Lecture 17: Unsupervised Learning

Alan Ritter

(many slides from Greg Durrett)

Administrivia

- Wei Xu will present on Friday
- No Class on December 4
- Final Project Presentations are during the final exam time scheduled on December 12

What data do we learn from?

- Supervised settings:
 - Tagging: POS, NER
 - Parsing: constituency,
 dependency, semantic parsing
 - ▶ IE, MT, QA, ...
- Semi-supervised models

- Word embeddings / word clusters (helpful for nearly all tasks)
- Language models for machine translation
- Learn linguistic structure from unlabeled data and use it?

This Lecture

- Discrete linguistic structure from generative models: unsupervised POS induction
 - Expectation maximization for learning HMMs
- Continuous structure with generative models: variational autoencoders

Continuous structure with "discriminative" models: transfer learning

EM for HMMs

Recall: Hidden Markov Models

probabilities

Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$

distribution

$$P(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i | y_{i-1}) \prod_{i=1}^{n} P(x_i | y_i)$$
Initial Transition Emission

probabilities

- Observation (x) depends only on current state (y)
- Multinomials: tag x tag transitions, tag x word emissions
- P(x|y) is a distribution over all words in the vocabulary

 not a distribution over
 features (but could be!)

Unsupervised Learning

Can we induce linguistic structure? Thought experiment...

```
a b a c c c c b a c c c
```

- What's a two-state HMM that could produce this?
- What if I show you this sequence?

```
aabccaa
```

What did you do? Use current model parameters + data to refine your model. This is what EM will do

Part-of-Speech Induction

- Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$
- Assume we don't have access to labeled examples how can we learn a POS tagger?
- Key idea: optimize $P(\mathbf{x}) = \sum_{\mathbf{y}} P(\mathbf{y}, \mathbf{x})$ Generative model explains the data \mathbf{x} ; the right HMM makes it look likely
- Optimizing marginal log-likelihood with no labels y:

$$\mathcal{L}(\mathbf{x}_{1,...,D}) = \sum_{i=1}^{D} \log \sum_{\mathbf{y}} P(\mathbf{y}, \mathbf{x}_i)$$
 non-convex optimization problem

Part-of-Speech Induction

- Input $\mathbf{x} = (x_1, ..., x_n)$ Output $\mathbf{y} = (y_1, ..., y_n)$
- Optimizing marginal log-likelihood with no labels y:

$$\mathcal{L}(\mathbf{x}_{1,...,D}) = \sum_{i=1}^{D} \log \sum_{\mathbf{y}} P(\mathbf{y}, \mathbf{x}_i)$$

- Can't use a discriminative model; $\sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) = 1$, doesn't model \mathbf{x}
- What's the point of this? Model has inductive bias and so should learn some useful latent structure y (clustering effect)
- ▶ EM is just one procedure for optimizing this kind of objective

Expectation Maximization

$$\log \sum_{\mathbf{y}} P(\mathbf{x}, \mathbf{y} | \theta)$$

$$lacktriangle$$
 Condition on parameters $heta$

$$= \log \sum_{\mathbf{y}} q(\mathbf{y}) \frac{P(\mathbf{x}, \mathbf{y} | \theta)}{q(\mathbf{y})}$$

 $= \log \sum_{\mathbf{y}} q(\mathbf{y}) \frac{P(\mathbf{x}, \mathbf{y}|\theta)}{q(\mathbf{y})} \qquad \text{Variational approximation } q - \text{this}$ is a trick we'll return to later!

$$\geq \sum_{\mathbf{v}} q(\mathbf{y}) \log \frac{P(\mathbf{x}, \mathbf{y}|\theta)}{q(\mathbf{y})}$$

Jensen's inequality (uses concavity of log)

$$= \mathbb{E}_{q(\mathbf{y})} \log P(\mathbf{x}, \mathbf{y} | \theta) + \text{Entropy}[q(\mathbf{y})]$$

