-1}) - P(a_j - a_{j-1}) = P(a_j - a_{j-1})$

HMM for Alignment

Sequential dependence between a's to capture monotonicity $P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \prod P(f_i | e_{a_i}) P(a_i | a_{i-1})$ i=1Thank you **e** a 6

Alignment dist parameterized by jump size: $P(a_j - a_{j-1}) - P(a_j - a_{j-1}) = P(a_j - a_{j-1})$

• $P(f_i|e_{a_i})$: same as before

HMM Model

Which direction is this?

HMM Model

Which direction is this?

Alignments are generally monotonic (along diagonal)

HMM Model

- Which direction is this?
- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (garbage collection)

Evaluating Word Alignment

"Alignment error rate": use labeled alignments on small corpus

Model	AER
Model 1 INT	19.5
HMM E→F	11.4
HMM F→E	10.8
HMM AND	7.1
HMM INT	4.7
GIZA M4 AND	6.9

Run Model 1 in both directions and intersect "intelligently"

Run HMM model in both directions and intersect "intelligently"

	\bigcirc	\bigcirc	\bigcirc	-	-		-	•	-	-	·	-	nous
\bigcirc	\bigcirc	\bigcirc										-	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	•			•		•	-		•	avons
\bigcirc	\bigcirc	\bigcirc	\bigcirc	-					-	-		-	pas
\Box	\bigcirc	\bigcirc	\Box	-					-	-		-	cru
\bigcirc	\bigcirc	\bigcirc	\bigcirc	•	•		•		•	•		·	bon
		•											de
ı.								ı	•	•	ı	•	assister
	•			•	\bigcirc	\Box				•		•	à
	-	·		-			-	•	-	-	•	-	la
ı	•	ı		•				ı		•	T		runion
				•						-		•	et
	-	·		-			-			\bigcirc	•	-	en
	•			•			•	ı		$\overline{\bigcirc}$	ı		avons
	•			•				ı	•			•	inform
	-			-	-		-		-	-	\bigcirc	-	le
ı				•				ı		•			cojo
	-			-	-		-		\Box	-	•	-	en
	-			-			-	•	\bigcirc	-	•	-	consquence
,	•			•				ı	•	•	ı		
·	-	·		<u>-</u>			_		<u>-</u>	_		<u>-</u>	
We	ğ	Ч	Ð	to	Id	Ъ	Ŋ	Ъd	000	ğ	0		
>	eme	۰H	[d]	÷	ceno	the	ting	and	02	ormed	Goj		
	deeme		Ω.		att					0	0		
	0		-1-2		σ		mee			inf			
			inadvis							-H			
			in										

d'assister à la reunion et ||| to attend the meeting and

d'assister à la reunion et ||| to attend the meeting and

assister à la reunion ||| attend the meeting

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
 - d'assister à la reunion et ||| to attend the meeting and
 - assister à la reunion ||| attend the meeting
 - la reunion and ||| the meeting and

d'assister à la reunion et ||| to attend the meeting and

assister à la reunion ||| attend the meeting

la reunion and ||| the meeting and

nous ||| we

d'assister à la reunion et ||| to attend the meeting and

assister à la reunion ||| attend the meeting

la reunion and ||| the meeting and

nous ||| we

. . .

d'assister à la reunion et ||| to attend the meeting and

assister à la reunion ||| attend the meeting

la reunion and ||| the meeting and

. . .

nous || we

Lots of phrases possible, count across all sentences and score by frequency

Language Modeling

Phrase-Based MT

cat ||| chat ||| 0.9 the cat ||| le chat ||| 0.8 dog ||| chien ||| 0.8 house ||| maison ||| 0.6 my house ||| ma maison ||| 0.9 language ||| langue ||| 0.9

Phrase table P(f|e)

$P(e|f) \propto P(f|e)P(e)$

Noisy channel model: combine scores from translation model + language model to translate foreign to English

"Translate faithfully but make fluent English"

