
Lecture	17:	Unsupervised	Learning

Alan	Ri7er
(many slides from Greg Durrett)

Administrivia

‣Wei	Xu	will	present	on	Friday	

‣ No	Class	on	December	4	

‣ Final	Project	PresentaFons	are	during	the	final	exam	Fme	scheduled	on	
December	12

What	data	do	we	learn	from?

training	data labels

unlabeled	
data

‣ Supervised	seNngs:

‣ Tagging:	POS,	NER

‣ Parsing:	consFtuency,	
dependency,	semanFc	parsing

‣ IE,	MT,	QA,	…

‣ Semi-supervised	models

‣Word	embeddings	/	word	clusters	(helpful	for	nearly	all	tasks)

‣ Language	models	for	machine	translaFon

supervised	
model

semi-
supervised	
model

‣ Learn	linguisFc	structure	from	unlabeled	data	and	use	it?

This	Lecture

‣ ExpectaFon	maximizaFon	for	learning	HMMs

‣ Discrete	linguisFc	structure	from	generaFve	models:	unsupervised	POS	
inducFon

‣ ConFnuous	structure	with	generaFve	models:	variaFonal	autoencoders

‣ ConFnuous	structure	with	“discriminaFve”	models:	transfer	learning

EM	for	HMMs

Recall:	Hidden	Markov	Models

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

IniFal	
distribuFon

TransiFon	
probabiliFes

Emission	
probabiliFes

} }} ‣ P(x|y)	is	a	distribuFon	over	
all	words	in	the	vocabulary	
—	not	a	distribuFon	over	
features	(but	could	be!)

‣MulFnomials:	tag	x	tag	
transiFons,	tag	x	word	
emissions

‣ ObservaFon	(x)	depends	
only	on	current	state	(y)

Unsupervised	Learning

a		b		a		c		c		c		c

‣ Can	we	induce	linguisFc	structure?	Thought	experiment…

‣What’s	a	two-state	HMM	that	could	produce	this?

b		a		c		c		c

a		a		b		c		c		a		a

‣What	if	I	show	you	this	sequence?

‣What	did	you	do?	Use	current	model	parameters	+	data	to	refine	
your	model.	This	is	what	EM	will	do

Part-of-Speech	InducFon

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

‣ Assume	we	don’t	have	access	to	labeled	examples	—	how	can	we	learn	
a	POS	tagger?

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

‣ Key	idea:	opFmize	

‣ OpFmizing	marginal	log-likelihood	with	no	labels	y:

GeneraFve	model	explains	
the	data	x;	the	right	HMM	
makes	it	look	likely

P (x) =
X

y

P (y,x)

‣ non-convex	opFmizaFon	
problem

Part-of-Speech	InducFon

‣ Input	x = (x1, ..., xn) y = (y1, ..., yn)Output	

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

‣ OpFmizing	marginal	log-likelihood	with	no	labels	y:

‣ Can’t	use	a	discriminaFve	model;																														,	doesn’t	model	x

‣What’s	the	point	of	this?	Model	has	inducFve	bias	and	so	should	learn	
some	useful	latent	structure	y	(clustering	effect)

‣ EM	is	just	one	procedure	for	opFmizing	this	kind	of	objecFve

X

y

P (y|x) = 1

ExpectaFon	MaximizaFon

log
X

y

P (x,y|✓) ✓

= log
X

y

q(y)
P (x,y|✓)

q(y)
‣ VariaFonal	approximaFon	q	—	this	
is	a	trick	we’ll	return	to	later!

�
X

y

q(y) log
P (x,y|✓)

q(y)
‣ Jensen’s	inequality	(uses	concavity	
of	log)

= Eq(y) logP (x,y|✓) + Entropy[q(y)]

‣ Can	opFmize	this	lower-bound	on	log	likelihood	instead	of	log-likelihood

‣ CondiFon	on	parameters

Adapted	from	Leon	Gu

ExpectaFon	MaximizaFon

log
X

y

P (x,y|✓) � Eq(y) logP (x,y|✓) + Entropy[q(y)]

