
Lecture	8:	RNNs

Alan	Ri2er
(many slides from Greg Durrett)



Administrivia

‣ Homework	3	Due	Next	week	on	Monday

‣ Guest	lecture	next	week	on	Wednesday

‣Midterm	is	next	week	on	Friday	
‣Will	cover	everything	up	to	this	Friday	
‣ PracFce	QuesFons:		
‣ h2ps://docs.google.com/document/d/1eidU29ni8ZeTlBcrTyQ67duurxU74vk7I16fUok_X8s/edit?usp=sharing

‣ Reading:	RNNs	
‣ Goldberg	10,	11	
‣ Jurafsky	and	MarFn,	Chapter	9

https://docs.google.com/document/d/1eidU29ni8ZeTlBcrTyQ67duurxU74vk7I16fUok_X8s/edit?usp=sharing
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Recall:	Training	Tips

‣ Parameter	iniFalizaFon	is	criFcal	to	get	good	gradients,	some	useful	
heurisFcs	(e.g.,	Xavier	iniFalizer)

‣ Dropout	is	an	effecFve	regularizer

‣ Think	about	your	
opFmizer:	Adam	
or	tuned	SGD	
work	well
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Recall:	Word	Vectors

good
enjoyable

bad

dog

great

is
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‣ Predict	word	from	context
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Recall:	ConFnuous	Bag-of-Words
‣ Predict	word	from	context

the	dog	bit	the	man

dog

the

+

sum,	size	d
P (w|w�1, w+1)

sogmaxMulFply 
by	W

‣Matrix	factorizaFon	approaches	useful	for	learning	
vectors	from	really	large	data

Mikolov	et	al.	(2013)
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Using	Word	Embeddings

‣ Approach	1:	learn	embeddings	directly	from	data	in	your	neural	model,	
no	pretraining

‣ Approach	2:	pretrain	using	GloVe,	keep	fixed

‣ Approach	3:	iniFalize	using	GloVe,	fine-tune

‣ Faster	because	no	need	to	update	these	parameters

‣ Not	as	commonly	used	anymore

‣ Ogen	works	pre2y	well

‣ Need	to	make	sure	GloVe	vocabulary	contains	all	the	words	you	need	
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ComposiFonal	SemanFcs

‣What	if	we	want	embedding	representaFons	for	whole	sentences?

‣ Skip-thought	vectors	(Kiros	et	al.,	2015),	similar	to	skip-gram	generalized	
to	a	sentence	level	(more	later)

‣ Is	there	a	way	we	can	compose	vectors	to	make	sentence	
representaFons?	Summing?	RNNs?



This	Lecture

‣ Vanishing	gradient	problem

‣ Recurrent	neural	networks

‣ LSTMs	/	GRUs

‣ ApplicaFons	/	visualizaFons



RNN	Basics
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RNN	MoFvaFon
‣ Feedforward	NNs	can’t	handle	variable	length	input:	each	posiFon	in	the	
feature	vector	has	fixed	semanFcs

‣ Instead,	we	need	to:
1)	Process	each	word	in	a	uniform	way

the		movie		was			great that			was			great					!

2)	…while	sFll	exploiFng	the	context	that	that	token	occurs	in

‣ These	don’t	look	related	(great	is	in	two	different	orthogonal	subspaces)
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hidden	state	and	produces	output	y	(all	vector-valued)

previous	h next	h

(previous	c) (next	c)

input	x

output	y
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RNN	Uses
‣ Transducer:	make	some	predicFon	for	each	element	in	a	sequence

‣ Acceptor/encoder:	encode	a	sequence	into	a	fixed-sized	vector	and	use	
that	for	some	purpose

the		movie		was			great

predict	senFment	(matmul	+	sogmax)

translate

the		movie		was			great

DT						NN				VBD					JJ

paraphrase/compress

output	y	=	score	for	each	tag,	then	sogmax



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

Elman	(1990)



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)



Elman	Networks

input	xt

prev	
hidden	
state	ht-1 ht

output	yt

‣ Computes	output	from	hidden	state

‣ Updates	hidden	state	based	on	input	
and	current	hidden	state

‣ Long	history!	(invented	in	the	late	1980s)

yt = tanh(Uht + by)

Elman	(1990)

ht = tanh(Wxt + V ht�1 + bh)
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Training	Elman	Networks

the		movie		was			great

predict	senFment

‣ “BackpropagaFon	through	Fme”:	build	the	network	as	one	big	
computaFon	graph,	some	parameters	are	shared

‣ RNN	potenFally	needs	to	learn	how	to	“remember”	informaFon	for	a	
long	Fme!

it	was	my	favorite	movie	of	2016,	though	it	wasn’t	without	problems	->	+

‣ “Correct”	parameter	update	is	to	do	a	be2er	job	of	remembering	the	
senFment	of	favorite
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not	in	[-2,	2],	gradient	is	almost	0
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Vanishing	Gradient

‣ Gradient	diminishes	going	through	tanh;	if	
not	in	[-2,	2],	gradient	is	almost	0