I visited San

put a distribution over the next word

I visited San _____ put a distrik

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous n-1 words
- put a distribution over the next word

I visited San

Simple generative model: distribution of next word is a multinomial distribution conditioned on previous n-1 words

 $P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})}$

- put a distribution over the next word

I visited San

Simple generative model: distribution of next word is a multinomial distribution conditioned on previous n-1 words

 $P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})}$

- put a distribution over the next word
- Maximum likelihood estimate of this probability from a corpus

I visited San

Simple generative model: distribution of next word is a multinomial distribution conditioned on previous n-1 words

 $P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})}$

Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)

put a distribution over the next word

- Maximum likelihood estimate of this probability from a corpus

I visited San

put a distribution over the next word!

I visited San

- put a distribution over the next word!
- Smoothing is very important, particularly when using 4+ gram models

I visited San

- put a distribution over the next word!
- Smoothing is very important, particularly when using 4+ gram models
 - $P(x|\text{visited San}) = (1 \lambda) \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})}$

I visited San

 $P(x|\text{visited San}) = (1 - \lambda) \frac{\text{count}(x)}{\text{count}(x)}$

- put a distribution over the next word!
- Smoothing is very important, particularly when using 4+ gram models

$$\frac{\text{(visited San, x)}}{\text{t(visited San)}} + \lambda \frac{\text{count}(\text{San, x})}{\text{count}(\text{San})} \checkmark \frac{\text{sm}}{\text{the the same set}}$$

nooth is 0

- I visited San put a distribution over the next word!
- Smoothing is very important, particularly when using 4+ gram models

- One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize (k=1 is like leave-one-out)
- $P(x|\text{visited San}) = (1 \lambda) \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})} \checkmark \text{this}$ too!

- I visited San put a distribution over the next word!
- Smoothing is very important, particularly when using 4+ gram models

One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize (k=1 is like leave-one-out)

 $P(x|\text{visited San}) = (1 - \lambda) \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})} \checkmark \text{this too!}$

 $P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x) - k}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})}$

- I visited San put a distribution over the next word!
- Smoothing is very important, particularly when using 4+ gram models

One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize (k=1 is like leave-one-out)

Kneser-Ney smoothing: this trick, plus low-order distributions modified to capture fertilities (how many distinct words appear in a context)

 $P(x|\text{visited San}) = (1 - \lambda) \frac{\text{count}(\text{visited San}, x)}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})} \checkmark \text{this too!}$

 $P(x|\text{visited San}) = \frac{\text{count}(\text{visited San}, x) - k}{\text{count}(\text{visited San})} + \lambda \frac{\text{count}(\text{San}, x)}{\text{count}(\text{San})}$

For 5+-gram models, need to store between 100M and 10B contextword-count triples

(a) Context-Encoding			(b) Context Deltas			(c) Bits Required			
W	С	val	Δw	Δc	val		$ \Delta w $	$ \Delta c $	val
1933	15176585	3	1933	15176585	3		24	40	3
1933	15176587	2	+0	+2	1		2	3	3
1933	15176593	1	+0	+5	1		2	3	3
1933	15176613	8	+0	+40	8		2	9	6
1933	15179801	1	+0	+188	1		2	12	3
1935	15176585	298	+2	15176585	298		4	36	15
1935	15176589	1	+0	+4	1		2	6	3

Make it fit in memory by delta encoding scheme: store deltas instead of values and use variable-length encoding

Engineering N-gram Models

Pauls and Klein (2011), Heafield (2011)

Early work: feedforward neural networks looking at context

Early work: feedforward neural networks looking at context

 $P(w_i|w_{i-n},\ldots,w_{i-1})$

Early work: feedforward neural networks looking at context

Variable length context with RNNs:

 $P(w_i | w_{i-n}, \ldots, w_{i-1})$

Early work: feedforward neural networks looking at context

Variable length context with RNNs: Works like a decoder with no encoder

 $P(w_i | w_{i-n}, \ldots, w_{i-1})$

Early work: feedforward neural networks looking at context

Variable length context with RNNs: Works like a decoder with no encoder

Slow to train over lots of data!

