Lecture 11: Seq2Seq + Attention

Alan Ritter

(many slides from Greg Durrett)



Administrivia

Course Project

Next homework assighment



Final Project

* Groups of 3-4
* Sign up here:
* https://forms.gle/3udvC78uBP6eK8Xn7

* Highly Recommended: stop by the office hours to
chat and get feedback on your project.

* Scope: on the order of one of the programming
assignments

» But, need to define the problem, come up with
right feature representation, write up results in a
formal report.



Selecting a Topic

Part of your thesis? Great!

FInd a problem you are interested in where
you think NLP can help.

Experiment with one of the algorithms we
discussed about in class.

First question: what is the dataset?



Datasets

e Various Semeval Tasks:

 http://alt.gcri.org/semeval2018/index.php?
Id=tasks

» Fake News Challenge:

» http://www.fakenewschallenge.org/
« Machine Translation:

» http://www.statmt.org/wmt19/robustness.html
* Dialogue:

 https://github.com/mgalley/DSTC/7-End-to-End-
Conversation-Modeling

 Many more...


http://alt.qcri.org/semeval2018/index.php?id=tasks
http://alt.qcri.org/semeval2018/index.php?id=tasks
http://www.fakenewschallenge.org/
http://www.statmt.org/wmt19/robustness.html
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling

Requirements

* 4 Page Report
* Include empirical analysis of your approach
* Report performance on dev / test set

» Compare against some reasonable
baseline methoa.

* |In class presentation during scheduled
Final Exam time



Advice

* First question: is the data available?

* [ry to get a simple baseline working as
early as possible to determine whether
your project idea Is feasible.

« Start with a manageable-sized dataset
* [hen scale up...
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» Both LSTMs and convolutional layers transform the input using context

» LSTM: “globally” looks at the entire sentence (but local for many problems)

» CNN: local depending on filter width + number of layers



Encoder-Decoder

» Encode a sequence into a fixed-sized vector
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Encoder-Decoder

» Encode a sequence into a fixed-sized vector

le film était bon [STOP]

H A OO

the movie was great

» Now use that vector to produce a series of tokens as output from a
separate LSTM decoder

Sutskever et al. (2014)



Encoder-Decoder
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Model

» Generate next word conditioned on previous word as well as hidden state

» W size is |vocab| x | hidden state|, softmax over entire vocabulary

(yZ|X7 Yi1y- -5 Yi— 1) — SOftmaX(Wh)
Y‘X prz‘xvylv'“vy’i—l)

Decoder has separate
parameters from encoder, so
this can learn to be a language
model (produce a plausible next
word given current one)

the movie was great <s>
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Inference

» Generate next word conditioned on previous word as well as hidden state

L

the movie was great <S$> .

- film |était | bon |[STOP]

» During inference: need to compute the argmax over the word predictions
and then feed that to the next RNN state

» Need to actually evaluate computation graph up to this point to form
input for the next state

» Decoder is advanced one state at a time until [STOP] is reached
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Implementing seq2seq Models

Encoder Decoder Decoder
film

the movie was great <s>

» Encoder: consumes sequence of tokens, produces a vector. Analogous to
encoders for classification/tagging tasks

» Decoder: separate module, single cell. Takes two inputs: hidden state
(vector h or tuple (h, c)) and previous token. Outputs token + new state



Tralning

e était [STOP]
e
B

CHHCH | D

the movie was great le film était bon

» Objective: maximize Z Zlog Py 1%, 975, Y1)
(x,y) =1

» One loss term for each target-sentence word, feed the correct word
regardless of model’s prediction
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Training: Scheduled Sampling

» Model needs to do the right thing even with its own predictions

la | film| etai§ bon [STOP]

CHCHCHOH
e

MY était

the movie was great

» Scheduled sampling: with probability p, take the gold as input, else take
the model’s prediction

» Starting with p = 1 and decaying it works best
Bengio et al. (2015)
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Implementation Details

» Sentence lengths vary for both encoder and decoder:

» Typically pad everything to the right length

» Encoder: Can be a CNN/LSTM/...