‣ If q(y) = P (y|x, ✓),	this	bound	ends	up	being	Fght

‣ ExpectaFon-maximizaFon:	alternaFng	maximizaFon	of	the	
lower	bound	over	q	and

‣ E-step:	maximize	w.r.t.	q;	that	is,	qt = P (y|x, ✓t�1)

‣M-step:	maximize	w.r.t.			;	that	is,	✓ ✓t = argmax✓Eqt logP (x,y|✓)

Adapted	from	Leon	Gu

✓
‣ Current	Fmestep	=	t,	have	parameters	✓t�1

EM	for	HMMs
‣ ExpectaFon-maximizaFon:	alternaFng	maximizaFon

‣ E-step:	maximize	w.r.t.	q;	that	is,	qt = P (y|x, ✓t�1)

‣M-step:	maximize	w.r.t.			;	that	is,	✓ ✓t = argmax✓Eqt logP (x,y|✓)

‣ E-step:	for	an	HMM:	run	forward-backward	with	the	given	parameters

‣M-step:	set	parameters	to	opFmize	the	crazy	argmax	term

P (yi = s|x, ✓t�1), P (yi = s1, yi+1 = s2|x, ✓t�1)

tag	marginals	at	
each	posiFon

tag	pair	marginals	at	
each	posiFon

‣ Compute

M-Step
‣ Recall	how	we	maximized	log	P(x,y):	read	counts	off	data

the

DT

dog

NN
count(DT,	the)	=	1	
count(DT,	dog)	=	0	
count(NN,	the)	=	0	
count(NN,	dog)	=	1

P(the|DT)	=	1	
P(dog|DT)	=	0	
P(the|NN)	=	0	
P(dog|NN)	=	1

‣ Same	procedure,	but	maximizing	P(x,y)	in	expectaFon	under	q	
means	that	q	specifies	frac/onal	counts

the dog

count(DT,	the)	=	0.9	
count(DT,	dog)	=	0.3	
count(NN,	the)	=	0.1	
count(NN,	dog)	=	0.7

P(the|DT)	=	0.75	
P(dog|DT)	=	0.25	
P(the|NN)	=	0.125	
P(dog|NN)	=	0.875

q DT:	0.9
NN:	0.1 NN:	0.7

DT:	0.3

M-Step
‣ Same	for	transiFon	probabiliFes

the dog

q

DT—NN:	0.6
DT—DT:	0.1
NN—DT:	0.2
NN—NN:	0.1

P(DT|DT)	=	1/7	
P(NN|DT)	=	6/7	
P(DT|NN)	=	2/3	
P(NN|NN)	=	1/3

How	does	EM	learn	things?
‣ IniFalize	(M-step	0):

P(the|DT)	=	0.9	
P(dog|DT)	=	0.05	
P(marsupial|DT)	=	0.05

P(the|NN)	=	0.05	
P(dog|NN)	=	0.9	
P(marsupial|NN)	=	0.05

‣ TransiFon	probabiliFes:	uniform

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.5

DT:	0.5
‣ E-step	1:	(all	values	are	approximate)

‣ Emissions

‣ uniform

How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.5

DT:	0.5
‣ E-step	1:

‣M-step	1:

‣ TransiFon	probabiliFes	(approx):	P(NN|DT)	=	3/4,	P(DT|DT)	=	1/4
‣ Emissions	aren’t	so	different

How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.70

DT:	0.30
‣ E-step	2:

‣M-step	1:

‣ Emissions	aren’t	so	different

‣ TransiFon	probabiliFes	(approx):	P(NN|DT)	=	3/4,	P(DT|DT)	=	1/4

How	does	EM	learn	things?

the dog

DT:	0.95
NN:	0.05 NN:	0.95

DT:	0.05

the marsupial

DT:	0.95
NN:	0.05 NN:	0.70

DT:	0.30
‣ E-step	2:

‣M-step	2:

‣ Emission	P(marsupial|NN)	>	P(marsupial|DT)

‣ Remember	to	tag	marsupial	as	NN	in	the	future!