 $P(w_i | w_{i-n}, \ldots, w_{i-1})$

n• (One sentence) negative log likelihood: $\sum \log p(x_i | x_1, \dots, x_{i-1})$ i=1

• Perplexity: $2^{-\frac{1}{n}} \sum_{i=1}^{n} \log_2 p(x_i | x_1, \dots, x_{i-1})$

n• (One sentence) negative log likelihood: $\sum \log p(x_i | x_1, \dots, x_{i-1})$ i=1

- One sentence) negative log likeli
- Perplexity: $2^{-\frac{1}{n}} \sum_{i=1}^{n} \log_2 p(x_i)$
 - NLL (base 2) averaged over the sentence, exponentiated

hood:
$$\sum_{i=1}^{n} \log p(x_i | x_1, \dots, x_{i-1})$$

$$(x_1, ..., x_{i-1})$$

- One sentence) negative log likeli
- Perplexity: $2^{-\frac{1}{n}} \sum_{i=1}^{n} \log_2 p(x_i)$
 - NLL (base 2) averaged over the sentence, exponentiated
 - of like branching factor

Evaluation

hood:
$$\sum_{i=1}^{n} \log p(x_i | x_1, \dots, x_{i-1})$$

$$(x_1, ..., x_{i-1})$$

NLL = $-2 \rightarrow 00$ average, correct thing has prob $1/4 \rightarrow PPL = 4$. PPL is sort

Results

Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark

Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7

Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL ~ 60-80 (depending on how much you optimize it)

Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL ~ 60-80 (depending on how much you optimize it)
- Melis et al.: many neural LM improvements from 2014-2017 are subsumed by just using the right regularization (right dropout settings). So LSTMs are pretty good

Decoding

Phrase-Based Decoding

Inputs:

• Language model that scores $P(e_i | e_1, \dots, e_{i-1}) \approx P(e_i | e_{i-n-1}, \dots, e_{i-1})$

Phrase table: set of phrase pairs (e, f) with probabilities P(f | e)

Inputs:

- Language model that scores $P(e_i | e_1, \ldots, e_{i-1}) \approx P(e_i | e_{i-n-1}, \ldots, e_{i-1})$
- Phrase table: set of phrase pairs (e, f) with probabilities P(f | e)
- What we want to find: e produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:

Inputs:

- Language model that scores $P(e_i | e_1, \ldots, e_{i-1}) \approx P(e_i | e_{i-n-1}, \ldots, e_{i-1})$
- Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- What we want to find: e produced by a series of phrase-by-phrase translations from an input **f**, possibly with reordering:

Phrase lattices are big!

r										
这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	员	
41	7	to all all and								
the	7 people	including	by some		and	the russian	the	the astronauts		,
it	7 people inc		by france		and the	the russian		international astronautical	of rapporteur .	7
this	7 out	including the	from	the french	and the		the fift	h		
these	7 among	including from	125 C	the french a	and	of the russian	of	space	members	
that	7 persons	including from	the	of france	and to	russian	of the	aerospace	members .	54 83 - 34
	7 include		from the	of france ar	nd	russian	8	astronauts		. the
	7 numbers i	nclude	from france		and russ	ian	of astro	onauts who		. **
	7 population	ns include	those from fran	ce	and russian			astronauts .		
2	7 deportees included come from		come from	france and russia		ssia	in	astronautical	personnel	;
-	7 philtrum	including thos	e from	france an	nd	russia	a space	2	member	
	-	including repr	esentatives from	france and the		russia	astronaut		20 E	
Ĩ		include	came from	france an	france and russia		by cost	by cosmonauts		
		include repres	entatives from	french	and ru	ssia	10 - 10 T	cosmonauts		
		include	came from fran	ce	and russ	ia 's		cosmonauts .		1
		includes	coming from	french and		russia 's		cosmonaut		1
				french and	russian		's	astronavigation	member .	
				french	and ru	ssia	astro	nauts		1
·		25							special rapporteur	
				2		russia		\$P = 0	rapporteur	
-		÷				sia	0		rapporteur .	<u>.</u>
				Č.	201 A.	10.000				Ē
		2							-	t
					and russ , and , and rus , and rus or	russia ssia			rapport	teur

