
Lecture	10:	Machine	Transla3on	I

Alan	Ri8er
(many slides from Greg Durrett)



This	Lecture

‣MT	and	evalua3on

‣Word	alignment

‣ Language	models

‣ Phrase-based	decoders

‣ Syntax-based	decoders	(probably	next	3me)
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MT	Ideally

‣ I	have	a	friend	=>	∃x friend(x,self)

‣May	need	informa3on	you	didn’t	think	about	in	your	representa3on

‣ Everyone	has	a	friend	=>	 =>	Tous	a	un	ami

‣ Can	oWen	get	away	without	doing	all	disambigua3on	—	same	
ambigui3es	may	exist	in	both	languages

J’ai	une	amie

∃x∀y friend(x,y)
∀x∃y friend(x,y)

‣ Hard	for	seman3c	representa3ons	to	cover	everything

=>		J’ai	un	ami



Levels	of	Transfer:	Vauquois	Triangle

Slide	credit:	Dan	Klein
‣ Today:	mostly	phrase-based,	some	syntax
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Phrase-Based	MT

‣ Key	idea:	transla3on	works	be8er	the	bigger	chunks	you	use

‣ Remember	phrases	from	training	data,	translate	piece-by-piece	and	
s3tch	those	pieces	together	to	translate

‣ How	to	iden3fy	phrases?	Word	alignment	over	source-target	bitext

‣ How	to	s3tch	together?	Language	model	over	target	language

‣ Decoder	takes	phrases	and	a	language	model	and	searches	over	possible	
transla3ons

‣ NOT	like	standard	discrimina3ve	models	(take	a	bunch	of	transla3on	
pairs,	learn	a	ton	of	parameters	in	an	end-to-end	way)



Phrase-Based	MT

Unlabeled English data 

cat ||| chat ||| 0.9  
the cat ||| le chat ||| 0.8 
dog ||| chien ||| 0.8  
house ||| maison ||| 0.6  
my house ||| ma maison ||| 0.9 
language ||| langue ||| 0.9  
… 
 
 

Language 
model P(e) 

Phrase table P(f|e) P (e|f) / P (f |e)P (e)

Noisy channel model: 
combine scores from 
translation model + 
language model to 
translate foreign to 

English 

“Translate faithfully but make fluent English” 

}



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty

‣ Typically	n	=	4,	wi	=	1/4



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty

‣ Typically	n	=	4,	wi	=	1/4



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty

‣ Typically	n	=	4,	wi	=	1/4

‣ r	=	length	of	reference 
c	=	length	of	predic3on



Evalua3ng	MT
‣ Fluency:	does	it	sound	good	in	the	target	language?
‣ Fidelity/adequacy:	does	it	capture	the	meaning	of	the	original?

‣ BLEU	score:	geometric	mean	of	1-,	2-,	3-,	and	4-gram	precision	vs.	a	
reference,	mul3plied	by	brevity	penalty

‣ Typically	n	=	4,	wi	=	1/4

‣ r	=	length	of	reference 
c	=	length	of	predic3on

‣ Does	this	capture	fluency	and	adequacy?



BLEU	Score

‣ Be8er	methods	with  
human-in-the-loop

‣ HTER:	human-assisted  
transla3on	error	rate

‣ If	you’re	building	real	MT  
systems,	you	do	user	studies.  
In	academia,	you	mostly	use 
BLEU
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Word	Alignment
§  Input:	a	bitext:	pairs	of	translated	sentences	

§  Output:	alignments:	pairs	of	
	translated	words	
§  Not	always	one-to-one!	

 nous acceptons votre opinion . 

 we accept your view . 