Can optimize this lower-bound on log likelihood instead of log-likelihood Adapted from Leon Gu

Expectation Maximization

$$\log \sum_{\mathbf{y}} P(\mathbf{x}, \mathbf{y} | \theta) \ge \mathbb{E}_{q(\mathbf{y})} \log P(\mathbf{x}, \mathbf{y} | \theta) + \text{Entropy}[q(\mathbf{y})]$$

- If $q(\mathbf{y}) = P(\mathbf{y}|\mathbf{x}, \theta)$, this bound ends up being tight
- Expectation-maximization: alternating maximization of the lower bound over q and θ
 - Current timestep = t, have parameters θ^{t-1}
 - ▶ E-step: maximize w.r.t. q; that is, $q^t = P(\mathbf{y}|\mathbf{x}, \theta^{t-1})$
 - M-step: maximize w.r.t. θ ; that is, $\theta^t = rgmax_{\theta} \mathbb{E}_{q^t} \log P(\mathbf{x}, \mathbf{y} | \theta)$

EM for HMMs

- Expectation-maximization: alternating maximization
 - ▶ E-step: maximize w.r.t. q; that is, $q^t = P(\mathbf{y}|\mathbf{x}, \theta^{t-1})$
 - M-step: maximize w.r.t. θ ; that is, $\theta^t = \mathrm{argmax}_{\theta} \mathbb{E}_{q^t} \log P(\mathbf{x}, \mathbf{y} | \theta)$
- ▶ E-step: for an HMM: run forward-backward with the given parameters
- Compute $P(y_i = s | \mathbf{x}, \theta^{t-1}), \ P(y_i = s_1, y_{i+1} = s_2 | \mathbf{x}, \theta^{t-1})$ tag marginals at each position each position

M-step: set parameters to optimize the crazy argmax term

M-Step

Recall how we maximized log P(x,y): read counts off data

$$\begin{array}{c} \text{count}(\text{DT, the}) = 1 \\ \text{DT NN} \\ \text{the dog} \end{array} \begin{array}{c} \text{count}(\text{DT, dog}) = 0 \\ \text{count}(\text{NN, the}) = 0 \\ \text{count}(\text{NN, dog}) = 1 \end{array} \begin{array}{c} \text{P(the}|\text{DT)} = 1 \\ \text{P(dog}|\text{DT)} = 0 \\ \text{P(the}|\text{NN)} = 0 \\ \text{P(dog}|\text{NN)} = 1 \end{array}$$

Same procedure, but maximizing $P(\mathbf{x}, \mathbf{y})$ in expectation under q means that q specifies fractional counts

M-Step

Same for transition probabilities

9	DT—NN: 0.6 DT—DT: 0.1 NN—DT: 0.2 NN—NN: 0.1	P(DT DT) = 1/7 P(NN DT) = 6/7 P(DT NN) = 2/3 P(NN NN) = 1/3
'	the dog	$\frac{1}{1}\left(\frac{1}{1}\right)\left(\frac{1}{1}\right) - \frac{1}{2}$

uniform

- Initialize (M-step 0):
 - Emissions

$$P(the | DT) = 0.9$$
 $P(the | NN) = 0.05$

$$P(dog | DT) = 0.05$$
 $P(dog | NN) = 0.9$

$$P(marsupial | DT) = 0.05$$
 $P(marsupial | NN) = 0.05$

- Transition probabilities: uniform
- E-step 1: (all values are approximate)

E-step 1:

DT: 0.95 DT: 0.05

NN: 0.05 NN: 0.95

the dog

DT: 0.95 DT: 0.5

NN: 0.05 NN: 0.5

the marsupial

- M-step 1:
 - Emissions aren't so different
 - ► Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4

E-step 2:

DT: 0.95 DT: 0.05

NN: 0.05 NN: 0.95

the dog

DT: 0.95 DT: 0.30

NN: 0.05 NN: 0.70

the marsupial

- M-step 1:
 - Emissions aren't so different
 - ► Transition probabilities (approx): P(NN|DT) = 3/4, P(DT|DT) = 1/4

