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Administrivia

‣ Readings	on	course	website	

‣ Homework	1	is	out,	due	January	23



This	Lecture

‣ Linear	classifica-on	fundamentals

‣ Three	discrimina-ve	models:	logis-c	regression,	perceptron,	SVM

‣ Naive	Bayes,	maximum	likelihood	in	genera-ve	models

‣ Different	mo-va-ons	but	very	similar	update	rules	/	inference!
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	[0.5,	1.6,	0.3,	1]

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint						with	label	

but	in	this	lecture											and					are	interchangeablexf(x)

w>f(x) + b > 0

f(x)
‣ Can	delete	bias	if	we	augment	feature	space:

w>f(x) > 0
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Linear	func-ons	are	powerful!

‣ “Kernel	trick”	does	this	for	“free,”	but		is	too	expensive	to	use	in	NLP	
applica-ons,	training	is														instead	ofO(n2) O(n · (num feats))
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this	movie	was	great!	would	watch	again
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that	film	was	awful,	I’ll	never	watch	again

‣ Surface	cues	can	basically	tell	you	what’s	going	on	here:	presence	or	
absence	of	certain	words	(great,	awful)

‣ Steps	to	classifica-on:
‣ Turn	examples	like	this	into	feature	vectors

‣ Pick	a	model	/	learning	algorithm

‣ Train	weights	on	data	to	get	our	classifier
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‣ Data	point																																,	label	
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“Naive”	assump-on:	

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate	a	probabilis-c	model	that	places	a	distribu-on	

linear	model!

P (y|x)

y
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ith	feature	of	jth	example
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Maximum	Likelihood	Es-ma-on
‣ Imagine	a	coin	flip	which	is	heads	with	probability	p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log	likelihood

p
0 1

P(H)	=	0.75

‣Maximum	likelihood	parameters	for	binomial/
mul-nomial	=	read	counts	off	of	the	data	+	normalize

‣ Observe	(H,	H,	H,	T)	and	maximize	likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier:	maximize	log	likelihood



Maximum	Likelihood	Es-ma-on
‣ Data	points														provided	(j	indexes	over	examples)

‣ Find	values	of																														that	maximize	data	likelihood	(genera-ve):P (y), P (xi|y)

(xj , yj)

data	points	(j) features	(i)

mY

j=1
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mY
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"
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#
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nX
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logP (xji|yj)
#

ith	feature	of	jth	example
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+I	liked	it	well	enough	for	an	acCon	flick

I	expected	a	great	film	and	leE	happy +
+brilliant	direcCng	and	stunning	visuals
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Naive	Bayes:	Summary

‣Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Learning:	maximize																	by	reading	counts	off	the	data

‣ Inference

P (x, y)

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +|x)
P (y = �|x) +

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0



Problems	with	Naive	Bayes

the	film	was	beauCful,	stunning	cinematography	and	gorgeous	sets,	but	boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01
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Problems	with	Naive	Bayes

‣ Naive	Bayes	is	naive,	but	another	problem	is	that	it’s	generaCve:	
spends	capacity	modeling	P(x,y),	when	what	we	care	about	is	P(y|x)

‣ Correlated	features	compound:	beauCful	and	gorgeous	are	not	independent!

the	film	was	beauCful,	stunning	cinematography	and	gorgeous	sets,	but	boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01
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‣ Discrimina-ve	models	model	P(y|x)	directly	(SVMs,	most	neural	networks,	…)
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Logis-c	Regression

‣ Gradient	of	wi	on	posi-ve	example = xji(yj � P (yj = +|xj))

‣ Recall	that	yj	=	1	for	posi-ve	instances,	yj	=	0	for	nega-ve	instances.	
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If	P(+)	is	close	to	1,	make	very	li1le	update	
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Otherwise	make	wi	look	more	like	xji,	which	will	increase	P(+)
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‣ Gradient	of	wi	on	nega-ve	example = xji(�P (yj = +|xj))
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Logis-c	Regression

If	P(+)	is	close	to	1,	make	very	li1le	update	
Otherwise	make	wi	look	more	like	xji,	which	will	increase	P(+)

‣ Gradient	of	wi	on	posi-ve	example

‣ Gradient	of	wi	on	nega-ve	example

If	P(+)	is	close	to	0,	make	very	li1le	update	
Otherwise	make	wi	look	less	like	xji,	which	will	decrease	P(+)

xj(yj � P (yj = 1|xj))

= xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Can	combine	these	gradients	as

‣ Recall	that	yj	=	1	for	posi-ve	instances,	yj	=	0	for	nega-ve	instances.	
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Regulariza-on
‣ Regularizing	an	objec-ve	can	mean	many	things,	including	an	L2-
norm	penalty	to	the	weights:

mX

j=1

L(xj , yj)� �kwk22

‣ Keeping	weights	small	can	prevent	overfirng

‣ For	most	of	the	NLP	models	we	build,	explicit	regulariza-on	isn’t	necessary

‣ Early	stopping

‣ For	neural	networks:	dropout	and	gradient	clipping
‣ Large	numbers	of	sparse	features	are	hard	to	overfit	in	a	really	bad	way
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Logis-c	Regression:	Summary

