Lecture 17: Unsupervised Learning

Alan Ritter

(many slides from Greg Durrett)



Administrivia

» Wei Xu will present on Friday
» No Class on December 4

» Final Project Presentations are during the final exam time scheduled on
December 12



What data do we learn from?

» Supervised settings: f ellddelelelelslsieieieleleleleleleieieiaialallllelelets I ,
» Tagging: POS, NER i model

» Parsing: constituency,

. .| unlabeled . semi-
dependency, semantic parsing ata — supervised
. model

» [E, MT, QA, ...

» Semi-supervised models ] |
» Word embeddings / word clusters (helpful for nearly all tasks)
» Language models for machine translation

» Learn linguistic structure from unlabeled data and use it?



This Lecture

» Discrete linguistic structure from generative models: unsupervised POS
induction

» Expectation maximization for learning HMMs

» Continuous structure with generative models: variational autoencoders

» Continuous structure with “discriminative” models: transfer learning



EM for HMMs



Recall: Hidden Markov Models

» Input x = (21, ..., T,) Output y = (y1, ,?/n)

» Observation (x) depends
only on current state (y)
» Multinomials: tag x tag

n - transitions, tag x word

=2 1=1 » P(x|y) is a distribution over
\ K, ) , (x[y) A |
it Transition Cmission all words in the vocabulary
distribution probabilities probabilities — not a distribution over

features (but could be!)



Unsupervised Learning

» Can we induce linguistic structure? Thought experiment...

abacccc

baccc
» What's a two-state HMM that could produce this?

» What if | show you this sequence?
aabccaa

» What did you do? Use current model parameters + data to refine
vour model. This is what EM will do



Part-of-Speech Induction

» Input x = (21,...,2,)  Output y = (y1, ..., Yn)

» Assume we don’t have access to labeled examples — how can we learn
a POS tagger?

Generative model explains
» Key idea: optimize P ZP y, X

“— the data x; the right HMM
makes it look likely

» Optimizing marginal log-likelihood with no labels y:

ﬁ(Xl,...,D) — Z log Z P(y, Xi) » hon-convex optimization

problem



Part-of-Speech Induction

» Input x = (21,...,2,)  Output y = (y1, ..., Yn)

» Optimizing marginal log-likelihood with no labels y:
D
L(X1,..p) = ZlOgZP(Y,Xi)
1=1 Yy

» Can’t use a discriminative model; Z P(y|x) = 1, doesn’t model x

y
» What's the point of this? Model has inductive bias and so should learn

some useful latent structure y (clustering effect)

» EM is just one procedure for optimizing this kind of objective



Expectation Maximization

log Z P(x,y|6) » Condition on parameters §

log Z q(y) P(x,yl0) .Variatjional afpproximation g — this
q(y) is a trick we’ll return to later!

> Z q(y) log » Jensen’s inequality (uses concavity
q(y) of log)

{"q(y) lOg P(Xa '.Y|9) T Entr()py[q(y)]

» Can optimize this lower-bound on log likelihood instead of log-likelihood
Adapted from Leon Gu



Expectation Maximization

log » P(x,y]6) > Eqy(y) log P(x,y|6) + Entropy[q(y)]
Y

» If q(y) = P(y|x,6), this bound ends up being tight

» Expectation-maximization: alternating maximization of the

lower bound over g and §

» Current timestep = t, have parameters @1

» E-step: maximize w.r.t. g; that is, qt — P(y|X, Qt_l)

» M-step: maximize w.r.t.0; that is, §° = argmaxg

ot log P(x,y|0)

Adapted from Leon Gu



EM for HMMs

» Expectation-maximization: alternating maximization
» E-step: maximize w.r.t. g; that is, qt — P(y|X, Qt_l)

» M-step: maximize w.r.t.; thatis, §° = argmax,E« log P(x,y|0)