E-step 2:

DT: 0.95 DT: 0.05

NN: 0.05 NN: 0.95

the dog

DT: 0.95 DT: 0.30

NN: 0.05 NN: 0.70

the marsupial

- M-step 2:
 - Emission P(marsupial|NN) > P(marsupial|DT)
 - Remember to tag marsupial as NN in the future!
 - Context constrained what we learned! That's how data helped us

- Can think of q as a kind of "fractional annotation"
- ▶ E-step: compute annotations (posterior under current model)
- M-step: supervised learning with those fractional annotations
- Initialize with some reasonable weights, alternate E and M until convergence

Part-of-speech Induction

- Merialdo (1994): you have a whitelist of tags for each word
- Learn parameters on *k* examples to start, use those to initialize EM, run on 1 million words of unlabeled data
- ▶ Tag dictionary + data should get us started in the right direction...

Part-of-speech Induction

Number of tagged sentences used for the initial model										
	0	100	2000	5000	10000	20000	all			
Iter	Correct tags (% words) after ML on 1M words									
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0			
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8			
2	81.8	93.0	95.7	96.1	96.3	96.4	96.4			
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2			
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0			
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8			
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7			
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5			
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4			
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3			
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2			

- Small amounts of data > large amounts of unlabeled data
- Running EM *hurts*
 performance once
 you have labeled
 data

Two Hours of Annotation

Human Annotations	0. No EM		1. EM only			2. With LP			
Initial data	T	K	U	T	K	U	T	K	U
KIN tokens A	72	90	58	55	82	32	71	86	58
KIN types A				63	77	32	78	83	69
MLG tokens B	74	89	49	68	87	39	74	89	49
MLG types B				71	87	46	72	81	57
ENG tokens A	63	83	38	62	83	37	72	85	55
ENG types A				66	76	37	75	81	56
ENG tokens B	70	87	44	70	87	43	78	90	60
ENG types B				69	83	38	75	82	61

- Kinyarwanda and Malagasy (two actual low-resource languages)
- Label propagation (technique for using dictionary labels) helps a lot, with data that was collected in two hours

Garrette and Baldridge (2013)

Variational Autoencoders

Continuous Latent Variables

- For discrete latent variables ${\it y}$, we optimized: $P({\bf x}) = \sum_{{\bf v}} P({\bf y},{\bf x})$
- What if we want to use continuous latent variables?

$$P(z, \mathbf{x}) = P(z)P(\mathbf{x}|z)$$

$$P(\mathbf{x}) = \int P(z)P(\mathbf{x}|z)\partial z$$

- Can use EM here when P(z) and P(x|z) are Gaussians
- What if we want P(x|z) to be something more complicated, like an LSTM with z as the initial state?

Deep Generative Models

> z is a latent variable which should control the generation of the sentence, maybe capture something about its topic

Deep Generative Models

$$\log \int_z P(\mathbf{x}, z | \theta) = \log \int_z q(z) \frac{P(\mathbf{x}, z | \theta)}{q(z)} \ge \int_z q(z) \log \frac{P(\mathbf{x}, z | \theta)}{q(z)}$$
 Jensen

$$= \mathbb{E}_{q(z|\mathbf{x})} \left[-\log q(z|\mathbf{x}) + \log P(\mathbf{x}, z|\theta) \right]$$

$$= \mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] - \mathrm{KL}(q(z|\mathbf{x})||P(z))]$$

"make the data likely under q" "make q close to the prior" (discriminative)

KL divergence: distance metric over distributions (more dissimilar <=> higher KL)

Variational Autoencoders

$$\mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] - \mathrm{KL}(q(z|\mathbf{x})||P(z))$$

Generative model (test):

Autoencoder (training):

Miao et al. (2015)