Slide credit: Dan Klein

Phrase-Based Decoding

Decoding objective (for 3-gram LM)

arg max \mathbf{e} $\left\langle \bar{e}, \bar{f} \right\rangle$ The decoder...

- lo haré rápidamente . tries different segmentations,
- I'll do it quickly . translates phrase by phrase,

quickly I'll do it . and considers reorderings.

 $\arg \max_{\mathbf{e}} \left[P(\mathbf{f}|\mathbf{e}) \cdot P(\mathbf{e}) \right]$

$$P(\bar{f}|\bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i|e_{i-1}, e_{i-2})$$

Slide credit: Dan Klein

Maria	no	dio	una	bofetada	a	la	bruja	verde
<u>Mary</u>	 	give	aas	slap	to by	<u>the</u>	witch green	 witch
	<u> </u>	t. give	slap		<u>to the</u>			
					t.}	1e		
			sl	ap		the t	witch	

$$\arg \max_{\mathbf{e}} \left[\prod_{\langle \bar{e}, \bar{f} \rangle} P(\bar{f} | \bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i | e_{i-1}, e_{i-2}) \right]$$

If we translate with beam search, what state do we need to keep in the beam?

ofetada	a	la	bruja	verde
slap p	<u>to</u> <u>by</u> to	<u>the</u>	witch	 witch
		o		
			vitch	

$$\arg \max_{\mathbf{e}} \left[\prod_{\langle \bar{e}, \bar{f} \rangle} P(\bar{f} | \bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i | e_{i-1}, e_{i-2}) \right]$$

- If we translate with beam search, beam?
 - What have we translated so far

ofetada	a	la	bruja	verde
<u>slap</u>	<u>to</u> <u>by</u> to	<u>the</u>	witch	 witch
	t.	o		
			vitch	

If we translate with beam search, what state do we need to keep in the

? arg max
$$\left[\prod_{\langle \bar{e},\bar{f} \rangle} P(\bar{f}|\bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i|e_{i-1},e_{i-2})\right]$$

- If we translate with beam search, beam?
 - What have we translated so far
 - What words have we produced

ofetada	a	la	bruja	verde
slap p	<u>to</u> <u>by</u> to	<u>the</u>	witch	 witch
	t.	o		
,			vitch	

If we translate with beam search, what state do we need to keep in the

- beam?
 - What have we translated so far
 - What words have we produced

ofetada	a	la	bruja	verde
slap p	<u>to</u> <u>by</u> to	<u>the</u>	witch	 witch
	t.	o		
			vitch	

If we translate with beam search, what state do we need to keep in the

? arg max

$$e \left[\prod_{\langle \bar{e}, \bar{f} \rangle} P(\bar{f}|\bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i|e_{i-1}, e_{i-2}) \right]$$

so far?

When using a 3-gram LM, only need to remember the last 2 words!

ofetada	a	la	bruja	verde
slap p	to by	<u>the</u>	witch	<u>green</u> witch
		the		
	t.ł	ne		
)		the v	vitch	

Maria	no	dio	una	bofetada	a	la	bruja	verde
<u>Mary</u>	not no	give	a as slap	slap	<u>to</u> <u>by</u> to	<u>the</u>	witch green	green witch
	did_nc	ot give	sl	ap		o ne the_y	witch	
	did not dx = 2	4.2						
	lary not dx = 2	-1.2						
	lary no dx = 2	-2.9						