» E-step: for an HMM: run forward-backward with the given parameters
» Compute P(yz — S|X7 et—l)v P(yz — S1,Yi+1 — 32|X7 et—l)

tag marginals at tag pair marginals at
each position each position

» M-step: set parameters to optimize the crazy argmax term



M-Step

» Recall how we maximized log P(x,y): read counts off data

count(DT, the) = 1 P(the|DT) =1
DT NN count(DT, dog) =0 P(dog|DT) =0
— —
the dog count(NN, the) =0 P(the|NN) =0
count(NN, dog) =1 P(dog|NN) =1

» Same procedure, but maximizing P(xX,y) in expectation under g
means that q specifies fractional counts

count(DT, the) = 0.9 P(the |DT) = 0.75
q DT: 0.9 DT:0.3 count(DT, dog) = 0.3 P(dog|DT) = 0.25
NN: 0.1 NN:0.7: count(NN, the) = 0.1 P(the [NN) = 0.125

the dog count(NN, dog) = 0.7 P(dog|NN) = 0.875



M-Step

» Same for transition probabilities

DT—NN: 0.6 P(DT|DT) = 1/7
¥ DT—DT:.O.l ., P(NN|DT)=6/7
i NN—DT: 0.2 i P(DT|NN) =2/3
e ANTNNEOL P(NNINN) = 1/3



How does EM learn things?

» Initialize (M-step 0):

» Emissions
P(the|DT) =0.9 P(the|NN) = 0.05
P(dog|DT) = 0.05 P(dog|NN) = 0.9

P(marsupial |DT) = 0.05 P(marsupial [NN) = 0.05
» Transition probabilities: uniform

» E-step 1: (all values are approximate)

DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.5
NN: 0.05 NN: 0.95 NN: O0.05 NN: 0.5

the dog the marsupial

» uniform



How does EM learn things?

» E-step 1:
DT: 0.95 DT: 0.05 DT: 0.95 DT: 0.5
NN: 0.05 NN: 0.95 NN: 0.05 NN: 0.5
the dog the marsupial
» M-step 1:

» Emissions aren’t so different
» Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4



How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05/NN: 0.70
the dog the marsupial
» M-step 1:

» Emissions aren’t so different
» Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4



How does EM learn things?

» E-step 2:
DT: 0.95 DT: 0.05 DT: 0.95 |DT: 0.30
NN: 0.05 NN: 0.95 NN: 0.05/NN: 0.70
the dog the marsupial
» M-step 2:

» Emission P(marsupial |[NN) > P(marsupial | DT)
» Remember to tag marsupial as NN in the future!

» Context constrained what we learned! That’s how data helped us



How does EM learn things?

» Can think of g as a kind of “fractional annotation”
» E-step: compute annotations (posterior under current model)

» M-step: supervised learning with those fractional annotations

» Initialize with some reasonable weights, alternate E and M until
convergence



EM’s Lower Bound

2 Initialize probabilities 6
L(x1,..,p) = Zlogzp(Y>Xi) repeat
1=1 y ® Compute expected counts €
@ Fit parameters 6

L (X 1,....D3 (9) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

- Initialize probabilities @
ﬁ(Xl,...,D) — ZlOgZP(y,XZ) repeat
1=1 y ® Compute expected counts e
@ Fit parameters 6

L (X 1,....D; (9) until convergence

» E-step: compute g which
» initial theta gives this lower bound

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

D e o yel

Initialize probabilities 6

ﬁ(Xl,...,D) — E log E :P(y,Xf,;) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters 6

L (Xl ...D; W ) until convergence

» M-step: find
aximum of
lower bound

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities @

D
L(X1.. D)= ZlogZP(y,Xi) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters 6

L (X 1 D (9) , until convergence

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities @

D
L(X1.. D)= Zlogzp(y,xi) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters 6

L (X 1....D; 6’) until convergence

» E-step 2: re-estimate g

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities 0

D
L(X1.. D)= ZlogZP(y,xi) repeat
1=1 Yy

® Compute expected counts e
@ Fit parameters 6

L (X 1,....D3 (9) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities 0

D
ﬁ(lem,D) — ZlogZP(y,xi) repeat
1=1 y

® Compute expected counts e
@ Fit parameters 6

L (X1 ....D; v ) until convergence

slide credit: Taylor Berg-Kirkpatrick




EM’s Lower Bound

Initialize probabilities 6

D
L(X1.. D)= ZlogZP(y,xi) repeat
1=1 y

® Compute expected counts e
@ Fit parameters 6

L (X 1,....D5 6’) until convergence

o

slide credit: Taylor Berg-Kirkpatrick




Part-of-speech Induction

» Merialdo (1994): you have a whitelist of tags for each word

» Learn parameters on k examples to start, use those to initialize
EM, run on 1 million words of unlabeled data

» Tag dictionary + data should get us started in the right
direction...



