
Lecture	11:	Seq2Seq	+	A/en1on

Alan	Ri/er
(many slides from Greg Durrett)



Administrivia

Course Project

Next homework assignment



Final Project

• Groups of 3-4 
• Sign up here: 

• https://forms.gle/3u5vC78uBP6eK8Xn7 
• Highly Recommended: stop by the office hours to 

chat and get feedback on your project. 
• Scope: on the order of one of the programming 

assignments 
• But, need to define the problem, come up with 

right feature representation, write up results in a 
formal report.



Selecting a Topic

• Part of your thesis?  Great! 
• Find a problem you are interested in where 

you think NLP can help. 
• Experiment with one of the algorithms we 

discussed about in class. 
• First question: what is the dataset?



Datasets
• Various Semeval Tasks: 

• http://alt.qcri.org/semeval2018/index.php?
id=tasks 

• Fake News Challenge: 
• http://www.fakenewschallenge.org/ 

• Machine Translation: 
• http://www.statmt.org/wmt19/robustness.html 

• Dialogue: 
• https://github.com/mgalley/DSTC7-End-to-End-

Conversation-Modeling 
• Many more…

http://alt.qcri.org/semeval2018/index.php?id=tasks
http://alt.qcri.org/semeval2018/index.php?id=tasks
http://www.fakenewschallenge.org/
http://www.statmt.org/wmt19/robustness.html
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling


Requirements
• 4 Page Report 
• Include empirical analysis of your approach  

• Report performance on dev / test set 
• Compare against some reasonable 

baseline method. 
• In class presentation during scheduled 

Final Exam time



Advice
• First question: is the data available? 
• Try to get a simple baseline working as 

early as possible to determine whether 
your project idea is feasible. 

• Start with a manageable-sized dataset 
• Then scale up…
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Recall:	CNNs	vs.	LSTMs

‣ Both	LSTMs	and	convolu1onal	layers	transform	the	input	using	context

the	movie	was	good the	movie	was	good

n	x	k

c	filters, 
m	x	k	each

O(n)	x	c

n	x	k

n	x	2c

BiLSTM	with  
hidden	size	c

‣ LSTM:	“globally”	looks	at	the	en1re	sentence	(but	local	for	many	problems)

‣ CNN:	local	depending	on	filter	width	+	number	of	layers
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‣ Encode	a	sequence	into	a	fixed-sized	vector

the		movie		was			great

Sutskever	et	al.	(2014)



Encoder-Decoder
‣ Encode	a	sequence	into	a	fixed-sized	vector

the		movie		was			great

‣ Now	use	that	vector	to	produce	a	series	of	tokens	as	output	from	a	
separate	LSTM	decoder

le						film			était			bon	[STOP]

Sutskever	et	al.	(2014)



Encoder-Decoder

‣ Is	this	true?	Sort	of…we’ll	come	back	to	
this	later
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Model
‣ Generate	next	word	condi1oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great <s>

h̄

‣W	size	is	|vocab|	x	|hidden	state|,	sodmax	over	en1re	vocabulary

Decoder	has	separate	
parameters	from	encoder,	so	
this	can	learn	to	be	a	language	
model	(produce	a	plausible	next	
word	given	current	one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)
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Inference
‣ Generate	next	word	condi1oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predic1ons	
and	then	feed	that	to	the	next	RNN	state	

le					

<s>

‣ Need	to	actually	evaluate	computa1on	graph	up	to	this	point	to	form	
input	for	the	next	state

‣ Decoder	is	advanced	one	state	at	a	1me	un1l	[STOP]	is	reached

film était bon [STOP]
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Implemen1ng	seq2seq	Models

the		movie		was			great

‣ Encoder:	consumes	sequence	of	tokens,	produces	a	vector.	Analogous	to	
encoders	for	classifica1on/tagging	tasks

le					

<s>

‣ Decoder:	separate	module,	single	cell.	Takes	two	inputs:	hidden	state	
(vector	h	or	tuple	(h,	c))	and	previous	token.	Outputs	token	+	new	state

Encoder

…

film					

le

Decoder Decoder



Training

‣ Objec1ve:	maximize

the		movie		was			great <s> le						film			était			bon

le

‣ One	loss	term	for	each	target-sentence	word,	feed	the	correct	word	
regardless	of	model’s	predic1on

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)



Training:	Scheduled	Sampling
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Training:	Scheduled	Sampling

‣ Scheduled	sampling:	with	probability	p,	take	the	gold	as	input,	else	take	
the	model’s	predic1on
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Bengio	et	al.	(2015)



Training:	Scheduled	Sampling

‣ Star1ng	with	p	=	1	and	decaying	it	works	best

‣ Scheduled	sampling:	with	probability	p,	take	the	gold	as	input,	else	take	
the	model’s	predic1on

the		movie		was			great

la						film			étais			bon	[STOP]

le film était

‣Model	needs	to	do	the	right	thing	even	with	its	own	predic1ons

Bengio	et	al.	(2015)

sample
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Implementa1on	Details

‣ Sentence	lengths	vary	for	both	encoder	and	decoder:

‣ Typically	pad	everything	to	the	right	length

‣ Encoder:	Can	be	a	CNN/LSTM/…

‣ Decoder:	also	flexible	in	terms	of	architecture	(more	later).	Execute	
one	step	of	computa1on	at	a	1me,	so	computa1on	graph	is	
formulated	as	taking	one	input	+	hidden	state

‣ Beam	search:	can	help	with	lookahead.	Finds	the	(approximate)	highest	
scoring	sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)