» Decoder: also flexible in terms of architecture (more later). Execute
one step of computation at a time, so computation graph is
formulated as taking one input + hidden state

» Beam search: can help with lookahead. Finds the (approximate) highest

scoring sequence:

argmaxy H P(yz|X7 Yi, - - - 7yi—1)
1=1
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la: 0.4
le: 0.3

es: 0.1 m

(t"0)30

[ 1]
(€°0)30]

the movie was great <S>

o
[ 1
(T°0)80]

film: 0.4

-------

-------



Beam Search
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Ia:0.4 1 .
I .
le: 0.3 B
les: 0.1 o : "_,|:|
i - :
' : B a _
g 2
& i?
the movie was great <s> 2
o O
0Q B
Ies|:| O =
P




Beam Search

» Maintain decoder state, token history in beam film: 0.4
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le: 0.3
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Beam Search
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Beam Search

les: 0.1

-------

» Maintain decoder state, token history in beam film: 0.4
la: 0.4 ‘1‘3
le: 0.3 _ — ‘.|.UC>B
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» Do not max over the two film states! Hidden state vectors are different
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Semantic Parsing as Translation

“What states border Texas”

'

lambda x ( state ( x ) and border ( x , €89 ) ) )

» Write down a linearized form of the semantic parse, train seqg2seq models
to directly translate into this representation

» No need to have an explicit grammar, simplifies algorithms

» Might not produce well-formed logical forms, might require lots of data

Jia and Liang (2015)
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» Can use for other semantic parsing-like tasks

» Predict regex from text

Natural Language Encoder
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Regex Prediction

» Can use for other semantic parsing-like tasks

» Predict regex from text

Natural Language Encoder

. Q <END>
r r r r
o 8 e e 0 d 1 d ¢ d S
hO h1 h2 h3 hO h1 h2
LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM
Yo ol w2 W3
lines ending in ‘Q’

Regular Expression Decoder

» Problem: requires a lot of data: 10,000 examples needed to get “60%

accuracy on pretty simple regexes
Locascio et al. (2016)
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'SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York"”

Zhong et al. (2017)
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SQL Generation

Question:

» Convert natural language
description into a SQL
guery against some DB

[How many CFL teams are from York CoIIege?J

SQL:

SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York”,

N

» How to ensure that well-

. 'How man \ 2SOL
formed SQL is generated?  |cnginetypesdid b oo SERECT
n ) del Val Musetti use? g%%;?ﬁg::'on »| COUNT
r N \ |
» Three seq2seq moaels Entrant e .
Constructor > vointer » Engine
» How to capture column E:a;:;s | fWHEREdaae 1 [ommm
names + constants? N pointer > Driver =
Driver decoder ) Val Musetti

» Pointer mechanisms
Zhong et al. (2017)
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Problems with Seqg2seq Models

» Encoder-decoder models like to repeat themselves:

Un garcon joue dans la neige - A boy plays in the snow boy plays boy plays

» Often a byproduct of training these models poorly

» Need some notion of input coverage or what input words we’ve
translated



Problems with Seqg2seq Models

» Unknown words:

en. The ecotax portico in Pont-de-Buis , ... [truncated] ..., was taken down on Thursday morning
fr: Le portique écotaxe de Pont-de-Buis , ... [truncated] ..., a é&t€ démonté jeudl matin
nn: Le unk de unk a unk, ... |[truncated] ..., a été€ pris le jeudi matin

» No matter how much data you have, you’ll need some mechanism to
copy a word like Pont-de-Buis from the source to target



Problems with Seqg2seq Models

» Bad at long sentences: 1) a fixed-size representation doesn’t scale; 2)
LSTMs still have a hard time remembering for really long periods of time

30
25
2 20T RNNsearch: introduces
> 15 : : e attention mechanism to give
2 10}] — RNNsearch-50]................ - RN L \\_ .......... N _ “variable-sized”
----- RNNsearch-30 |: RN DT .
5H — = RNNenc-50 ................ "\ ------- --------------- . representahon
-- - RNNenc-30 .-";"\
OO 110 210 310 41() 510 60

Sentence length

Bahdanau et al. (2014)



Aligned Inputs

» Suppose we knew the source and
target would be word-by-word
translated



Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon



Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

» Can look at the corresponding
input word when translating —
this could scale!



Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

» Can look at the corresponding
input word when translating —

this could scale! W ;I ;I



Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

» Can look at the corresponding
input word when translating —
this could scale!

the movie was great



Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

» Can look at the corresponding le film était bon [STOP]

input word when translating —
this could scale!

the movie was great



Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

» Can look at the corresponding le film était bon [STOP]
input word when translating —
this could scale!

etalt bon

the movie was great



Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

» Can look at the corresponding le film était bon [STOP]
input word when translating —
this could scale!

» Much less burden on the hidden ctait bon
state the movie was great



Aligned Inputs

» Suppose we knew the source and the movie was great
target would be word-by-word / / / /
translated le film était bon
» Can look at the corresponding le film eétait bon [STOP]

input word when translating —
this could scale!