Number of tagged sentences used for the initial model

0 100 2000 5000 10000 20000  all

Iter Correct tags (%o words) after ML on 1M words
0 770 96.2 9.6 969  97.0
1 805 926 963 966 967  96.8
2 818 93.0 96.1 963 964 964
3 830 931 958 961 962  96.2
4 840 93.0 955 958 960  96.0
5 848 929 954 956 958 958
6 853 928 952 955 956 957
7 858 928 951 953 955 955
8 861 927 950 952 954 954
9 863 926 949 951 953 953
10 952  95.2

86.6

92.6

94 .8

95.0

Part-of-speech Induction

» Small amounts
of data > large
amounts of
unlabeled data

» Running EM *hurts*
performance once
vou have labeled
data

Merialdo (1994)



Two Hours of Annotation

Human Annotations 0. No EM 1. EM only 2. With LP
Initial data T K U| T K U|T K U
KIN tokens A 72 90 58 |55 82 32|71 86 58
KIN types A 63 77 32|78 83 69
MLG tokens B 74 89 49 |68 87 39|74 89 49
MLG types B 71 &7 46 |72 81 57
ENG tokens A 63 83 38162 83 37|72 8 355
ENG types A 66 76 37 |75 81 56
ENG tokens B 70 87 44 |70 87 43 |78 90 60
ENG types B 69 83 38 |75 82 61

» Kinyarwanda and Malagasy (two actual low-resource languages)

» Label propagation (technique for using dictionary labels) helps a lot,

with data that was collected in two hours
Garrette and Baldridge (2013)



Variational Autoencoders



Continuous Latent Variables

» For discrete latent variables y, we optimized: P Z P y,

» What if we want to use continuous latent variables?

P(z,x) = P(2)P(x|z)

P(x) = / P(2)P(x|2)9:

» Can use EM here when P(z) and P(x|z) are Gaussians

» What if we want P(x|z) to be something more complicated, like an
LSTM with z as the initial state?



Deep Generative Models

the movie| was |good|[STOP]

» Z is a latent variable which should control the generation of the
sentence, maybe capture something about its topic



Deep Generative Models

log / P(x,z|0) = log / q(z)P E]’E;W)Z / 4(2) log P(;(ZZ)W)

Jensen

— 43'61(z|x) [_ log Q(Z|X) + log P(X’ Z|(9)]
— 4:'q(z\x) [10g P(X‘Z, ‘9)] — KL(C](Z‘X)HP<Z))]

“make the data likely under 9" “make q close to the prior”
(discriminative)

» KL divergence: distance metric over distributions (more dissimilar <=>
higher KL)



Variational Autoencoders
4j'q(z\x) [1OgP(X‘Z79>] - KL(C]('Z|X)HP(Z))

Generative model (test): Autoencoder (training):

[ 12~P(z) T—31 x Input

l l “inference network”

L 1X ] q(z|x) distribution over z

l generative model

[ 1 X Maximize P(x|z,0)

Miao et al. (2015)



Training VAEs

4j'q(z\x) [1OgP(X‘Z79>] o KL(C]('Z|X)HP(Z))

» Choose g to be Gaussian with Autoencoder (training):
parameters that are computed from x

1 X

_ - 2
q = N(u(x),diag(c”(x))) 0 l “inference network”
» mu and sigma are computed from an ] q(z|x)

LSTM over x, call their parameters ¢ () l generative model
» How to handle the expectation? I

Sampling

Miao et al. (2015)



Training VAEs

For each example x Autoencoder (training):
Compute g (run forward pass to ——1 X
compute mu and sigma) 0 l “inference network”
For some number of samples ] q(z]x)
Samplez ™~ qg 6 l generative model

Compute P(x]|z) and compute loss [ 1 X
Backpropagate to update phi, theta



Autoencoders

the movie| was |good|[STOP]

LU

the movie was great + <s>

!

