Binary Classification

Alan Ritter

(many slides from Greg Durrett and Vivek Srikumar)

Administrivia

» Readings on course website

» Homework 1 is out, due January 23

This Lecture

» Linear classification fundamentals

» Naive Bayes, maximum likelihood in generative models

» Three discriminative models: logistic regression, perceptron, SVM

» Different motivations but very similar update rules / inference!

Classification

Classification

Classification

» Datapoint & with label ¥ € {0, 1}

Classification

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

Classification

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

Classification

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(x) € R"
but in this lecture f(x)and x are interchangeable

» Linear decision rule: w' f(z) +b > 0

Classification

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

» Linear decision rule: w' f(z) +b > 0

Classification

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

» Linear decision rule: w' f(z) +b > 0
w' f(z) >0

Classification

» Datapoint & with label ¥ € {0, 1}

» Embed datapoint in a feature space f(z) € R"

but in this lecture f(x)and x are interchangeable

» Linear decision rule: w' f(z) +b > 0

w' f(z) >0

» Can delete bias if we augment feature space:

f(x)=1[0.5,1.6,0.3]
v
0.5, 1.6, 0.3, 1]

Linear functions are powerful!

Linear functions are powerful!

v PP?

Linear functions are powerful!

v PP?

f{x) =[xz, x2] f(x) = [x1, X2, X12, X22, X1X]

Linear functions are powerful!

X2 X1X2
v PP?

f{x) =[xz, x2] f(x) = [x1, X2, X12, X22, X1X2]

Linear functions are powerful!

X2 X1X2

\ 277 + Ty
\ + 4

t +

+ +_|_ + + + ++
T +

f{x) =[xz, x2] f(x) = [x1, X2, X12, X22, X1X2]

Linear functions are powerful!

X1X2

—
—
—
—
—
—
—
—
—
—
—
—
— -
— -

—
—
—
—
—
—
—
—
—
—
—
—
—
— -
—
—

fix) = [x1, X2, x12, X22, X1X2]

Linear functions are powerful!

f{x) =[xz, x2]

X1X2

—
—
—
—
—
—
—
—
—
—
—
—
—
— -

o
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

f(x) = [x1, x2, X12, X22, X1X2]

» “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n*) instead of O(n - (num feats))

Classification: Sentiment Analysis

Classification: Sentiment Analysis

this movie was great! would watch again

Classification: Sentiment Analysis

this movie was great! would watch again Positive

Classification: Sentiment Analysis

this movie was great! would watch again Positive

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again ' Negative

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:

» Turn examples like this into feature vectors

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors

» Pick a model / learning algorithm

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

» Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
» Pick a model / learning algorithm

» Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =1

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =0 0 1

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

» Very large vector space (size of vocabulary), sparse features

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

» Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)

Feature Representation

this movie was great! would watch again Positive
» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

» Very large vector space (size of vocabulary), sparse features
» Requires indexing the features (mapping them to axes)

» More sophisticated feature mappings possible (tf-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, ...

Naive Bayes

Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}

Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}

» Formulate a probabilistic model that places a distribution P(x, y)

Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}
» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z), predict argmax, P(y|z) to classify

Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}
» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z), predict argmax, P(y|z) to classify

P(y|z) = P(?/})ZSUW) Bayes’ Rule

Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}
» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z), predict argmax, P(y|z) to classify

P(ylm) _ P(yf))fx(;df) Bayes’ Rule

_ constant: irrelevant
for finding the max

Nailve Bayes

» Data point = = (z1,...,x,), label y € {0,1}

» Formulate a probabilistic model that places a distribution P(z, y)
» Compute P(y|z), predict argmax, P(y|z) to classify

P(y|z) = P(y)P(x|y) Bayes’ Rule

P(z) - - constant: irrelevant
x P(y)P(z|y) for finding the max

Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}
» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z), predict argmax, P(y|z) to classify
P(y)P(z|y) '
P(ylz) = Bayes’ Rule

P(x) . _ constant: irrelevant
x P(y)P(z|y) for finding the max
= P(y) | | P(zily)

1=1

Naive Bayes

» Data point = = (z1,...,x,), label y € {0,1}
» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z), predict argmax, P(y|z) to classify