‣ Input:	a	bitext,	pairs	of	translated	sentences

nous	acceptons	votre	opinion	.	|||	we	accept	your	view	

nous	allons	changer	d’avis	|||	we	are	going	to	change	our	minds

‣ Output:	alignments	between	words	in	each 
sentence

‣We	will	see	how	to	turn	these	into	phrases

“accept	and	acceptons	are	aligned”
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Word	Alignment

‣Models	P(f|e):	probability	of	“French”	sentence	being	generated	from	
“English”	sentence	according	to	a	model

‣ Correct	alignments	should	lead	to	higher-likelihood	genera3ons,	so	by	
op3mizing	this	objec3ve	we	will	learn	correct	alignments

‣ Latent	variable	model: P (f |e) =
X

a

P (f ,a|e) =
X

a

P (f |a, e)P (a)
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Brown	et	al.	(1993)

‣ Each	French	word	is	aligned	to	at	most	one	English	word
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IBM	Model	1

Brown	et	al.	(1993)

Thank	you			,					I				shall			do				so					gladly			.e

‣ Each	French	word	is	aligned	to	at	most	one	English	word

0 2 6

Gracias		,						lo		hare		de			muy	buen	grado		.f

5 7 7 7 7 8a

‣ Set	P(a)	uniformly	(no	prior	over	good	alignments)

‣ 																	:	word	transla3on	probability	tableP (fi|eai)

P (f ,a|e) =
nY

i=1

P (fi|eai)P (ai)
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HMM	for	Alignment

Brown	et	al.	(1993)

Thank	you			,					I				shall			do				so					gladly			.e

‣ Sequen3al	dependence	between	a’s	to	capture	monotonicity

0 2 6

Gracias		,						lo		hare		de			muy	buen	grado		.f

5 7 7 7 7 8a

‣ Alignment	dist	parameterized	by	jump	size:

‣ 																	:	same	as	beforeP (fi|eai)

§  Want	local	monotonicity:	most	jumps	are	small	
§  HMM	model	(Vogel	96)	

§  Re-es>mate	using	the	forward-backward	algorithm	
 -2 -1  0  1  2  3 

P (f ,a|e) =
nY

i=1

P (fi|eai)P (ai|ai�1)
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HMM	Model

à

‣Which	direc3on	is	this?

‣ Some	mistakes,	especially	when	you	have 
rare	words	(garbage	collec0on)

‣ Alignments	are	generally	monotonic 
(along	diagonal)



Evalua3ng	Word	Alignment

Model AER 
Model 1 INT 19.5 
HMM E→F 11.4 
HMM F→E 10.8 
HMM AND 7.1 
HMM INT 4.7 
GIZA M4 AND 6.9 

‣ Run	Model	1	in	both	
direc3ons	and	intersect	
“intelligently”

‣ Run	HMM	model	in	both	
direc3ons	and	intersect	
“intelligently”

‣ “Alignment	error	rate”:	use	labeled	alignments	on	small	corpus
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Phrase	Extrac3on

‣ Find	con3guous	sets	of	aligned	words	
in	the	two	languages	that	don’t	have	
alignments	to	other	words

d’assister	à	la	reunion	et	|||	to	a8end	the	mee3ng	and	 à

‣ Lots	of	phrases	possible,	count	across	
all	sentences	and	score	by	frequency

assister	à	la	reunion	|||	a8end	the	mee3ng

la	reunion	and	|||	the	mee3ng	and

nous	|||	we
…



Language	Modeling



Phrase-Based	MT

Unlabeled English data 

cat ||| chat ||| 0.9  
the cat ||| le chat ||| 0.8 
dog ||| chien ||| 0.8  
house ||| maison ||| 0.6  
my house ||| ma maison ||| 0.9 
language ||| langue ||| 0.9  
… 
 
 

Language 
model P(e) 

Phrase table P(f|e) P (e|f) / P (f |e)P (e)

Noisy channel model: 
combine scores from 
translation model + 
language model to 
translate foreign to 

English 

“Translate faithfully but make fluent English” 

}



N-gram	Language	Models
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N-gram	Language	Models

‣ Simple	genera3ve	model:	distribu3on	of	next	word	is	a	mul3nomial	
distribu3on	condi3oned	on	previous	n-1	words

Maximum	likelihood	es3mate	of	this	
probability	from	a	corpus

I	visited	San	_____ put	a	distribu3on	over	the	next	word

P (x|visited San) =
count(visited San, x)

count(visited San)