Gaussian noise

» Another interpretation: train an autoencoder and add Gaussian noise

» Same computation graph as VAE, add KL divergence term to make the
objective the same

» Inference network (q) is the encoder and generator is the decoder



Visualization

2o llog P (x|, 0)] + KL(q(z[x)]| P(2))

» What does gradient encourage latent space to do?

prior direction of better likelihood for x




What do VAEs do?

» Let us encode a sentence and generate similar sentences:

INPUT we looked out at the setting sun . i went to the kitchen . how are you doing ?
MEAN they were laughing at the same time . 1 went to the kitchen . what are you doing ¢
SAMP. 1 ll see you in the early morning . 1 went to my apartment . “are you sure ¢
SAMP. 2 1 looked up at the blue sky . 1 looked around the room .  what are you doing ?
SAMP. 3 it was down on the dance floor . 1 turned back to the table .  what are you doing ?
: Positive great indoor mall .
» Style transfer: also R AE e emokine mall.
condition on se ntiment, —> Cross-AE terrible outdoor urine .
cha NgE S€ ntiment Positive it has a great atmosphere , with wonderful service .
= ARAE it has no taste , with a complete jerk .
» _.or use the latent = Cross-AE it has a great horrible food and run out service .

representations for semi-
supervised learning

Bowman et al. (2016), Zhao et al. (2017)



BERT



Goals of Unsupervised Learning

» We want to use unlabeled data, but EM “requires” generative models.
Are models like this really necessary?

» word2vec: predict nearby word given context. This wasn’t generative,
but the supervision is free...

» Language modeling is a “more contextualized” form of word2vec



—--.
- N
- S
-
——
-

1 1 I oo ] + learnalinear classifier on top of
Q_Q_QH_Q "+ this vector to get a POS tagger
with 97.3% accuracy (~“SOTA)
they dance  at balls

P($i|£€1, .o ,Zlﬁi_l) — LSTM(ZBl, .o ,:1:2-_1)

» Generative model of the data!

» Train one model in each direction on 1B words, use the LSTM hidden
states as context-aware token representations



Recall: Self-Attention

» Each word forms a “query” which then
computes attention over each word — = =3

-

OéZ,j — SOftma:X(:I;Z :I;J) scalar x¢"“ /;x ':" ." E
, F [ 1 F

L, = E Qv X4  vector =sum of scalar * vector T T
=1 the movie was great

» Multiple “heads” analogous to different convolutional filters. Use
parameters Wi and Vi to get different attention values + transform vectors

T
_ 1 / § :
f §.5 — softmax(:ci Wk$j) ajk,i — ak,i,ijxj

Vaswani et al. (2017)



Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention

Positional
Encoding

QF:
Input

INnputs

Recall: Transformers

‘lhe movle was great

// \\
P = = = =
— =

/‘\ \

» Augment word embedding with position embeddings,
each dim is a sine/cosine wave of a different
frequency. Closer points = higher dot products

» Works essentially as well as just encoding position as

a one-hot vector Vaswani et al. (2017)



BERT

» Al2 made ELMo in spring 2018, GPT was released in summer 2018, BERT
came out October 2018

» Three major changes compared to ELMo:

» Transformers instead of LSTMs (transformers in GPT as well)
» Bidirectional <=> Masked LM objective instead of standard LM
» Fine-tune instead of freeze at test time



BERT

» ELMo is a unidirectional model (as is GPT): we can concatenate two
unidirectional models, but is this the right thing to do?

» ELMo reprs look at each direction in isolation; BERT looks at them jointly

A stunning ballet dancer, Copeland is one of the best performers to see live.

“ballet dancer/performer”

Devlin et al. (2019)



BERT

» How to learn a “deeply bidirectional” model? What happens if we just
replace an LSTM with a transformer?