Training VAEs

$$\mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] - \mathrm{KL}(q(z|\mathbf{x})||P(z))$$

Choose q to be Gaussian with parameters that are computed from x

$$q = N(\mu(\mathbf{x}), \operatorname{diag}(\sigma^2(\mathbf{x})))$$

- mu and sigma are computed from an LSTM over **x**, call their parameters ϕ
- How to handle the expectation?
 Sampling

Autoencoder (training):

Miao et al. (2015)

Training VAEs

For each example x

Compute q (run forward pass to compute mu and sigma)

For some number of samples

Sample $z \sim q$

Compute P(x | z) and compute loss

Backpropagate to update phi, theta

Autoencoder (training):

Autoencoders

- Another interpretation: train an autoencoder and add Gaussian noise
- Same computation graph as VAE, add KL divergence term to make the objective the same
- Inference network (q) is the encoder and generator is the decoder

Visualization

$$\mathbb{E}_{q(z|\mathbf{x})}[\log P(\mathbf{x}|z,\theta)] + \mathrm{KL}(q(z|\mathbf{x})||P(z))$$

What does gradient encourage latent space to do?

What do VAEs do?

Let us encode a sentence and generate similar sentences:

INPUT	we looked out at the setting sun.	i went to the kitchen.	how are you doing?
MEAN	they were laughing at the same time.	$i\ went\ to\ the\ kitchen$.	what are you doing?
SAMP. 1	ill see you in the early morning.	$i\ went\ to\ my\ apartment$.	" are you sure?
SAMP. 2	$i\ looked\ up\ at\ the\ blue\ sky$.	$i\ looked\ around\ the\ room$.	what are you doing?
SAMP. 3	$it\ was\ down\ on\ the\ dance\ floor\ .$	$i\ turned\ back\ to\ the\ table$.	what are you doing?

- Style transfer: also condition on sentiment, change sentiment
- ...or use the latent representations for semisupervised learning

Positive great indoor mall .

⇒ ARAE no smoking mall .

⇒ Cross-AE terrible outdoor urine .

Positive it has a great atmosphere, with wonderful service. \Rightarrow ARAE it has no taste, with a complete jerk.

⇒ Cross-AE it has a great horrible food and run out service.

Bowman et al. (2016), Zhao et al. (2017)

Goals of Unsupervised Learning

- We want to use unlabeled data, but EM "requires" generative models. Are models like this really necessary?
- word2vec: predict nearby word given context. This wasn't generative, but the supervision is free...
- Language modeling is a "more contextualized" form of word2vec

ELMo

- Generative model of the data!
- Train one model in each direction on 1B words, use the LSTM hidden states as context-aware token representations

Recall: Self-Attention

► Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar * vector

Multiple "heads" analogous to different convolutional filters. Use parameters W_k and V_k to get different attention values + transform vectors

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

Vaswani et al. (2017)

Recall: Transformers

- Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products
- Works essentially as well as just encoding position as a one-hot vector Vaswani et al. (2017)

- ▶ AI2 made ELMo in spring 2018, GPT was released in summer 2018, BERT came out October 2018
- ▶ Three major changes compared to ELMo:
 - Transformers instead of LSTMs (transformers in GPT as well)
 - Bidirectional <=> Masked LM objective instead of standard LM
 - Fine-tune instead of freeze at test time

- ▶ ELMo is a unidirectional model (as is GPT): we can concatenate two unidirectional models, but is this the right thing to do?
- ▶ ELMo reprs look at each direction in isolation; BERT looks at them jointly

A stunning ballet dancer, Copeland is one of the best performers to see live.

▶ How to learn a "deeply bidirectional" model? What happens if we just replace an LSTM with a transformer?