‣ Context	constrained	what	we	learned!	That’s	how	data	helped	us

How	does	EM	learn	things?
‣ Can	think	of	q	as	a	kind	of	“fracFonal	annotaFon”

‣ E-step:	compute	annotaFons	(posterior	under	current	model)

‣M-step:	supervised	learning	with	those	fracFonal	annotaFons

‣ IniFalize	with	some	reasonable	weights,	alternate	E	and	M	unFl	
convergence

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

‣ E-step:	compute	q	which	
gives	this	lower	bound‣ iniFal	theta

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

‣M-step:	find	
maximum	of	
lower	bound

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

‣ E-step	2:	re-esFmate	q

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

‣ E-step	2:	re-esFmate	q

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

EM’s	Lower	Bound

slide	credit:	Taylor	Berg-Kirkpatrick

L(x1,...,D; ✓)

L(x1,...,D) =
DX

i=1

log
X

y

P (y,xi)

Part-of-speech	InducFon

‣Merialdo	(1994):	you	have	a	whitelist	of	tags	for	each	word

‣ Learn	parameters	on	k	examples	to	start,	use	those	to	iniFalize	
EM,	run	on	1	million	words	of	unlabeled	data

‣ Tag	dicFonary	+	data	should	get	us	started	in	the	right	
direcFon…

Part-of-speech	InducFon

‣ Small	amounts	
of	data	>	large	
amounts	of	
unlabeled	data

‣ Running	EM	*hurts*	
performance	once	
you	have	labeled	
data

Merialdo	(1994)

Two	Hours	of	AnnotaFon

Garre7e	and	Baldridge	(2013)

‣ Kinyarwanda	and	Malagasy	(two	actual	low-resource	languages)

‣ Label	propagaFon	(technique	for	using	dicFonary	labels)	helps	a	lot,	
with	data	that	was	collected	in	two	hours

VariaFonal	Autoencoders

ConFnuous	Latent	Variables

‣What	if	we	want	to	use	conFnuous	latent	variables?

‣ For	discrete	latent	variables	y,	we	opFmized: P (x) =
X

y

P (y,x)

P (z,x) = P (z)P (x|z)

P (x) =

Z
P (z)P (x|z)@z

‣ Can	use	EM	here	when	P(z)	and	P(x|z)	are	Gaussians

‣What	if	we	want	P(x|z)	to	be	something	more	complicated,	like	an	
LSTM	with	z	as	the	iniFal	state?

Deep	GeneraFve	Models

the					

<s>

movie was good [STOP]

z

‣ z	is	a	latent	variable	which	should	control	the	generaFon	of	the	
sentence,	maybe	capture	something	about	its	topic

P (z,x) = P (z)P (x|z)

Deep	GeneraFve	Models

Jensen

= Eq(z|x)[� log q(z|x) + logP (x, z|✓)]
= Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))

log

Z

z
P (x, z|✓) = log

Z

z
q(z)

P (x, z|✓
q(z)

�
Z

z
q(z) log

P (x, z|✓)
q(z)

‣ KL	divergence:	distance	metric	over	distribuFons	(more	dissimilar	<=>	
higher	KL)

“make	the	data	likely	under	q”	
(discriminaFve)

“make	q	close	to	the	prior”

VariaFonal	Autoencoders

x Input

q(z|x)

x

distribuFon	over	z

Maximize	P(x|z,θ)

“inference	network”

generaFve	model
x

GeneraFve	model	(test): Autoencoder	(training):

Miao	et	al.	(2015)

Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))

z ⇠ P (z)

Training	VAEs

x

q(z|x)

x

“inference	network”

generaFve	model

Autoencoder	(training):‣ Choose	q	to	be	Gaussian	with	
parameters	that	are	computed	from	x

Miao	et	al.	(2015)

q = N(µ(x), diag(�2(x)))

‣ mu	and	sigma	are	computed	from	an	
LSTM	over	x,	call	their	parameters	

�

✓

‣ How	to	handle	the	expectaFon?	
Sampling

�

Eq(z|x)[logP (x|z, ✓)]�KL(q(z|x)kP (z))

Training	VAEs

x

q(z|x)

x

“inference	network”

generaFve	model

Autoencoder	(training):For	each	example	x

Compute	q	(run	forward	pass	to	
compute	mu	and	sigma)

Sample	z	~	q

For	some	number	of	samples

Compute	P(x|z)	and	compute	loss

Backpropagate	to	update	phi,	theta

�

✓

Autoencoders

the		movie		was			great

the					

<s>

movie was good [STOP]