ELMo (Language Modeling) BERT
visited  Madag. yesterday .. visited Madag. yesterday

John visited Madagascar yesterday

1 —
‘ ‘ » Transformer LMs have to be “one-
sided” (only attend to previous

John visited Madagascar yesterday tokens), not what we want



Masked Language Modeling

» How to prevent cheating? Next word prediction fundamentally doesn't
work for bidirectional models, instead do masked language modeling

Madagascar
» BERT formula: take a chunk of

text, predict 15% of the tokens
e

» For 80% (of the 15%),
replace the input token with

[MASK] John visited [MASK] yesterday
» For 10%, replace w/random John  visited  of yesterday
» For 10%, keep same John  visited Madagascar yesterday

Devlin et al. (2019)



Next “Sentence” Prediction

» Input: [CLS] Text chunk 1 [SEP] Text chunk 2

» 50% of the time, take the true next chunk of text, 50% of the time take a
random other chunk. Predict whether the next chunk is the “true” next

» BERT objective: masked LM + next sentence prediction

NotNext Madagascar enjoyed like

Transformer

Transformer

[CLS] John visited [MASK] vyesterday and really all it [SEP] /like Madonna.
Devlin et al. (2019)



BERT Architecture

» BERT Base: 12 layers, 768-dim C \

" ® *
per wordpiece token, 12 heads. ) (o)) ) -
Total params = 110M e
» BERT Large: 24 layers, 1024-dim =] el (&
per wordpiece token, 16 heads. fmﬂfwl--l- (o) [smww.l.. £

Unlabeled Sentence A and B Pair

TOta I p a ra m S — 340 M \ Masked Sentence A P Masked SentenceB/

} POSitiOnaI embEddingS and Input /[CLS]W/my\/dOg\/ IS \(cutew/[SEP]\/he\(IikestlayW/##ingw/[SEP]\
S eg m e nt e m b e d d i n gS’ 3 O k E?,:fgddmgs EcLs) Ey Egog Eis Ecute || Eser Epe Eices Eoray E, /ing E/sep)
word pieces somen [ [ ] [ ] [T ) [ [ [T e

Embeddings A A A A A A B B B B B
.. + + + + + + + + + + +
» This is the model that gets postin e [ e, |[5 |6 |[& [ & [& |6 ][& 1 & |[E

re-trained on a large corpus
P 5 P Devlin et al. (2019)



What can BERT do?

Class Class

Cabol 0 B-PER 0
Label
BDEES C)) e SEREA a3
BERT BERT BERT
Ecis) E, E, Ey Bews || B4 | - Ey Eiser) By | - Ey EicLs) E, E, Ey
iy — —{r o e ) e e ) ey — "
fofm\we] (o] ). (=) (%) oo ms] . [
| | |
Single Sentence Sentence 1 Sentence 2 Single Slentence
(b) Single Sentence Classification Tasks: (a) Sentence Pair Classification Tasks: 4) Sinale Sent Tagaing Tasks:
SST-2, CoLA MNLI, QQP, QNLI, STS-B, MRPC, @ C'”lgfl_ ggozn:lERaggmg ASHES:
RTE, SWAG ONLL-

» CLS token is used to provide classification decisions

» Sentence pair tasks (entailment): feed both sentences into BERT

» BERT can also do tagging by predicting tags at each word piece
Devlin et al. (2019)



What can BERT do?

Class

Entails Labe

Transformer S
—— ————
Transformer ) =) - ()

Sentence 1 Sentence 2

[CLS] A boy plays in the snow [SEP] A boy is outside

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

» How does BERT model this sentence pair stuff?

» Transformers can capture interactions between the two sentences,
even though the NSP objective doesn’t really cause this to happen




What can BERT NOT do?