ELMo (Language Modeling) visited Madag. yesterday John visited Madagascar yesterday

John visited Madagascar yesterday

Transformer LMs have to be "onesided" (only attend to previous tokens), not what we want

Masked Language Modeling

- ▶ How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling
- BERT formula: take a chunk of text, predict 15% of the tokens
 - For 80% (of the 15%), replace the input token with [MASK]
 - For 10%, replace w/random
 - For 10%, keep same

Next "Sentence" Prediction

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- ▶ 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- BERT objective: masked LM + next sentence prediction

BERT Architecture

- BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads.
 Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads.
 Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- This is the model that getspre-trained on a large corpus

What can BERT do?

(b) Single Sentence Classification Tasks: SST-2, CoLA

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- ▶ CLS token is used to provide classification decisions
- Sentence pair tasks (entailment): feed both sentences into BERT
- ▶ BERT can also do tagging by predicting tags at each word piece Devlin et al. (2019)

What can BERT do?

[CLS] A boy plays in the snow [SEP] A boy is outside

- (a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG
- How does BERT model this sentence pair stuff?
- Transformers can capture interactions between the two sentences, even though the NSP objective doesn't really cause this to happen

What can BERT NOT do?

- ▶ BERT cannot generate text (at least not in an obvious way)
 - Not an autoregressive model, can do weird things like stick a [MASK] at the end of a string, fill in the mask, and repeat
- Masked language models are intended to be used primarily for "analysis" tasks

Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate 2e-5 - 5e-5

(b) Single Sentence Classification Tasks: SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist

Fine-tuning BERT

Pretraining	Adaptation	NER CoNLL 2003	SA SST-2	Nat. lang	g. inference SICK-E	Semantic SICK-R	textual si	milarity STS-B
Skip-thoughts		-	81.8	62.9	-	86.6	75.8	71.8
		91.7	91.8	79.6	86.3	86.1	76.0	75.9
ELMo		91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = 0$	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
		92.2	93.0	84.6	84.8	86.4	78.1	82.9
BERT-base		92.4	93.5	84.6	85.8	88.7	84.8	87.1
	$\Delta = 0$	0.2	0.5	0.0	1.0	2.3	6.7	4.2

▶ BERT is typically better if the whole network is fine-tuned, unlike ELMo

Evaluation: GLUE

Corpus	Train	Test	Task	Metrics	Domain				
Single-Sentence Tasks									
CoLA	8.5k	1k	acceptability	acceptability Matthews corr.					
SST-2	67k	1.8k	sentiment	acc.	movie reviews				
	Similarity and Paraphrase Tasks								
MRPC	3.7k	1.7k	paraphrase	paraphrase acc./F1					
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.				
QQP	364k	391k	paraphrase	social QA questions					
			Infere	ence Tasks					
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.				
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia				
RTE	2.5k	3k	NLI	acc.	news, Wikipedia				
WNLI	634	146	coreference/NLI	acc.	fiction books				

Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- Huge improvements over prior work (even compared to ELMo)
- Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

RoBERTa

- "Robustly optimized BERT"
- ▶ 160GB of data instead of 16 GB
- Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16 G B	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13 G B	256	1 M	90.9/81.8	86.6	93.7

▶ New training + more data = better performance

GPT/GPT2

OpenAl GPT/GPT2

- "ELMo with transformers" (works better than ELMo)
- Train a single unidirectional transformer LM on long contexts
- ▶ GPT2: trained on 40GB of text collected from upvoted links from reddit
- ▶ 1.5B parameters by far the largest of these models trained as of March 2019

Parameters	Layers	d_{model}		
117M	12	768		
345M	24	1024		
762M	36	1280		
1542M	48	1600		

▶ Because it's a language model, we can generate from it

OpenAl GPT2

SYSTEM PROMPT (HUMAN-WRITTEN)

Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today.

MODEL COMPLETION (MACHINE-WRITTEN, SECOND TRY) The 19-year-old singer was caught on camera being escorted out of the store by security guards.

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back.