P(y|z) = P(y)P(z]y) Bayes’ Rule
P(z) - - constant: irrelevant
x P(y)P(z|y) for finding the max

n ._—— "Naive” assumption:
= P(y) | | P(zily)
i=1

Naive Bayes
» Data point = = (z1,...,x,), label y € {0,1}
» Formulate a probabilistic model that places a distribution P(z, y)
» Compute P(y|z), predict argmax, P(y|z) to classify

P(ylz) = P(y)P(x|y) Bayes’ Rule @
P(z) - _ constant: irrelevant

x P(y)P(z|y) for finding the max @
n

n ._—— "Naive” assumption:
= P(y) | | P(zily)
i=1

Naive Bayes
» Data point = = (z1,...,x,), label y € {0,1}

» Formulate a probabilistic model that places a distribution P(x, y)

» Compute P(y|z), predict argmax, P(y|z) to classify

P(y)P(z|y) Bayes’ Rule
P(x) «

P(y|lx) =

___— “Naive” assumption:

= P(y) Hp(fi\y)

argmax, P(y|r) = argmax, log P(y|r) = argmax

Yy

- constant: irrelevant
x P(y)P(z|y) for finding the max

(z:)

log P(y +ZlogP T;|y)

Naive Bayes
» Data point = = (z1,...,x,), label y € {0,1}

» Formulate a probabilistic model that places a distribution P(x, y)

» Compute P(y|z), predict argmax, P(y|z) to classify
P(y)P(z|y) Bayes’ Rule

(z:)

P(ylz) =
P(z) - - constant: irrelevant
x P(y)P(z|y) for finding the max
n __—— "Naive” assumption:
=P y)HP(%\y)
i=1)

argmax, P(y|r) = argmax, log P(y|r) = argmax

Yy

Iinear modelI

log P(y +ZlogP T;|y)

Naive Bayes Example

it was great — P(y|x) []

Maximum Likelihood Estimation

Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)

Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)

» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)

» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(?/j»% HP Yj) HP(xﬂyj)]

Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)

» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(yja% = | [P(y)) HP(xjiyj)]

J=1 =
— / \

data points (j) features (/)

Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)
» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(yja% = | [P(y)) HP(xjiyj)]

J=1

T N

data points (j) features (i) ith feature of jth example

Maximum Likelihood Estimation

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood:

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p°(1 — p)
j=1

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p°(1 — p)
j=1

» Easier: maximize log likelihood

Zlog P(y;) = 3logp + log(1 — p)
j=1

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p°(1 — p)
j=1

» Easier: maximize log likelihood

Zlog P(y;) = 3logp + log(1 — p)
j=1 3 7

log likelihood

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p°(1 — p)

j=1

» Easier: maximize log likelihood og likelihood
Z log P(y,;) = 3logp+ log(1l — p) P(H)s= 0.75
7=1 0 » \1 P

,/'- 1

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p°(1 — p)

j=1
> E::Lsmr: maximize log likelihood og likelihood
Z log P(y,;) = 3logp+ log(1l — p) P(H) = 0.75
j=1 o] g "
» Maximum likelihood parameters for binomial/

multinomial = read counts off of the data + normalize

Maximum Likelihood Estimation

» Data points (z;,y,) provided (j indexes over examples)
» Find values of P(y), P(x;|y) that maximize data likelihood (generative):

L P@sz) = 1 Py)) HP(xjiyj)]

J=1

T N

data points (j) features (i) ith feature of jth example

» Equivalent to maximizing logarithm of data likelihood:

Zlog P(y;,z;) Z

71=1 71=1

log P(y;) ZlogP 5'732?17)]

Maximum Likelihood for Naive Bayes

--

. this movie was great! would watch again 4
| liked it well enough for an action flick +
| expected a great film and left happy T
brilliant directing and stunning visuals +
that film was awful, I'll never watch again | —
| didn’t really like that movie o
dry and a bit distasteful, it misses the mark —

great potential but ended up being a flop —

--

Maximum Likelihood for Naive Bayes

--

this movie was great! would watch again + P(+)
| liked it well enough for an action flick +

| expected a great film and left happy + P(—)
brilliant directing and stunning visuals +

