
Lecture	8:	RNNs

Alan	Ri2er
(many slides from Greg Durrett)



Administrivia

‣ Homework	3	Due	Next	week	on	Monday

‣ Guest	lecture	next	week	on	Wednesday

‣Midterm	is	next	week	on	Friday	
‣Will	cover	everything	up	to	this	Friday	
‣ PracFce	QuesFons:		
‣ h2ps://docs.google.com/document/d/1eidU29ni8ZeTlBcrTyQ67duurxU74vk7I16fUok_X8s/edit?usp=sharing

‣ Reading:	RNNs	
‣ Goldberg	10,	11	
‣ Jurafsky	and	MarFn,	Chapter	9

https://docs.google.com/document/d/1eidU29ni8ZeTlBcrTyQ67duurxU74vk7I16fUok_X8s/edit?usp=sharing


Recall:	Training	Tips



Recall:	Training	Tips

‣ Parameter	iniFalizaFon	is	criFcal	to	get	good	gradients,	some	useful	
heurisFcs	(e.g.,	Xavier	iniFalizer)



Recall:	Training	Tips

‣ Parameter	iniFalizaFon	is	criFcal	to	get	good	gradients,	some	useful	
heurisFcs	(e.g.,	Xavier	iniFalizer)

‣ Dropout	is	an	effecFve	regularizer



Recall:	Training	Tips

‣ Parameter	iniFalizaFon	is	criFcal	to	get	good	gradients,	some	useful	
heurisFcs	(e.g.,	Xavier	iniFalizer)

‣ Dropout	is	an	effecFve	regularizer

‣ Think	about	your	
opFmizer:	Adam	
or	tuned	SGD	
work	well



Recall:	Word	Vectors



Recall:	Word	Vectors

good
enjoyable

bad

dog

great

is



Recall:	ConFnuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man
Mikolov	et	al.	(2013)



Recall:	ConFnuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

Mikolov	et	al.	(2013)



Recall:	ConFnuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

+

sum,	size	d

Mikolov	et	al.	(2013)



Recall:	ConFnuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

+

sum,	size	d

sogmaxMulFply 
by	W

Mikolov	et	al.	(2013)



Recall:	ConFnuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

+

sum,	size	d
P (w|w�1, w+1)

sogmaxMulFply 
by	W

Mikolov	et	al.	(2013)



Recall:	ConFnuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

+

sum,	size	d
P (w|w�1, w+1)

sogmaxMulFply 
by	W

‣Matrix	factorizaFon	approaches	useful	for	learning	
vectors	from	really	large	data

Mikolov	et	al.	(2013)



Using	Word	Embeddings



Using	Word	Embeddings

‣ Approach	1:	learn	embeddings	directly	from	data	in	your	neural	model,	
no	pretraining

‣ Ogen	works	pre2y	well



Using	Word	Embeddings

‣ Approach	1:	learn	embeddings	directly	from	data	in	your	neural	model,	
no	pretraining

‣ Approach	2:	pretrain	using	GloVe,	keep	fixed
‣ Faster	because	no	need	to	update	these	parameters

‣ Ogen	works	pre2y	well

‣ Need	to	make	sure	GloVe	vocabulary	contains	all	the	words	you	need	



Using	Word	Embeddings

‣ Approach	1:	learn	embeddings	directly	from	data	in	your	neural	model,	
no	pretraining

‣ Approach	2:	pretrain	using	GloVe,	keep	fixed

‣ Approach	3:	iniFalize	using	GloVe,	fine-tune

‣ Faster	because	no	need	to	update	these	parameters

‣ Not	as	commonly	used	anymore

‣ Ogen	works	pre2y	well

‣ Need	to	make	sure	GloVe	vocabulary	contains	all	the	words	you	need	



ComposiFonal	SemanFcs



ComposiFonal	SemanFcs

‣What	if	we	want	embedding	representaFons	for	whole	sentences?



ComposiFonal	SemanFcs

‣What	if	we	want	embedding	representaFons	for	whole	sentences?

‣ Skip-thought	vectors	(Kiros	et	al.,	2015),	similar	to	skip-gram	generalized	
to	a	sentence	level	(more	later)



ComposiFonal	SemanFcs

‣What	if	we	want	embedding	representaFons	for	whole	sentences?