‣ Inference	network	(q)	is	the	encoder	and	generator	is	the	decoder

+

Gaussian	noise	

‣ Same	computaFon	graph	as	VAE,	add	KL	divergence	term	to	make	the	
objecFve	the	same

‣ Another	interpretaFon:	train	an	autoencoder	and	add	Gaussian	noise

VisualizaFon

‣What	does	gradient	encourage	latent	space	to	do?

direcFon	of	be7er	likelihood	for	xprior

q

Eq(z|x)[logP (x|z, ✓)] + KL(q(z|x)kP (z))

What	do	VAEs	do?
‣ Let	us	encode	a	sentence	and	generate	similar	sentences:

‣ Style	transfer:	also	
condiFon	on	senFment,	
change	senFment

Bowman	et	al.	(2016),	Zhao	et	al.	(2017)

‣ …or	use	the	latent	
representaFons	for	semi-	
supervised	learning

BERT

Goals	of	Unsupervised	Learning

‣We	want	to	use	unlabeled	data,	but	EM	“requires”	generaFve	models.	
Are	models	like	this	really	necessary?

‣ Language	modeling	is	a	“more	contextualized”	form	of	word2vec

‣ word2vec:	predict	nearby	word	given	context.	This	wasn’t	generaFve,	
but	the	supervision	is	free…

ELMo

they dance at balls

dance at balls [EOS]

P (xi|x1, . . . , xi�1) = LSTM(x1, . . . , xi�1)

‣ GeneraFve	model	of	the	data!

‣ Train	one	model	in	each	direcFon	on	1B	words,	use	the	LSTM	hidden	
states	as	context-aware	token	representaFons

learn	a	linear	classifier	on	top	of	
this	vector	to	get	a	POS	tagger	
with	97.3%	accuracy	(~SOTA)

Recall:	Self-A8enEon

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Each	word	forms	a	“query”	which	then	
computes	a8enEon	over	each	word	

‣MulEple	“heads”	analogous	to	different	convoluEonal	filters.	Use	
parameters	Wk	and	Vk	to	get	different	a8enEon	values	+	transform	vectors

x4

x0
4

scalar

vector	=	sum	of	scalar	*	vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj

Recall:	Transformers

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posiEon	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essenEally	as	well	as	just	encoding	posiEon	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)

BERT

‣ Three	major	changes	compared	to	ELMo:

‣ Transformers	instead	of	LSTMs	(transformers	in	GPT	as	well)	

‣ BidirecEonal	<=>	Masked	LM	objecEve	instead	of	standard	LM	

‣ Fine-tune	instead	of	freeze	at	test	Eme

‣ AI2	made	ELMo	in	spring	2018,	GPT	was	released	in	summer	2018,	BERT	

came	out	October	2018

BERT

Devlin	et	al.	(2019)

‣ ELMo	is	a	unidirecEonal	model	(as	is	GPT):	we	can	concatenate	two	
unidirecEonal	models,	but	is	this	the	right	thing	to	do?

A	stunning	ballet	dancer,	Copeland	is	one	of	the	best	performers	to	see	live.

ELMo

ELMo“performer”

“ballet	dancer”

BERT

“ballet	dancer/performer”

‣ ELMo	reprs	look	at	each	direcEon	in	isolaEon;	BERT	looks	at	them	jointly

BERT
‣ How	to	learn	a	“deeply	bidirecEonal”	model?	What	happens	if	we	just	
replace	an	LSTM	with	a	transformer?

John								visited	Madagascar	yesterday

visited Madag. yesterday …

‣ Transformer	LMs	have	to	be	“one-
sided”	(only	a8end	to	previous	
tokens),	not	what	we	want

John								visited	Madagascar	yesterday

ELMo	(Language	Modeling)
visited Madag. yesterday …

BERT

Masked	Language	Modeling
‣ How	to	prevent	cheaEng?	Next	word	predicEon	fundamentally	doesn't	
work	for	bidirecEonal	models,	instead	do	masked	language	modeling

John								visited						[MASK]					yesterday

Madagascar‣ BERT	formula:	take	a	chunk	of	
text,	predict	15%	of	the	tokens

‣ For	80%	(of	the	15%),	
replace	the	input	token	with	
[MASK]

Devlin	et	al.	(2019)

‣ For	10%,	replace	w/random
‣ For	10%,	keep	same

John								visited									of												yesterday

John								visited		Madagascar	yesterday

Next	“Sentence”	PredicEon
‣ Input:	[CLS]	Text	chunk	1	[SEP]	Text	chunk	2

[CLS]	John								visited						[MASK]					yesterday				and					really				all		it				[SEP]		I	like	Madonna.