that film was awful, I'll never watch again | —

| didn’t really like that movie o

dry and a bit distasteful, it misses the mark |—

great potential but ended up being a flop —

--

Maximum Likelihood for Naive Bayes

--

this movie was great! would watch again | + P(+) = %
| liked it well enough for an action flick + :)
| expected a great film and left happy + P(—) = 5
. brilliant directing and stunning visuals + 1
' P(great|+) = 5

that film was awful, I'll never watch again | —
| didn’t really like that movie —
dry and a bit distasteful, it misses the mark —

great potential but ended up being a flop —

--

Maximum Likelihood for Naive Bayes

--

. this movie was great! would watch again "+ P(+4) = 1

| liked it well enough for an action flick T :21

| expected a great film and left happy + P(—) = 5

. brilliant directing and stunning visuals + 1
; - P(great|+) = —
- that film was awful, I'll never watch again | —| 2
| didn’t really like that movie — P(great|—) =

dry and a bit distasteful, it misses the mark |—

great potential but ended up being a flop —

--

Maximum Likelihood for Naive Bayes

--

this movie was great! would watch again + P(+) = 1
| liked it well enough for an action flick + . :21
| expected a great film and left happy + P (=)= 2
- brilliant directing and stunning visuals + 1
; . P(great|+) = -
. that film was awful, I'll never watch again |— :
| didn’t really like that movie . P(great|—) = i

dry and a bit distasteful, it misses the mark —

great potential but ended up being a flop —

--

Maximum Likelihood for Naive Bayes

--

. this movie was great! would watch again 4 P(4) = 1
| liked it well enough for an action flick T :21
| expected a great film and left happy + P(—) = 5
. brilliant directing and stunning visuals + 1
; - P(great|+) = —
. that film was awful, I'll never watch again |— 2
| didn’t really like that movie — P(great|—) = i

dry and a bit distasteful, it misses the mark |—

great potential but ended up being a flop —

--

it was great

Maximum Likelihood for Naive Bayes

--

. this movie was great! would watch again 4 P(4) = 1
| liked it well enough for an action flick T :21
| expected a great film and left happy + P(—) = 5
. brilliant directing and stunning visuals + 1
; - P(great|+) = —
. that film was awful, I'll never watch again |— 2
| didn’t really like that movie — P(great|—) = i

dry and a bit distasteful, it misses the mark |—

great potential but ended up being a flop —

--

P(+)P(great|+)]

- — P
it was great (y]|z) o [P()P(great)

Maximum Likelihood for Naive Bayes

--

. this movie was great! would watch again 4 P(4) = 1
| liked it well enough for an action flick T :21
| expected a great film and left happy + P(—) = 5
. brilliant directing and stunning visuals + 1
; - P(great|+) = —
. that film was awful, I'll never watch again |— 2
| didn’t really like that movie — P(great|—) = i

dry and a bit distasteful, it misses the mark |—

great potential but ended up being a flop —

--

» Model

P(z,y) = P(y) | | P(xily)

()

Nalve Bayes: Summary

1

(=)

Nalve Bayes: Summary

» Model @
T

P(z,y) = P(y) | | P(xily) ©

1=1

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

Nalve Bayes: Summary

» Model @
T

P(z,y) = P(y) | | P(xily) 0

1=1

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

» Alternatively: log P(y = +|z) — log P(y = —|z) > 0

P
P(

& log

Y

_a;)'

Y
Y

Nalve Bayes: Summary

» Model @
T

P(z,y) = P(y) | | P(xily) ©

1=1

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

» Alternatively: log P(y = +|z) — log P(y = —|z) > 0

Ply=+2) 5, Plily =)
P(y = —|r) Izlgp(%y:—)

» Learning: maximize P(x,y) by reading counts off the data

& log > ()

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring —

P(beeautiful‘+) — (.1 P(xpeautiful]—) = 0.01

P(Zstunning|+) = 0.1 P(Zstunning| —) = 0.01
(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01

(Zboring|+) = 0.01 P(Zvoring]—) = 0.1

T T

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring —

P(Zbeautiful|+) = 0.1 P(Zpeautitur| —) = 0.01
P(Zstunning|+) = 0.1 P(Zstunning| —) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring —

P(Zbeautiful|+) = 0.1 P(Zpeautitur| —) = 0.01
P(Zstunning|+) = 0.1 P(Zstunning| —) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

» Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring —

P(Zbeautitul|+) = 0.1 P(Theautitul|—) = 0.01
P(Zstunning|+) = 0.1 P(Zgtunning|—) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

» Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

» Discriminative models model P(y|x) directly (SVMs, most neural networks, ...)