...and TM is broken down into several features

_					
	Maria	no	dio	una	b
	<u>Mary</u>	<u>not</u> did not no	give	a a_s slap	
			t. give		ap
				id	no ⁻ x =
					a s x =
					no x =

_					
	Maria	no	dio	una	b
	<u>Mary</u>	<u>not</u> did not no	give	a a_s slap	
			t. give		ap
				id	no ⁻ x =
					a s x =
					no x =

Non-monotonic translation: can visit source sentence "out of order"

	bofetada	a	la	bruja	verde
a_s	<u>slap</u>	to by	<u>the</u>		<u>green</u> witch
		<u>to the</u> <u>to</u> the			
sl	ap			witch	

- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't

ofetada	a	la	bruja	verde
slap p		<u>the</u>		green witch
		1e		
	the_witch			

- State needs to describe which

- State needs to describe which

- State needs to describe which
- Big enough phrases already isn't as important as you think

Training Decoders

score = $\alpha \log P(LM) + \beta \log P(TM)$...and TM is broken down into several features

Training Decoders

score = $\alpha \log P(LM) + \beta \log P(TM)$...and TM is broken down into several feature

Training Decoders

- score = $\alpha \log P(LM) + \beta \log P(TM)$...and TM is broken down into several feature
- Usually 5-20 feature weights to set, want to optimize for BLEU score which is not differentiable
- MERT (Och 2003): decode to get 1000best translations for each sentence in a small training set (<1000 sentences), do line search on parameters to directly optimize for BLEU

Toolkit for machine translation due to Philipp Koehn + Hieu Hoang Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis

Moses

- Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
 - Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2013

- Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
 Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
 - Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2013
- Next time: results on these and comparisons to neural methods

Syntax

Rather than use phrases, use a synchronous context-free grammar

Rather than use phrases, use a synchronous context-free grammar $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$

Rather than use phrases, use a synchronous context-free grammar $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$ $DT \rightarrow [the, la]$

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$
- $NN \rightarrow [car, voiture]$

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$
- $NN \rightarrow [car, voiture]$
- $JJ \rightarrow [yellow, jaune]$

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$
- $NN \rightarrow [car, voiture]$
- $JJ \rightarrow [yellow, jaune]$

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$
- $NN \rightarrow [car, voiture]$
- $JJ \rightarrow [yellow, jaune]$

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$
- $NN \rightarrow [car, voiture]$
- $JJ \rightarrow [yellow, jaune]$

yellow car

 DI_1

the

la voiture jaune

 DI_1

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$
- $NN \rightarrow [car, voiture]$
- $JJ \rightarrow [yellow, jaune]$

yellow la voiture jaune the car

other half

Translation = parse the input with "half" of the grammar, read off the

- Rather than use phrases, use a synchronous context-free grammar
- $NP \rightarrow [DT_1 JJ_2 NN_3; DT_1 NN_3 JJ_2]$
- $DT \rightarrow [the, la]$
- $DT \rightarrow [the, le]$
- $NN \rightarrow [car, voiture]$
- $JJ \rightarrow [yellow, jaune]$

yellow the la voiture jaune car

- other half
- Assumes parallel syntax up to reordering

Translation = parse the input with "half" of the grammar, read off the

 DI_1

- Use lexicalized rules, look like "syntactic phrases"
- Leads to HUGE grammars, parsing is slow

Grammar

 $s \rightarrow \langle VP .; I VP . \rangle$ **OR** $s \rightarrow \langle VP .; you VP . \rangle$ $VP \rightarrow \langle Io haré ADV ; will do it ADV \rangle$ $s \rightarrow \langle Io haré ADV .; I will do it ADV . \rangle$ $ADV \rightarrow \langle de muy buen grado ; gladly \rangle$ Slide credit: Dan Klein

- Phrase-based systems consist of 3 pieces: aligner, language model, decoder
 - HMMs work well for alignment
 - N-gram language models are scalable and historically worked well
 - Decoder requires searching through a complex state space
- Lots of system variants incorporating syntax
- Next time: neural MT