‣ Skip-thought	vectors	(Kiros	et	al.,	2015),	similar	to	skip-gram	generalized	
to	a	sentence	level	(more	later)

‣ Is	there	a	way	we	can	compose	vectors	to	make	sentence	
representaFons?	Summing?	RNNs?



This	Lecture

‣ Vanishing	gradient	problem

‣ Recurrent	neural	networks

‣ LSTMs	/	GRUs

‣ ApplicaFons	/	visualizaFons



RNN	Basics



RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

the		movie		was			great



RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

the		movie		was			great



RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

the		movie		was			great that			was			great					!



RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

the		movie		was			great that			was			great					!

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)



RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

‣ Instead,	we	need	to:

the		movie		was			great that			was			great					!

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)



RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

‣ Instead,	we	need	to:
1)	Process	each	word	in	a	uniform	way

the		movie		was			great that			was			great					!

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)



RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

‣ Instead,	we	need	to:
1)	Process	each	word	in	a	uniform	way

the		movie		was			great that			was			great					!

2)	…while	sFll	exploiFng	the	context	that	that	token	occurs	in

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)



RNN	AbstracFon
‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	that	
hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

input	x

output	y



RNN	AbstracFon
‣ Cell	that	takes	some	input	x,	has	some	hidden	state	h,	and	updates	that	
hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y



RNN	Uses
‣ Transducer:	make	some	predicFon	for	each	element	in	a	sequence

the		movie		was			great

DT						NN				VBD					JJ
output	y	=	score	for	each	tag,	then	sogmax



RNN	Uses
‣ Transducer:	make	some	predicFon	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	senFment	(matmul	+	sogmax)

the		movie		was			great

DT						NN				VBD					JJ
output	y	=	score	for	each	tag,	then	sogmax



RNN	Uses
‣ Transducer:	make	some	predicFon	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	senFment	(matmul	+	sogmax)

translate

the		movie		was			great

DT						NN				VBD					JJ
output	y	=	score	for	each	tag,	then	sogmax



RNN	Uses
‣ Transducer:	make	some	predicFon	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	senFment	(matmul	+	sogmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	sogmax



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

Elman	(1990)



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

‣ Long	history!	(invented	in	the	late	1980s)

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)



Training	Elman	Networks

the		movie		was			great

predict	senFment



Training	Elman	Networks

the		movie		was			great

predict	senFment

‣ “BackpropagaFon	through	Fme”:	build	the	network	as	one	big	
computaFon	graph,	some	parameters	are	shared



Training	Elman	Networks

the		movie		was			great

predict	senFment

‣ “BackpropagaFon	through	Fme”:	build	the	network	as	one	big	
computaFon	graph,	some	parameters	are	shared

‣ RNN	potenFally	needs	to	learn	how	to	“remember”	informaFon	for	a	
long	Fme!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+



Training	Elman	Networks

the		movie		was			great

predict	senFment

‣ “BackpropagaFon	through	Fme”:	build	the	network	as	one	big	
computaFon	graph,	some	parameters	are	shared

‣ RNN	potenFally	needs	to	learn	how	to	“remember”	informaFon	for	a	
long	Fme!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+

‣ “Correct”	parameter	update	is	to	do	a	be2er	job	of	remembering	the	
senFment	of	favorite



Vanishing	Gradient

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



Vanishing	Gradient

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



Vanishing	Gradient

<-	gradient

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



Vanishing	Gradient

<-	gradient<-	smaller	gradient

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	
not	in	[-2,	2],	gradient	is	almost	0

<-	gradient<-	smaller	gradient

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	
not	in	[-2,	2],	gradient	is	almost	0

<-	gradient<-	smaller	gradient<-	Fny	gradient

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs/GRUs



Gated	ConnecFons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

ht = ht�1 � f + func(xt) ht = tanh(Wxt + V ht�1 + bh)

gated Elman



Gated	ConnecFons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	(0,	1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt) ht = tanh(Wxt + V ht�1 + bh)

gated Elman



Gated	ConnecFons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	(0,	1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman



Gated	ConnecFons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	(0,	1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣ 	If	f	≈	1,	we	simply	sum	up	a	funcFon	of	
all	inputs	—	gradient	doesn’t	vanish!