Homework 1 Demo
(Numpy)

Logistic Regression

Logistic Regression

Logistic Regression

P(y = +|z) = logistic(w ' z)

Logistic Regression

P(y = +|z) = logistic(w ' z)

0.5

Logistic Regression

+|z) = logistic(w ')

_ GXP(Z:’;:l W; T;)
1+ exp(> ., wiz;)

0.5

Logistic Regression

P(y = +|z) = logistic(w ' z)

_ GXP(Z:’;:l W; T;) 0>
1+ exp(> ., wiz;)

| 5 | 1 |
—6 -4 —2 0 2 4 6

» To learn weights: maximize discriminative log likelihood of data P(y|x)

Logistic Regression

P(y = +|z) = logistic(w ' z)

_ GXP(Z:’;:l W; T;) 0>
1+ exp(> ., wiz;)

| 5 | 1 |
—6 -4 —2 0 2 4 6

» To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +|z;)

Logistic Regression

P(y = +|z) = logistic(w ' z)

_ GXP(Z:’;:l W; T;) 0>
1+ exp(> ., wiz;)

| fa) | | J
\J

—0 -4 —2 0 2 4 6

» To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +|z;)

— Zn: Wil jq — 10g (1 -+ EXP (zn: UJZZCTL))
1=1 1=1

Logistic Regression

P(y = +|z) = logistic(w ' z)

_ GXP(Z:’;:l W; T;) 0>
1+ exp(> ., wiz;)

| fa) | | J
\J

—0 -4 —2 0 2 4 6

» To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +lz;)

— szmﬂ log (1 + exp (Z wzxﬂ))
— i=1

sum over features

Logistic Regression

Logistic Regression

E(mj,yj = +) = log P(y +|ajj szazﬂ log (1 + exp (Z wzazﬁ))

Logistic Regression

E(mj,yj = +) = log P(y +|ajj szazﬂ log (1 + exp (Z wzazﬁ))

0L(xj,y;)
8202'

Logistic Regression
OL(x:, 1 O -
(gzjz yj) — T o log (1 + exp (Z wam))

1=1

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

» Recall that y; = 1 for positive instances, y; = 0 for negative instances.

» Gradient of w; on positive example = Cﬁji(yj — P(?Jj — +|xj))

Logistic Regression

» Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example = x;(y;, — P(y; = +|z;))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;;, which will increase P(+)

Logistic Regression

» Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example = x;(y;, — P(y; = +|z;))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;;, which will increase P(+)

» Gradient of w; on negative example — :cjz-(—P(yj — —|—|£Ej))

Logistic Regression

» Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example = x;(y;, — P(y; = +|z;))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;;, which will increase P(+)

» Gradient of w; on negative example — :cjz-(—P(yj — —|—|£Ej))

If P(+) is close to 0, make very little update
Otherwise make w;look less like x;j;, which will decrease P(+)

» Can combine these gradients as (yj — P(yj — 1|£E‘j))

Regularization

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

» Keeping weights small can prevent overfitting

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary

» Early stopping

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary

» Early stopping

» Large numbers of sparse features are hard to overfit in a really bad way

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

» Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
» Early stopping
» Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping

Logistic Regression: Summary

» Model

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

Logistic Regression: Summary

» Model

P(y _ |ZE) _ eXp(Z?:l w’bx’b)
1+ GXp(Z?Zl QUZCIZZ)

» Inference

argmax, P(y|r) fundamentally same as Naive Bayes

Logistic Regression: Summary

» Model

P(y _ |ZE) _ eXp(Z?:l w’bx’b)
1+ GXp(Z?Zl QUZCIZZ)

» Inference

argmax, P(y|r) fundamentally same as Naive Bayes

Ply=1lz) >05<w' 2 >0

Logistic Regression: Summary

» Model

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference

argmax, P(y|r) fundamentally same as Naive Bayes
Ply=1lz) >05<w' 2 >0

» Learning: gradient ascent on the (regularized) discriminative log-
likelihood

Perceptron/SVM

Perceptron

» Simple error-driven learning approach similar to logistic regression

Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decisionrule: w' 1 > 0

Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decisionrule: w' 1 > 0

» If incorrect: if positive, w < w + x

if negative, w < w — x

Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decisionrule: w 'z > 0 Logistic Regression