Madagascar

Devlin	et	al.	(2019)

Transformer

Transformer

…

enjoyed likeNotNext

‣ BERT	objecEve:	masked	LM	+	next	sentence	predicEon

‣ 50%	of	the	Eme,	take	the	true	next	chunk	of	text,	50%	of	the	Eme	take	a	
random	other	chunk.	Predict	whether	the	next	chunk	is	the	“true”	next

BERT	Architecture
‣ BERT	Base:	12	layers,	768-dim	
per	wordpiece	token,	12	heads.	
Total	params	=	110M

Devlin	et	al.	(2019)

‣ BERT	Large:	24	layers,	1024-dim	
per	wordpiece	token,	16	heads.	
Total	params	=	340M

‣ PosiEonal	embeddings	and	
segment	embeddings,	30k	
word	pieces

‣ This	is	the	model	that	gets	
pre-trained	on	a	large	corpus

What	can	BERT	do?

Devlin	et	al.	(2019)

‣ CLS	token	is	used	to	provide	classificaEon	decisions

‣ BERT	can	also	do	tagging	by	predicEng	tags	at	each	word	piece
‣ Sentence	pair	tasks	(entailment):	feed	both	sentences	into	BERT

What	can	BERT	do?

‣ How	does	BERT	model	this	sentence	pair	stuff?

‣ Transformers	can	capture	interacEons	between	the	two	sentences,	
even	though	the	NSP	objecEve	doesn’t	really	cause	this	to	happen

Transformer

Transformer

…

[CLS]	A	boy	plays	in	the	snow	[SEP]	A	boy	is	outside

Entails

What	can	BERT	NOT	do?

‣ BERT	cannot	generate	text	(at	least	not	in	an	obvious	way)
‣ Not	an	autoregressive	model,	can	do	weird	things	like	sEck	a	[MASK]	
at	the	end	of	a	string,	fill	in	the	mask,	and	repeat

‣Masked	language	models	are	intended	to	be	used	primarily	for	
“analysis”	tasks

Fine-tuning	BERT
‣ Fine-tune	for	1-3	epochs,	batch	size	2-32,	learning	rate	2e-5	-	5e-5

‣ Large	changes	to	weights	up	here	
(parEcularly	in	last	layer	to	route	the	
right	informaEon	to	[CLS])

‣ Smaller	changes	to	weights	lower	down	
in	the	transformer

‣ Small	LR	and	short	fine-tuning	schedule	
mean	weights	don’t	change	much

‣More	complex	“triangular	
learning	rate”	schemes	exist

Fine-tuning	BERT

Peters,	Ruder,	Smith	(2019)

‣ BERT	is	typically	be8er	if	the	whole	network	is	fine-tuned,	unlike	ELMo

EvaluaEon:	GLUE

Wang	et	al.	(2019)

Results

Devlin	et	al.	(2018)

‣ Huge	improvements	over	prior	work	(even	compared	to	ELMo)

‣ EffecEve	at	“sentence	pair”	tasks:	textual	entailment	(does	sentence	A	
imply	sentence	B),	paraphrase	detecEon

RoBERTa

Liu	et	al.	(2019)

‣ “Robustly	opEmized	BERT”

‣ 160GB	of	data	instead	of	
16	GB

‣ Dynamic	masking:	standard	

BERT	uses	the	same	MASK	

scheme	for	every	epoch,	

RoBERTa	recomputes	them

‣ New	training	+	more	data	=	be8er	performance

GPT/GPT2

OpenAI	GPT/GPT2

‣ GPT2:	trained	on	40GB	of	text	
collected	from	upvoted	links	
from	reddit

‣ 1.5B	parameters	—	by	far	the	
largest	of	these	models	trained	
as	of	March	2019

Radford	et	al.	(2019)

‣ “ELMo	with	transformers”	(works	be8er	than	ELMo)

‣ Train	a	single	unidirecEonal	transformer	LM	on	long	contexts

‣ Because	it's	a	language	model,	we	can	generate	from	it

OpenAI	GPT2

slide	credit:	
OpenAI

Open	QuesEons

3)	How	do	we	harness	these	priors	for	condiEonal	generaEon	tasks	
(summarizaEon,	generate	a	report	of	a	basketball	game,	etc.)