‣ Just	relies	on	counts,	even	in	2008	could	scale	up	to	1.3M	word	types,	4B	
n-grams	(all	5-grams	occurring	>40	3mes	on	the	Web)
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‣ Smoothing	is	very	important,	par3cularly	when	using	4+	gram	models

‣ One	technique	is	“absolute	discoun3ng:”	subtract	off	constant		k	from	
numerator,	set	lambda	to	make	this	normalize	(k=1	is	like	leave-one-out)

I	visited	San	_____

P (x|visited San) =
count(visited San, x)� k

count(visited San)
+ �

count(San, x)

count(San)

P (x|visited San) = (1� �)
count(visited San, x)

count(visited San)
+ �

count(San, x)

count(San)

put	a	distribu3on	over	the	next	word!

smooth  
this  
too!

‣ Kneser-Ney	smoothing:	this	trick,	plus	low-order	distribu3ons	modified	
to	capture	fer3li3es	(how	many	dis3nct	words	appear	in	a	context)



Engineering	N-gram	Models

Pauls	and	Klein	(2011),	Heafield	(2011)

‣ For	5+-gram	models,	
need	to	store	between	
100M	and	10B	context-
word-count	triples

‣Make	it	fit	in	memory	by	delta	encoding	scheme:	store	deltas	instead	of	
values	and	use	variable-length	encoding
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Neural	Language	Models

Mnih	and	Hinton	(2003)

‣ Early	work:	feedforward	neural	networks	looking	at	context

I	visited	New	_____

FFNN

P (wi|wi�n, . . . , wi�1)

‣ Variable	length	context	with	RNNs:
I	visited	New‣Works	like	a	decoder	with	no	encoder

P (wi|w1, . . . , wi�1)

‣ Slow	to	train	over	lots	of	data!
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‣ Perplexity: 2�
1
n

Pn
i=1 log2 p(xi|x1,...,xi�1)

‣ (One	sentence)	nega3ve	log	likelihood:	
nX

i=1

log p(xi|x1, . . . , xi�1)

‣ NLL	(base	2)	averaged	over	the	sentence,	exponen3ated

‣ NLL	=	-2	->	on	average,	correct	thing	has	prob	1/4	->	PPL	=	4.	PPL	is	sort	
of	like	branching	factor
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Results

‣ Kneser-Ney	5-gram	model	with	cache:	PPL	=	125.7

Merity	et	al.	(2017),	Melis	et	al.	(2017)

‣ LSTM:	PPL	~	60-80	(depending	on	how	much	you	op3mize	it)

‣ Evaluate	on	Penn	Treebank:	small	dataset	(1M	words)	compared	to	
what’s	used	in	MT,	but	common	benchmark	

‣Melis	et	al.:	many	neural	LM	improvements	from	2014-2017	are	
subsumed	by	just	using	the	right	regulariza3on	(right	dropout	sewngs).	
So	LSTMs	are	pre8y	good
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‣ Phrase	table:	set	of	phrase	pairs	(e,	f)	with	probabili3es	P(f|e)

‣ Inputs:

‣What	we	want	to	find:	e	produced	by	a	series	of	phrase-by-phrase	
transla3ons	from	an	input	f,	possibly	with	reordering:

‣ 	Language	model	that	scores	P (ei|e1, . . . , ei�1) ⇡ P (ei|ei�n�1, . . . , ei�1)



Phrase	lawces	are	big!

�     7�   ��	    ��    ��   �   ��
             ��            �         . 
 

Slide	credit:	Dan	Klein



Phrase-Based	Decoding

‣ Input

‣ Transla3ons

‣ Decoding	
objec3ve	(for	
3-gram	LM)

Slide	credit:	Dan	Klein
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Monotonic	Transla3on

‣ If	we	translate	with	beam	search,	what	state	do	we	need	to	keep	in	the	
beam?

‣What	have	we	translated	so	far?

‣What	words	have	we	produced	so	far?

‣When	using	a	3-gram	LM,	only	need	to	remember	the	last	2	words!