LSTMs

‣ “Cell”	c	in	addiFon	to	hidden	state	h
ct = ct�1 � f + func(xt,ht�1)



LSTMs

‣ “Cell”	c	in	addiFon	to	hidden	state	h

‣ Vector-valued	forget	gate	f	depends	on	the	h	hidden	state

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)



LSTMs

‣ “Cell”	c	in	addiFon	to	hidden	state	h

‣ Vector-valued	forget	gate	f	depends	on	the	h	hidden	state

‣ Basic	communicaFon	flow:	x	->	c	->	h	->	output,	each	step	of	this	
process	is	gated	in	addiFon	to	gates	from	previous	Fmesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)



LSTMs

xj

f

hjhj-1

cj-1 cj

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ f,	i,	o	are	gates	that	control	informaFon	flow

‣ g	reflects	the	main	computaFon	of	the	cell



LSTMs

xj

f
g

i

hjhj-1

cj-1 cj

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ f,	i,	o	are	gates	that	control	informaFon	flow

‣ g	reflects	the	main	computaFon	of	the	cell



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ f,	i,	o	are	gates	that	control	informaFon	flow

‣ g	reflects	the	main	computaFon	of	the	cell



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can	we	ignore	the	old	value	of	c	for	this	Fmestep?



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can	we	ignore	the	old	value	of	c	for	this	Fmestep?
‣ Can	an	LSTM	sum	up	its	inputs	x?



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can	we	ignore	the	old	value	of	c	for	this	Fmestep?

‣ Can	we	ignore	a	parFcular	input	x?
‣ Can	an	LSTM	sum	up	its	inputs	x?



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

‣ Can	we	ignore	the	old	value	of	c	for	this	Fmestep?

‣ Can	we	ignore	a	parFcular	input	x?
‣ Can	an	LSTM	sum	up	its	inputs	x?

‣ Can	we	output	something	without	changing	c?



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ Ignoring	recurrent	state	enFrely:
‣ Lets	us	get	feedforward	layer	over	token



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ Ignoring	recurrent	state	enFrely:

‣ Lets	us	discard	stopwords

‣ Lets	us	get	feedforward	layer	over	token
‣ Ignoring	input:



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ Ignoring	recurrent	state	enFrely:

‣ Lets	us	discard	stopwords
‣ Summing	inputs:

‣ Lets	us	get	feedforward	layer	over	token
‣ Ignoring	input:

‣ Lets	us	compute	a	bag-of-words 
representaFon



LSTMs

<-	gradientsimilar	gradient	<-

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs

‣ Gradient	sFll	diminishes,	but	in	a	controlled	way	and	generally	by	less	—	
usually	iniFalize	forget	gate	=	1	to	remember	everything	to	start

<-	gradientsimilar	gradient	<-

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



GRUs

xj

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ LSTM:	more	complex	and	
slower,	may	work	a	bit	be2er

X

hj

sj

σ X

+
1-z

z

σ tanh
r



GRUs

xj

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU:	faster,	a	bit	simpler‣ LSTM:	more	complex	and	
slower,	may	work	a	bit	be2er

X

hj

sj

σ X

+
1-z

z

σ tanh
r



GRUs

xj

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU:	faster,	a	bit	simpler‣ LSTM:	more	complex	and	
slower,	may	work	a	bit	be2er

X

hj

sj

σ X

+
1-z

z

σ tanh
r

‣ Two	gates:	z	(forget,	mixes	s	and	
h)	and	r	(mixes	h	and	x)



What	do	RNNs	produce?
=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classificaFon	decision	about	the	sentence

the		movie		was			great



What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predicFon	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classificaFon	decision	about	the	sentence

the		movie		was			great



What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predicFon	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classificaFon	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transformaFon	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors



MulFlayer	BidirecFonal	RNN

the		movie		was			great



MulFlayer	BidirecFonal	RNN

the		movie		was			great



MulFlayer	BidirecFonal	RNN

the		movie		was			great the		movie		was			great



MulFlayer	BidirecFonal	RNN

‣ Sentence	classificaFon	
based	on	concatenaFon	
of	both	final	outputs

the		movie		was			great the		movie		was			great



MulFlayer	BidirecFonal	RNN

‣ Sentence	classificaFon	
based	on	concatenaFon	
of	both	final	outputs

‣ Token	classificaFon	based	on	
concatenaFon	of	both	direcFons’	
token	representaFons

the		movie		was			great the		movie		was			great



Training	RNNs

the		movie		was			great



Training	RNNs

the		movie		was			great

P (y|x)



Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)



Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	enFre	network



Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	enFre	network
‣ Example:	senFment	analysis



Training	RNNs

the		movie		was			great



Training	RNNs

the		movie		was			great

P (ti|x)



Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	predicFons,	
summed	over	the	tags

P (ti|x)



Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	predicFons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)



Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	predicFons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)



Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	predicFons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)



ApplicaFons



What	can	LSTMs	model?