» BERT cannot generate text (at least not in an obvious way)

» Not an autoregressive model, can do weird things like stick a [MASK]
at the end of a string, fill in the mask, and repeat

» Masked language models are intended to be used primarily for
“analysis” tasks



Fine-tuning BERT

» Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5

Class
Label

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

» Large changes to weights up here
(particularly in last layer to route the
right information to [CLS])

» Smaller changes to weights lower down
in the transformer

» Small LR and short fine-tuning schedule
mean weights don’t change much

» More complex “triangular
learning rate” schemes exist



Fine-tuning BERT

NER SA Nat. lang. inference Semantic textual similarity

Pretraining  Adaptation . "y 1 5003 6ST.-2 MNLI  SICK-E SICK-R MRPC STS-B
Skip-thoughts f . 818 629 i 86.6 758  71.8
. 917 91.8  179.6 86.3 861 760  75.9

ELMo & 919 912 764 83.3 833 747 755
A= 02 -06 32 33 0.8 13 -04

, 922 930  84.6 84.8 864  78.1  82.9

BERT-base & 924 935  84.6 85.8 887 848  87.1
A= 02 05 0.0 1.0 2.3 6.7 4.2

» BERT is typically better if the whole network is fine-tuned, unlike ELMo

Peters, Ruder, Smith (2019)



Evaluation: GLUE

Corpus |Train| |Test| Task Metrics Domain
Single-Sentence Tasks
CoLA 8.3k 1k  acceptability Matthews corr. misc.
SST-2 67k 1.8k  sentiment acc. movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity  Pearson/Spearman cort. misc.
QQP 36dk 391k paraphrase acc./F1 social QA questions
Inference Tasks
MNLI 393k 20k NLI matched acc./mismatched acc.  misc.
QNLI 105k 54k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146 coreference/NLI acc. fiction books

Wang et al. (2019)



Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k| -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 61.7] 740
BiLSTM+ELMo+Attn ~ 76.4/76.1  64.8 799 904 36,0 733 849 56.8| 71.0
OpenAl GPT 82.1/81.4 703 88.1 913 454 800 823 56.0| 752
BERTRASE 84.6/83.4 712 90.1 935 52.1 858 889 664 796
BERT] ARGE 86.7/859 721 91.1 949 605 865 893 70.1| 81.9

» Huge improvements over prior work (even compared to ELMo)

» Effective at “sentence pair” tasks: textual entailment (does sentence A
imply sentence B), paraphrase detection

Devlin et al. (2018)



ROBERTa

» “Robustly optimized BERT” SOuAD
Model data bsz steps MNLI-m SST-2
(v1.1/2.0)
RoBERTa
» 160GB of data instead of with BOOKs + Wikl 16GB 8K 100K 93.6/87.3  89.0 953
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7  89.3 95.6
16 GB + pretrain longer 160GB 8K 300K 94.4/88.7  90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT arcE
} Dyna mic masking: Sta nda rd with BOOKS + WIKI 13GB 256 IM 90.9/81.8 86.6 93.7

BERT uses the same MASK
scheme for every epoch,
RoBERTa recomputes them

» New training + more data = better performance

Liu et al. (2019)



GPT/GPT2



OpenAl GPT/GPT?2

» “ELMo with transformers” (works better than ELMo)

» Train a single unidirectional transformer LM on long contexts

» GPT2: trained on 40GB of text

collected from upvoted links Parameters  Layers  dmoder
from reddit 117M 12 768
» 1.5B parameters — by far the 345M 24 1024
I f of th dels trained 762M 36 1280
argest of these models traine 1549M 48 1600

as of March 2019

» Because it's a language model, we can generate from it

Radford et al. (2019)



SYSTEM PROMPT
(HUMAN-WRITTEN)

MODEL COMPLETION
(MACHINE-WRITTEN,
SECOND TRY)

OpenAl GPT2

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on
Hollywood Boulevard today.

The 19-year-old singer was caught on camera being escorted out of
the store by security quards.

The singer was wearing a black hoodie with the label ‘Blurred
Lines’ on the front and ‘Fashion Police’ on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie
and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label ‘Blurred
Lines’ on the front and ‘Fashion Police’ on the back

The singer was also wearing a pailr of black—-rimmed glasses, a
black jacket, black jeans and black sandals.