Scroll down for video

Shoplifting: Miley Cyrus was caught shoplifting from Abercrombie and Fitch on Hollywood Boulevard today (pictured)

The singer was wearing a black hoodie with the label 'Blurred Lines' on the front and 'Fashion Police' on the back

The singer was also wearing a pair of black-rimmed glasses, a black jacket, black jeans and black sandals.

She was carrying a pair of black and white striped gloves and a small black bag.

slide credit: OpenAl

Open Questions

- 1) How novel is the stuff being generated? (Is it just doing nearest neighbors on a large corpus?)
- 2) How do we understand and distill what is learned in this model?
- 3) How do we harness these priors for conditional generation tasks (summarization, generate a report of a basketball game, etc.)
- 4) Is this technology dangerous? (OpenAI has only released 774M param model, not 1.5B yet)

Pre-Training Cost (with Google/AWS)

- **BERT:** Base \$500, Large \$7000
- Grover-MEGA: \$25,000
- XLNet (BERT variant): \$30,000 \$60,000 (unclear)
- ► This is for a single pre-training run…developing new pre-training techniques may require many runs
- Fine-tuning these models can typically be done with a single GPU (but may take 1-3 days for medium-sized datasets)

Pushing the Limits

NVIDIA: trained 8.3B parameter GPT model (5.6x the size of GPT-2)

Arguable these models are still underfit: larger models still get better held-out perplexities

NVIDIA blog (Narasimhan, August 2019)

Google T5

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
\star Full dataset 2^{29}	0 64	83.28 82.87	19.24 19.19	80.88 80.97	$\begin{array}{c} \textbf{71.36} \\ \textbf{72.03} \end{array}$	26.98 26.83	39.82 39.74	27.65 27.63
2^{27}	256	82.62	19.20	79.78	69.97	27 .02	39.71	27.33
$2^{25} \\ 2^{23}$	$1,\!024 \\ 4,\!096$	79.55 76.34	18.57 18.33	76.27 70.92	$64.76 \\ 59.29$	$26.38 \\ 26.37$	$39.56 \\ 38.84$	$26.80 \\ 25.81$

- ▶ Colossal Cleaned Common Crawl: 750 GB of text
- We still haven't hit the limit of bigger data being useful

BART

- Sequence-to-sequence BERT variant: permute/make/delete tokens, then predict full sequence autoregressively
- For downstream tasks: feed document into both encoder + decoder, use decoder hidden state as output

Good results on dialogue, summarization tasks

Lewis et al. (October 30, 2019)

Analysis

What does BERT learn?

Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Clark et al. (2019)

What does BERT learn?

product

line∢

[SEP]

product

line

[SEP]

by

name

[SEP]

-by

name

[SEP]

Head 8-10

Head 8-11

- Noun modifiers (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

Head 5-4

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a coreferent mention to the head of an antecedent

Still way worse than what supervised systems can do, but interesting that this is learned organically

Probing BERT

Try to predict POS, etc. from each layer. Learn mixing weights

$$\mathbf{h}_{i, au} = \gamma_ au \sum_{\ell=0}^L s_ au^{(\ell)} \mathbf{h}_i^{(\ell)}$$

representation of wordpiece i for task τ

- Plot shows s weights (blue) and performance deltas when an additional layer is incorporated (purple)
- ▶ BERT "rediscovers the classical NLP pipeline": first syntactic tasks then semantic ones

Tenney et al. (2019)

Compressing BERT

- Remove 60+% of BERT's heads with minimal drop in performance
- DistilBERT (Sanh et al., 2019): nearly as good with half the parameters of BERT (via knowledge distillation)

(b) Evolution of accuracy on the MultiNLI-matched validation set when heads are pruned from BERT according to I_h (solid blue) and accuracy difference (dashed green).

Open Questions

- BERT-based systems are state-of-the-art for nearly every major text analysis task
- ▶ These techniques are here to stay, unclear what form will win out
- Role of academia vs. industry: no major pretrained model has come purely from academia
- Cost/carbon footprint: a single model costs \$10,000+ to train (though this cost should come down)