What	can	LSTMs	model?
‣ SenFment

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leg-to-right,	per-token	predicFon



What	can	LSTMs	model?
‣ SenFment

‣ TranslaFon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leg-to-right,	per-token	predicFon



What	can	LSTMs	model?
‣ SenFment

‣ TranslaFon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leg-to-right,	per-token	predicFon

‣ Encode	sentence	+	then	decode,	use	token	predicFons	for	a2enFon	
weights	(later	in	the	course)



Visualizing	LSTMs

Karpathy	et	al.	(2015)



Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)



Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Visualize	acFvaFons	of	specific	cells	(components	of	c)	to	understand	them



Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Visualize	acFvaFons	of	specific	cells	(components	of	c)	to	understand	them



Visualizing	LSTMs
‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code

Karpathy	et	al.	(2015)

‣ Counter:	know	when	to	generate	\n
‣ Visualize	acFvaFons	of	specific	cells	(components	of	c)	to	understand	them



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Visualize	acFvaFons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Binary	switch:	tells	us	if	we’re	in	a	quote	or	not
‣ Visualize	acFvaFons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Visualize	acFvaFons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Stack:	acFvaFon	based	on	indentaFon
‣ Visualize	acFvaFons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Visualize	acFvaFons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



Visualizing	LSTMs

Karpathy	et	al.	(2015)

‣ Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	acFvaFon

‣ Visualize	acFvaFons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
history)	over	two	datasets:	War	and	Peace	and	Linux	kernel	source	code



What	can	LSTMs	model?
‣ SenFment

‣ TranslaFon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leg-to-right,	per-token	predicFon

‣ Encode	sentence	+	then	decode,	use	token	predicFons	for	a2enFon	
weights	(next	lecture)



What	can	LSTMs	model?
‣ SenFment

‣ TranslaFon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leg-to-right,	per-token	predicFon

‣ Encode	sentence	+	then	decode,	use	token	predicFons	for	a2enFon	
weights	(next	lecture)

‣ Textual	entailment



What	can	LSTMs	model?
‣ SenFment

‣ TranslaFon

‣ Language	models

‣ Encode	one	sentence,	predict

‣Move	leg-to-right,	per-token	predicFon

‣ Encode	sentence	+	then	decode,	use	token	predicFons	for	a2enFon	
weights	(next	lecture)

‣ Textual	entailment

‣ Encode	two	sentences,	predict



Natural	Language	Inference

A	boy	plays	in	the	snow A	boy	is	outside

Premise Hypothesis



Natural	Language	Inference

A	boy	plays	in	the	snow A	boy	is	outsideentails

Premise Hypothesis



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

A	boy	plays	in	the	snow A	boy	is	outsideentails

Premise Hypothesis



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

Premise Hypothesis



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

Premise Hypothesis



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

Premise Hypothesis



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

Premise Hypothesis



Natural	Language	Inference

A	man	inspects	the	uniform	of	a	figure The	man	is	sleeping

An	older	and	younger	man	smiling
Two	men	are	smiling	and	
laughing	at	cats	playing

A	boy	plays	in	the	snow A	boy	is	outsideentails

contradicts

neutral

‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambiFous	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)

Premise Hypothesis



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capFons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capFons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs
‣ Encode	each	sentence	and	process



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capFons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

‣ Encode	each	sentence	and	process



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capFons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)

‣ Encode	each	sentence	and	process



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capFons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)

300D	BiLSTM:	83%	accuracy	
																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process



SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capFons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)

300D	BiLSTM:	83%	accuracy	
																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process

‣ Later:	be2er	models	for	this



Takeaways

‣ RNNs	can	transduce	inputs	(produce	one	output	for	each	input)	or	
compress	the	whole	input	into	a	vector

‣ Useful	for	a	range	of	tasks	with	sequenFal	input:	senFment	analysis,	
language	modeling,	natural	language	inference,	machine	translaFon

‣ Next	Fme:	CNNs	and	neural	CRFs