» If incorrect: if positive, w < w + @ w<+—w+x(l — Py =1|x))

if negative, w + w — x %wew—xP(y:Hx)

Perceptron

» Simple error-driven learning approach similar to logistic regression

» Decisionrule: w 'z > 0 Logistic Regression

» If incorrect: if positive, w < w + x w<+—w+xz(1l — Py =1|z))

if negative, w + w — x %wew—xP(y:Hx)

» Guaranteed to eventually separate the data if the data are separable

Support Vector Machines

» Many separating hyperplanes — is there a best one?

| +
\\ \
\\\\ \ + + .|_
~ - \ + +
~ Rl \
~ ~
~ = A
\\ \\\\
~ ~
~ \ S~
~ ~
o \ ~ o
\\ \ \\\
\\ \ =~
~ ~
- -\\\ \\\
- _ - \\\
- \ S

Support Vector Machines

» Many separating hyperplanes — is there a best one?

~
RS
~
~
~
~§
~
~§
~
~
~
~
~
§~~
~
S
5' +
~
~ RS
S
~ S
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ \
"~~ ~ S
~§~ \' ~~
~~~ ~
s ~ “a
~ RS
~~~ ~ S
~~~ ~ ~~~
~~~ ~ ~~~
~~~ ~ ~“~
~~~ ~, ~~~
~~~ ~ ~~~
~~~ ~ ~~~
~~~ ~, ~~~
~ o N ~~~
T < ..
~~~ ~ ~~~
e ~ ~~~
Sl ~ S
~ ~§
~o -~ ~.
~ e ~~~
- ~~~ ~,
~~~ ~
- ~~~ ~
~~~ ~
- - “a ~
~§~ ~
~
- Say ~
- "~~ ~
- ~~~ ~
~
~
~
~
- S
~
~
~
~
~§
~
~§
~
~
~
~
~§
S
~

Support Vector Machines

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

minimizing norm with
fixed margin <=>
maximizing margin

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

minimizing norm with

s.t. V) w x; fixed margin <=>

- maximizing margin
Ww QZj

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

minimizing norm with

s.t. V) w x; fixed margin <=>

- maximizing margin
Ww QZj

As a single constraint:

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

minimizing norm with

s.t. V) w x; fixed margin <=>

- maximizing margin
Ww QZj

As a single constraint:
Vi (2y; — D)(w ' z;) > 1

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w)||2

minimizing norm with

s.t. V) w x; fixed margin <=>

- maximizing margin
Ww QZj

As a single constraint:
Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!

N-Slack SVMs

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

st V) 2y — D(w ' z;) > 1§

N-Slack SVMs

144
Minimize A|jw||3 +) &
j=1

stV 2y — D(w z5) 21— vy & =0

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

st V) 2y — D(w ' z;) > 1§

» The & are a “fudge factor” to make all constraints satisfied

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

st V) 2y — D(w ' z;) > 1§

» The & are a “fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

st V) 2y — D(w ' z;) > 1§

» The & are a “fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

0 .
8wi€j :Olfgj — ()

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

st V) 2y — D(w ' z;) > 1§

» The & are a “fudge factor” to make all constraints satisfied
» Take the gradient of the objective:

0 , 9, .
821}7; g] — O lf gj — O awz fj — (2yj — 1)$ﬂ lf fj > 0

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

st V) 2y — D(w ' z;) > 1§

» The & are a “fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

Y . 0 |

N-Slack SVMs

T
Minimize Al|wl|3 +) &
j=1

st V) 2y — D(w ' z;) > 1§

» The & are a “fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

Y . 0 |

» Looks like the perceptron! But updates more frequently

Gradients on Positive Examples

Logistic regression
az(l — logistic(w ' z))

Perceptron

x if w'x <0, else 0

SVM (ignoring regularizer)

a: if w'xz <1, else 0

Gradients on Positive Examples

Logistic regression .
az(l — logistic(w ' z)) -

Perceptron

x if w'x <0, else 0

SVM (ignoring regularizer)

a: if w'xz <1, else 0

Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' z)) a5 |

‘/‘Hinge (SVM)

Perceptron

x if w'x <0, else 0

SVM (ignoring regularizer)

a: if w'xz <1, else 0

Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' z)) a5 |

‘/‘Hinge (SVM)

Perceptron

x if w'x <0, else 0

SVM (ignoring regularizer)

a: if w'xz <1, else 0

Perceptron

-3 -2 -1 0 1

Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' z)) a5 |

Perceptron

x if w'x <0, else 0

SVM (ignoring regularizer)

a: if w'xz <1, else 0