Monotonic	Transla3on



Monotonic	Transla3on

…did	not
idx	=	2

Mary	not

Mary	no

4.2

-1.2

-2.9

idx	=	2

idx	=	2



Monotonic	Transla3on

…did	not
idx	=	2

Mary	not

Mary	no

4.2

-1.2

-2.9

idx	=	2

idx	=	2

score	=	log	[P(Mary)	P(not	|	Mary)	P(Mary	|	Maria)	P(not	|	no)]{ {

LM TM



Monotonic	Transla3on

…did	not
idx	=	2

Mary	not

Mary	no

4.2

-1.2

-2.9

idx	=	2

idx	=	2

score	=	log	[P(Mary)	P(not	|	Mary)	P(Mary	|	Maria)	P(not	|	no)]{ {

LM TM

In	reality:	score	=	α	log	P(LM)	+	β	log	P(TM)
…and	TM	is	broken	down	into	several	features	
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Monotonic	Transla3on

…not	slap
idx	=	5

…a	slap

…no	slap

8.7

-2.4

-1.1

idx	=	5

idx	=	5

‣ Several	paths	can	get	us	to	
this	state,	max	over	them	
(like	Viterbi)

…not	give
idx	=	3

…give	a
idx	=	4

una	bofetada	|||	a	slap

bofetada	|||	slap ‣ Variable-length	transla3on	
pieces	=	semi-HMM
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Non-Monotonic	Transla3on

‣ Non-monotonic	transla3on:	can	visit	
source	sentence	“out	of	order”
‣ State	needs	to	describe	which	
words	have	been	translated	
and	which	haven’t

translated:	Maria,	dio,	
una,	bofetada

‣ Big	enough	phrases	already	
capture	lots	of	reorderings,	so	this	
isn’t	as	important	as	you	think
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Training	Decoders

‣MERT	(Och	2003):	decode	to	get	1000-
best	transla3ons	for	each	sentence	in	a	
small	training	set	(<1000	sentences),	do	
line	search	on	parameters	to	directly	
op3mize	for	BLEU

score	=	α	log	P(LM)	+	β	log	P(TM)

…and	TM	is	broken	down	into	several	features	

‣ Usually	5-20	feature	weights	to	set,	
want	to	op3mize	for	BLEU	score	
which	is	not	differen3able
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Moses

‣ Pharaoh	(Koehn,	2004)	is	the	decoder	from	Koehn’s	thesis

‣ Toolkit	for	machine	transla3on	due	to	Philipp	Koehn	+	Hieu	Hoang

‣Moses	implements	word	alignment,	language	models,	and	this	
decoder,	plus	*a	ton*	more	stuff

‣ Highly	op3mized	and	heavily	engineered,	could	more	or	less	
build	SOTA	transla3on	systems	with	this	from	2007-2013

‣ Next	3me:	results	on	these	and	comparisons	to	neural	methods
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Syntac3c	MT
‣ Rather	than	use	phrases,	use	a	synchronous	context-free	grammar

NP	→	[DT1	JJ2	NN3;	DT1	NN3	JJ2]

DT	→	[the,	la]

NN	→	[car,	voiture]

JJ	→	[yellow,	jaune]

the yellow car

‣ Assumes	parallel	syntax	up	to	reordering

DT	→	[the,	le]

la voiture jaune

NP NP

DT1 NN3 JJ2DT1 NN3JJ2

‣ Transla3on	=	parse	the	input	with	“half”	of	the	grammar,	read	off	the	
other	half



Syntac3c	MT

Slide	credit:	Dan	Klein

‣ Use	lexicalized	rules,	look 
like	“syntac3c	phrases”

‣ Leads	to	HUGE	grammars, 
parsing	is	slow



Takeaways

‣ Phrase-based	systems	consist	of	3	pieces:	aligner,	language	model,	
decoder

‣ HMMs	work	well	for	alignment

‣ N-gram	language	models	are	scalable	and	historically	worked	well

‣ Decoder	requires	searching	through	a	complex	state	space

‣ Lots	of	system	variants	incorpora3ng	syntax

‣ Next	3me:	neural	MT