Beam	Search
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Beam	Search
‣Maintain	decoder	state,	token	history	in	beam

la:	0.4					

<s>

la

le

les

le:	0.3
les:	0.1					

log(0.4)
log(0.3)

log(0.1)

film:	0.4

la

…

film:	0.8					

le

…

la 
film…

log(0.4)+log(0.4)

the		movie		was			great



Beam	Search
‣Maintain	decoder	state,	token	history	in	beam

la:	0.4					

<s>

la

le

les

le:	0.3
les:	0.1					

log(0.4)
log(0.3)

log(0.1)

film:	0.4

la

…

film:	0.8					

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

the		movie		was			great



Beam	Search
‣Maintain	decoder	state,	token	history	in	beam

la:	0.4					

<s>

la

le

les

le:	0.3
les:	0.1					

log(0.4)
log(0.3)

log(0.1)

film:	0.4

la

…

film:	0.8					

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Do	not	max	over	the	two	film	states!	Hidden	state	vectors	are	different

the		movie		was			great
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Seman1c	Parsing	as	Transla1on

Jia	and	Liang	(2015)

‣Write	down	a	linearized	form	of	the	seman1c	parse,	train	seq2seq	models	
to	directly	translate	into	this	representa1on

‣Might	not	produce	well-formed	logical	forms,	might	require	lots	of	data

“what	states	border	Texas”

lambda x ( state ( x ) and border ( x , e89 ) ) )

‣ No	need	to	have	an	explicit	grammar,	simplifies	algorithms
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Regex	Predic1on

‣ Can	use	for	other	seman1c	parsing-like	tasks

‣ Predict	regex	from	text

‣ Problem:	requires	a	lot	of	data:	10,000	examples	needed	to	get	~60%	
accuracy	on	pre/y	simple	regexes

Locascio	et	al.	(2016)
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SQL	Genera1on

‣ Convert	natural	language	
descrip1on	into	a	SQL	
query	against	some	DB

‣ How	to	ensure	that	well-
formed	SQL	is	generated?

Zhong	et	al.	(2017)

‣ Three	seq2seq	models

‣ How	to	capture	column	
names	+	constants?

‣ Pointer	mechanisms



A/en1on
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Problems	with	Seq2seq	Models

‣ Need	some	no1on	of	input	coverage	or	what	input	words	we’ve	
translated

‣ Encoder-decoder	models	like	to	repeat	themselves:

A	boy	plays	in	the	snow	boy	plays	boy	playsUn	garçon	joue	dans	la	neige

‣ Oden	a	byproduct	of	training	these	models	poorly



Problems	with	Seq2seq	Models

‣ Unknown	words:

‣ No	ma/er	how	much	data	you	have,	you’ll	need	some	mechanism	to	
copy	a	word	like	Pont-de-Buis	from	the	source	to	target



Problems	with	Seq2seq	Models

‣ Bad	at	long	sentences:	1)	a	fixed-size	representa1on	doesn’t	scale;	2)	
LSTMs	s1ll	have	a	hard	1me	remembering	for	really	long	periods	of	1me

RNNsearch:	introduces	
a/en1on	mechanism	to	give	
“variable-sized”	
representa1on

Bahdanau	et	al.	(2014)
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‣ Suppose	we	knew	the	source	and	
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translated

‣ Can	look	at	the	corresponding	
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‣ Note	that	this	all	uses	outputs	of	hidden	layers
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P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

from	a/en1on
from	RNN	
hidden	state

‣ S1ll	can	only	generate	from	the	vocabulary
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‣ Vocabulary	contains	“normal”	vocab	as	well	as	
words	in	input.	Normalizes	over	both	of	these:

‣ Bilinear	func1on	of	input	representa1on	+	output	hidden	state

{P (yi = w|x, y1, . . . , yi�1) /
expWw[ci; h̄i]

h>
j V h̄i

if	w	in	vocab

if	w	=	xj
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‣ In	many	se|ngs,	a/en1on	can	roughly	do	the	same	things	as	
copying

‣ For	seman1c	parsing,	copying	tokens	from	the	input	(texas)	can	be	
very	useful
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Deep	Transformers

‣ Supervised:	transformer	can	replace	LSTM;	will	revisit	this	when	we	
discuss	MT

‣ Unsupervised:	transformers	work	be/er	than	LSTM	for	unsupervised	
pre-training	of	embeddings:	predict	word	given	context	words

‣ Devlin	et	al.	October	11,	2018 
“BERT:	Pre-training	of	Deep	Bidirec1onal	
Transformers	for	Language	Understanding”

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)



Takeaways



Takeaways

‣ A/en1on	is	very	helpful	for	seq2seq	models



Takeaways

‣ A/en1on	is	very	helpful	for	seq2seq	models

‣ Used	for	tasks	including	summariza1on	and	sentence	ordering



Takeaways

‣ A/en1on	is	very	helpful	for	seq2seq	models

‣ Used	for	tasks	including	summariza1on	and	sentence	ordering

‣ Explicitly	copying	input	can	be	beneficial	as	well



Takeaways

‣ A/en1on	is	very	helpful	for	seq2seq	models

‣ Used	for	tasks	including	summariza1on	and	sentence	ordering

‣ Explicitly	copying	input	can	be	beneficial	as	well

‣ Transformers	are	strong	models	we’ll	come	back	to	later
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Where	are	we	going

‣We’ve	now	talked	about	most	of	the	important	core	tools	for	NLP

‣ Rest	of	the	class:	more	focused	on	applica1ons

‣ Informa1on	extrac1on,	then	MT,	then	a	grab	bag	of	things