‣Model

‣ Learning:	gradient	ascent	on	the	(regularized)	discrimina-ve	log-
likelihood

‣ Inference

argmaxyP (y|x) fundamentally	same	as	Naive	Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)
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Perceptron

‣ Simple	error-driven	learning	approach	similar	to	logis-c	regression

‣ Decision	rule:

‣ Guaranteed	to	eventually	separate	the	data	if	the	data	are	separable

‣ If	incorrect:	if	posi-ve,	
if	nega-ve,	

w  w + x

w  w � x w  w � xP (y = 1|x)
w  w + x(1� P (y = 1|x))

Logis-c	Regressionw>x > 0
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‣Many	separa-ng	hyperplanes	—	is	there	a	best	one?
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Support	Vector	Machines
‣ Constraint	formula-on:	find	w	via	following	quadra-c	program:

Minimize

s.t.

As	a	single	constraint:

minimizing	norm	with	
fixed	margin	<=>	
maximizing	margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally	no	solu-on	(data	is	generally	non-separable)	—	need	slack!
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N-Slack	SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The						are	a	“fudge	factor”	to	make	all	constraints	sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take	the	gradient	of	the	objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks	like	the	perceptron!	But	updates	more	frequently
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Gradients	on	Posi-ve	Examples
Logis-c	regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM	(ignoring	regularizer)

Hinge	(SVM)

Logis-c
Perceptron

0-1

Lo
ss

w>x

*gradients	are	for	maximizing	things,	
which	is	why	they	are	flipped

x if w>x < 1, else 0



Comparing	Gradient	Updates	(Reference)

x(y � P (y = 1|x)) x(y � logistic(w>x))

Perceptron
if	classified	incorrectly

0	else

SVM
if	not	classified	correctly	with	margin	of	1

0	else

(2y � 1)x

(2y � 1)x

=

y	=	1	for	pos,	
						0	for	neg

Logis-c	regression	(unregularized)



Op-miza-on	—	next	-me…

‣ Range	of	techniques	from	simple	gradient	descent	(works	pre1y	well)	
to	more	complex	methods	(can	work	be1er)

‣Most	methods	boil	down	to:	take	a	gradient	and	a	step	size,	apply	the	
gradient	update	-mes	step	size,	incorporate	es-mated	curvature	
informa-on	to	make	the	update	more	effec-ve
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Sen-ment	Analysis

Bo	Pang,	Lillian	Lee,	Shivakumar	Vaithyanathan	(2002)

the	movie	was	gross	and	overwrought,	but	I	liked	it

this	movie	was	great!	would	watch	again

‣ Bag-of-words	doesn’t	seem	sufficient	(discourse	structure,	nega-on)

this	movie	was	not	really	very	enjoyable

‣ There	are	some	ways	around	this:	extract	bigram	feature	for	“not	X”	for	
all	X	following	the	not

+
+

—
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Bo	Pang,	Lillian	Lee,	Shivakumar	Vaithyanathan	(2002)



Sen-ment	Analysis

‣ Simple	feature	sets	can	do	pre1y	well!	

Bo	Pang,	Lillian	Lee,	Shivakumar	Vaithyanathan	(2002)
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Sen-ment	Analysis

Wang	and	Manning	(2012)

Before	neural	nets	had	taken	off	
—	results	weren’t	that	great

Naive	Bayes	is	doing	well!

Ng	and	Jordan	(2002)	—	NB	
can	be	be1er	for	small	data

81.5				89.5Kim	(2014)	CNNs
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Recap

‣ Logis-c	regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient	(unregularized):

‣ SVM:

Decision	rule:	

Decision	rule:	w>x � 0

P (y = 1|x) � 0.5 , w>x � 0

(Sub)gradient	(unregularized):	0	if	correct	with	margin	of	1,	else

x(y � P (y = 1|x))

x(2y � 1)



Recap



Recap

‣ Logis-c	regression,	SVM,	and	perceptron	are	closely	related



Recap

‣ Logis-c	regression,	SVM,	and	perceptron	are	closely	related

‣ SVM	and	perceptron	inference	require	taking	maxes,	logis-c	regression	
has	a	similar	update	but	is	“sozer”	due	to	its	probabilis-c	nature



Recap

‣ Logis-c	regression,	SVM,	and	perceptron	are	closely	related

‣ SVM	and	perceptron	inference	require	taking	maxes,	logis-c	regression	
has	a	similar	update	but	is	“sozer”	due	to	its	probabilis-c	nature

‣ All	gradient	updates:	“make	it	look	more	like	the	right	thing	and	less	
like	the	wrong	thing”