4)	Is	this	technology	dangerous?	(OpenAI	has	only	released	774M	param	
model,	not	1.5B	yet)

1)	How	novel	is	the	stuff	being	generated?	(Is	it	just	doing	nearest	
neighbors	on	a	large	corpus?)

2)	How	do	we	understand	and	disEll	what	is	learned	in	this	model?

Pre-Training	Cost	(with	Google/AWS)

h8ps://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

‣ XLNet	(BERT	variant):	$30,000	—	$60,000	(unclear)

‣ Grover-MEGA:	$25,000

‣ BERT:	Base	$500,	Large	$7000

‣ This	is	for	a	single	pre-training	run…developing	new	pre-training	
techniques	may	require	many	runs

‣ Fine-tuning	these	models	can	typically	be	done	with	a	single	GPU	(but	
may	take	1-3	days	for	medium-sized	datasets)

Pushing	the	Limits

‣ NVIDIA:	trained	8.3B	parameter	GPT	model	(5.6x	the	size	of	
GPT-2)

NVIDIA	blog	(Narasimhan,	August	2019)

‣ Arguable	these	models	
are	sEll	underfit:	larger	
models	sEll	get	be8er	
held-out	perplexiEes

Google	T5

Raffel	et	al.	(October	23,	2019)

‣We	sEll	haven't	hit	the	limit	of	bigger	data	being	useful

‣ Colossal	Cleaned	Common	Crawl:	750	GB	of	text

BART

Lewis	et	al.	(October	30,	2019)

‣ Sequence-to-sequence	BERT	
variant:	permute/make/delete	
tokens,	then	predict	full	
sequence	autoregressively

‣ For	downstream	tasks:	feed	
document	into	both	encoder	+	
decoder,	use	decoder	hidden	
state	as	output

‣ Good	results	on	dialogue,	summarizaEon	tasks

Analysis

What	does	BERT	learn?

Clark	et	al.	(2019)

‣ Heads	on	transformers	learn	interesEng	and	diverse	things:	content	
heads	(a8end	based	on	content),	posiEonal	heads	(based	on	
posiEon),	etc.

What	does	BERT	learn?

Clark	et	al.	(2019)

‣ SEll	way	worse	than	what	supervised	systems	can	do,	but	
interesEng	that	this	is	learned	organically

Probing	BERT

Tenney	et	al.	(2019)

‣ Try	to	predict	POS,	etc.	from	each	layer.	
Learn	mixing	weights	

representaEon	of	wordpiece	i	
for	task	τ

‣ Plot	shows	s	weights	(blue)	and	
performance	deltas	when	an	addiEonal	
layer	is	incorporated	(purple)

‣ BERT	“rediscovers	the	classical	NLP	pipeline”:	
first	syntacEc	tasks	then	semanEc	ones

Compressing	BERT

Michel	et	al.	(2019)

‣ Remove	60+%	of	

BERT’s	heads	with	

minimal	drop	in	

performance

‣ DisElBERT	(Sanh	et	al.,	
2019):	nearly	as	good	with	

half	the	parameters	of	BERT	

(via	knowledge	disEllaEon)

Open	QuesEons

‣ These	techniques	are	here	to	stay,	unclear	what	form	will	win	out

‣ Role	of	academia	vs.	industry:	no	major	pretrained	model	has	come	
purely	from	academia

‣ BERT-based	systems	are	state-of-the-art	for	nearly	every	major	text	
analysis	task

‣ Cost/carbon	footprint:	a	single	model	costs	$10,000+	to	train	(though	
this	cost	should	come	down)