» Much less burden on the hidden etan bon

state the movie was great

» How can we achieve this without hardcoding it?
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Attention

» At each decoder state,
compute a distribution over
source inputs based on

the movie was great <s> e current decoder state

» Use that in output layer
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» For each decoder state,
compute weighted sum of
Input states
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» For each decoder state, » No attn: P(ylx,v1,...,yi_1) = softmax(Wh;)
compute weighted sum of

Input states
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\}

the movie was great eij = f(hi,hj) » Unnormalized
scalar weight
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aij —

Luong et al. (2015)
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e o f(his hy) = tanh(Whi, hy])
» Bahdanau+ (2014): additive

f(hi,hj) = h; - h;
» Luong+ (2015): dot product

f(hishy) = h; Wh;

» Luong+ (2015): bilinear

» Note that this all uses outputs of hidden layers
Luong et al. (2015)
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en. The ecotax portico in Pont-de-Buis , ... [truncated] ..., was taken down on Thursday morning
Pl \1 N/

fr: Le portique écotaxe de Poni=de-Buis , ... [truncated] ..., a é&t€ démonté jeudl matin

nn: Le unk de unk a unk, ... [truncated] ..., a ét€ pris le jeudi matin

» Want to be able to copy named entities like Pont-de-Buis

P(?/z‘\Xy ARERE 7y7l—1) — SOftmaX(W[Cz'; hz])
b

. from RNN
from attention

hidden state
» Still can only generate from the vocabulary

Jean et al. (2015), Luong et al. (2015)
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en. The ecotax portico in Pont-de-Buis , ... [truncated] .. the
>< \ | a
fr: Le portique écotaxe de Pont-de-Buis , ... [truncated]
nn: Le unk de unk a unk, ...[truncated] ..., a été pris zebra
. Pont-de-Buis
» Vocabulary contains “normal” vocab as well as
words in input. Normalizes over both of these: ecotax

exp Wy lcis hil  if win vocab

P(yZ — U]|X,y1, JRIK 7yi—1) X {h;thZ ifw=xj

» Bilinear function of input representation + output hidden state
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Vinyals et al. (2015)
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Pointer Networks

» Only point to the input,

’ | {,¢ ¥ v v ¥
don’t have any notion of : T
1
vocabulary y ? *2 Vv
N T TR T 5
» Used for tasks including N SR
summarization and sentence 1 1 ]

ordering

= > >

Vinyals et al. (2015)
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Results

GEO | ATIS
No Copying 4.6 | 69.9
With Copying | 85.0 | 76.3

» For semantic parsing, copying tokens from the input (texas) can be

very useful

» In many settings, attention can roughly do the same things as

copying

Jia and Liang (2016)
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Self-Attention

» LSTM abstraction: maps each vector in a sentence to a new, context-
aware vector

» CNNs did something similar with filters

the movie was great
» Attention can give us a third way to do this

Vaswani et al. (2017)
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» Each word forms a “query” which then T

computes attention over each word '%
T T it L L T S

OéZ,j — SOftma:X(:I;Z :I;J) scalar x¢' /;' K ! 4
F [ 1 F

;p/’b — E Qv X4  vector =sum of scalar * vector T T
J=1 the movie was great

» Multiple “heads” analogous to different convolutional filters. Use
parameters Wi and Vi to get different attention values + transform vectors

n
_ T /
(ki = softmax(z; Wixj) ) ; = E i i Vit
J=1

Vaswani et al. (2017)



Self-Attention

» Each word forms a “query” which then
computes attention over each word — = =3

-

aZ,j — SOftma:X(xz x]) Scalar "¢,"‘ /',' ",é :' E
/ —
Ly

— Z &Z,]x] vector = sum of scalar * vector T T
=1 the movie was great

» Multiple “heads” analogous to different convolutional filters. Use
parameters Wi and Vi to get different attention values + transform vectors

n
_ 1 /
Xl .5 — Softmax(:ci kaj) ajk,i — E Oék,z’,jvkafj

Vaswani et al. (2017)
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Deep Transformers

» Supervised: transformer can replace LSTM; will revisit this when we
discuss MT

» Unsupervised: transformers work better than LSTM for unsupervised
pre-training of embeddings: predict word given context words

BERT (Ours)

» Devlin et al. October 11, 2018
“BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”

» Stronger than similar methods, SOTA on ~11
tasks (including NER — 92.8 F1)
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Takeaways

» Attention is very helpful for seq2seq models
» Used for tasks including summarization and sentence ordering
» Explicitly copying input can be beneficial as well

» Transformers are strong models we’ll come back to later
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Where are we going

» We've now talked about most of the important core tools for NLP
» Rest of the class: more focused on applications

» Information extraction, then MT, then a grab bag of things