‘/‘Hinge (SVM)

Perceptron J

Logistic

2 -1 0

Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' z)) a5 |

Perceptron

x if w'x <0, else 0

‘/‘Hinge (SVM)

SVM (ignoring regularizer)

a: if w'xz <1, else 0

Perceptron J

Logistic

2 -1 0

Gradients on Positive Examples

Logistic regression
' T

az(l — logistic(w ' x)) .5 |

Perceptron

x if w'z <0, else 0

‘/‘Hinge (SVM)

SVM (ignoring regularizer)

a: if w'xz <1, else 0

*gradients are for maximizing things,
which is why they are flipped

Perceptron J

Logistic

2 -1 0

Comparing Gradient Updates (Reference)

Logistic regression (unregularized) y =1 for pos,

x(y — P(y = 1|z)) = x(y — logistic(w ' z)) 0 for neg

Perceptron
(2y — 1)z if classified incorrectly

- SVM

Optimization — next time...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better)

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective

Sentiment Analysis

this movie was great! would watch again +

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it | =+

this movie was not really very enjoyable —

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it | =+

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it | =+

this movie was not really very enjoyable —

» Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features | # of | frequencyor || NB | ME | SVM
| features | presence? || | |

(1) unigrams 16165 freq. 78.7 | N/A 72.8
3| vumgrams | " | pres | 810 | 804 829
MO e B T W

(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1

(5) unigrams-l—POS 16695 pres. | 81.5 | 80.4 81.9

(7) | top 2633 unigrams 2633 pres. 80 3 81 0 81.4

| 8) ‘ unigrams-+position ‘ 22430 ‘ pres. H 81.0 ‘ 80.1 ‘ 81.6 |

N

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features # of | frequency or [[NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [806 | 808] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Wang and Manning (2012)

Sentiment Analysis

Method RT-s MPQA
MNB-uni 7719 853
MNB-bi1 79.0 86.3
SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-um1 | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Wang and Manning (2012)

Sentiment Analysis

720 86.3 | «—— Naive Bayes is doing well!

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-um1 | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Wang and Manning (2012)

Sentiment Analysis

720 86.3 | «—— Naive Bayes is doing well!

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-umm | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Ng and Jordan (2002) — NB
can be better for small data

Wang and Manning (2012)

Sentiment Analysis

720 86.3 | «—— Naive Bayes is doing well!

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-umm | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Ng and Jordan (2002) — NB
can be better for small data

Before neural nets had taken off
— results weren’t that great

Wang and Manning (2012)

Sentiment Analysis

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-umm | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Kim (2014) CNNs [81.5 89.5

720 86.3 | «—— Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be better for small data

Before neural nets had taken off
— results weren’t that great

Wang and Manning (2012)

Recap

Recap

i=1 Wili

» Logistic regression: P(y = 1|x) = (1 jXp (2(32”)))
CXP 2 =1 Wili

Decisionrule: P(y=1|z) > 05<w' x>0

Gradient (unregularized): x(y — P(y = 1|x))

Recap

» Logistic regression: p(y _ Hx) _ CXP (Zizl wﬂ?’z)

(14 exp (D, wiz;))
Decisionrule: P(y=1|z) > 05<w' x>0

Gradient (unregularized): x(y — P(y = 1|x))

» SVM:

Decision rule: w ' > ()

(Sub)gradient (unregularized): 0 if correct with margin of 1, else z(2y — 1)

Recap

Recap

» Logistic regression, SVM, and perceptron are closely related

Recap

» Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

Recap

» Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

» All gradient updates: “make it look more like the right thing and less
like the wrong thing”