She was carrying a palr of black and white striped gloves and a
small black bag.

slide credit:
OpenAl




Open Questions

1) How novel is the stuff being generated? (Is it just doing nearest
neighbors on a large corpus?)

2) How do we understand and distill what is learned in this model?

3) How do we harness these priors for conditional generation tasks
(summarization, generate a report of a basketball game, etc.)

4) |Is this technology dangerous? (OpenAl has only released 774M param
model, not 1.5B yet)



Pre-Training Cost (with Google/AWS)

» BERT: Base $500, Large S7000
» Grover-MEGA: $25,000
» XLNet (BERT variant): $30,000 — $60,000 (unclear)

» This is for a single pre-training run...developing new pre-training
techniques may require many runs

» Fine-tuning these models can typically be done with a single GPU (but
may take 1-3 days for medium-sized datasets)

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/




Pushing the Limits

» NVIDIA: trained 8.3B parameter GPT model (5.6x the size of

GPT-2)
WebText Validation Perplexity

ws 345M == //5M 2.5B == 83B
» Arguable these models

are still underfit: larger
models still get better
held-out perplexities
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NVIDIA blog (Narasimhan, August 2019)



Google T5

Number of tokens Repeats GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Full dataset 0 83.28 19.24 80.88 71.36 26.98 39.82 27.65
229 64 82.87 19.19 80.97 72.03 26.83 39.74 27.63
227 256 82.62 19.20 79.78 69.97 27.02 39.71 27.33
229 1,024 79.55 18.57 76.27 64.76 26.38 39.56  26.80
223 4,096 76.34 18.33 70.92 59.29 26.37 38.84  25.81

» Colossal Cleaned Common Crawl: 750 GB of text

» We still haven't hit the limit of bigger data being useful

Raffel et al. (October 23, 2019)



BART

» Sequence-to-sequence BERT ABCDE
variant: permute/make/delete A4 444
tokens, then predict full
sequence autoregressively

Bidirectional
Encoder

Autoregressive
Decoder

-

P

>

» For downstream tasks: feed A _B _E <ssSABCD
document into both encoder +
decoder, use decoder hidden
state as output

» Good results on dialogue, summarization tasks

Lewis et al. (October 30, 2019)



Analysis
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[SEP]
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What does BERT learn?

Head 3-1
Attends to next token
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» Heads on transformers learn interesting and diverse things: content
heads (attend based on content), positional heads (based on
position), etc.

Clark et al. (2019)



What does BERT learn?

Head 8-10

- Direct objects attend to their verbs

- 86.8% accuracy at the dobj relation
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Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation
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Head 5-4

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent

with
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» Still way worse than what supervised systems can do, but
interesting that this is learned organically

Clark et al. (2019)



Probing BERT

POS

» Try to predict POS, etc. from each layer.
Learn mixing weights

L
hi T = VT Z Sg) hfz(,g)
7\ ¢=0

Consts.

Deps.

representation of wordpiece i
for task T

K(A) = 1.61 K(s) = 0.06
s~ T T I T T [ [ || [ L

Entities

» Plot shows s weights (blue) and
performance deltas when an additional
layer is incorporated (purple)

» BERT “rediscovers the classical NLP pipeline”: ——
first syntactic tasks then semantic ones Tenney et al. (2019)




Compressing BERT

» Remove 60+% of o
BERT’s heads with .
>, U.
minimal drop in :
Q0.4 -
performance =
0.2
» DistilBERT (Sanh et al., 00—
0% 207 40% 607 80% 1007
2019): nearly as good with Percentage pruned
(b) Evolution of accuracy on the MultiNLI-matched
ha If th € Param eters Of BERT validation set when heads are pruned from BERT ac-
(via kn0w|edge dIStI”athn) cording to I; (solid blue) and accuracy difference
(dashed green).

Michel et al. (2019)



Open Questions

» BERT-based systems are state-of-the-art for nearly every major text
analysis task

» These techniques are here to stay, unclear what form will win out

» Role of academia vs. industry: no major pretrained model has come
purely from academia

» Cost/carbon footprint: a single model costs $10,000+ to train (though
this cost should come down)