<-	gradient<-	smaller	gradient<-	Fny	gradient

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gated	ConnecFons
‣ Designed	to	fix	“vanishing	gradient”	problem	using	gates

‣ Vector-valued	“forget	gate”	f	computed	
based	on	input	and	previous	hidden	state

‣ Sigmoid:	elements	of	f	are	in	(0,	1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣ 	If	f	≈	1,	we	simply	sum	up	a	funcFon	of	
all	inputs	—	gradient	doesn’t	vanish!
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LSTMs

‣ “Cell”	c	in	addiFon	to	hidden	state	h

‣ Vector-valued	forget	gate	f	depends	on	the	h	hidden	state

‣ Basic	communicaFon	flow:	x	->	c	->	h	->	output,	each	step	of	this	
process	is	gated	in	addiFon	to	gates	from	previous	Fmesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)
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Goldberg	lecture	notes
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‣ g	reflects	the	main	computaFon	of	the	cell
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‣ Can	we	ignore	the	old	value	of	c	for	this	Fmestep?

‣ Can	we	ignore	a	parFcular	input	x?
‣ Can	an	LSTM	sum	up	its	inputs	x?

‣ Can	we	output	something	without	changing	c?
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LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/

Goldberg	lecture	notes

‣ Ignoring	recurrent	state	enFrely:

‣ Lets	us	discard	stopwords
‣ Summing	inputs:

‣ Lets	us	get	feedforward	layer	over	token
‣ Ignoring	input:

‣ Lets	us	compute	a	bag-of-words 
representaFon



LSTMs

<-	gradientsimilar	gradient	<-

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs

‣ Gradient	sFll	diminishes,	but	in	a	controlled	way	and	generally	by	less	—	
usually	iniFalize	forget	gate	=	1	to	remember	everything	to	start

<-	gradientsimilar	gradient	<-

h2p://colah.github.io/posts/2015-08-Understanding-LSTMs/
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‣ GRU:	faster,	a	bit	simpler‣ LSTM:	more	complex	and	
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xj

f
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hj-1

sj-1

xj

sj

‣ GRU:	faster,	a	bit	simpler‣ LSTM:	more	complex	and	
slower,	may	work	a	bit	be2er

X

hj

sj

σ X

+
1-z

z

σ tanh
r

‣ Two	gates:	z	(forget,	mixes	s	and	
h)	and	r	(mixes	h	and	x)
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What	do	RNNs	produce?

‣ Encoding	of	each	word	—	can	pass	this	to	another	layer	to	make	a	
predicFon	(can	also	pool	these	to	get	a	different	sentence	encoding)

=

‣ Encoding	of	the	sentence	—	can	pass	this	a	decoder	or	make	a	
classificaFon	decision	about	the	sentence

the		movie		was			great

‣ RNN	can	be	viewed	as	a	transformaFon	of	a	sequence	of	vectors	into	a	
sequence	of	context-dependent	vectors
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MulFlayer	BidirecFonal	RNN

‣ Sentence	classificaFon	
based	on	concatenaFon	
of	both	final	outputs

‣ Token	classificaFon	based	on	
concatenaFon	of	both	direcFons’	
token	representaFons

the		movie		was			great the		movie		was			great
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Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	label	(or	use	SVM	
or	other	loss)

P (y|x)

‣ Backpropagate	through	enFre	network
‣ Example:	senFment	analysis
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Training	RNNs

the		movie		was			great

‣ Loss	=	negaFve	log	likelihood	of	probability	of	gold	predicFons,	
summed	over	the	tags

‣ Loss	terms	filter	back	through	network

P (ti|x)

‣ Example:	language	modeling	(predict	next	word	given	context)
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Karpathy	et	al.	(2015)

‣ Uninterpretable:	probably	doing	double-duty,	or	only	makes	sense	in	the	
context	of	another	acFvaFon

‣ Visualize	acFvaFons	of	specific	cells	to	see	what	they	track

‣ Train	character	LSTM	language	model	(predict	next	character	based	on	
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‣ Textual	entailment

‣ Encode	two	sentences,	predict
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‣ Long	history	of	this	task:	“Recognizing	Textual	Entailment”	challenge	in	
2006	(Dagan,	Glickman,	Magnini)

‣ Early	datasets:	small	(hundreds	of	pairs),	very	ambiFous	(lots	of	world	
knowledge,	temporal	reasoning,	etc.)
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SNLI	Dataset

Bowman	et	al.	(2015)

‣ Show	people	capFons	for	(unseen)	images	and	solicit	entailed	/	neural	/	
contradictory	statements

‣ >500,000	sentence	pairs

100D	LSTM:	78%	accuracy

300D	LSTM:	80%	accuracy 
																(Bowman	et	al.,	2016)

300D	BiLSTM:	83%	accuracy	
																(Liu	et	al.,	2016)

‣ Encode	each	sentence	and	process

‣ Later:	be2er	models	for	this



Takeaways

‣ RNNs	can	transduce	inputs	(produce	one	output	for	each	input)	or	
compress	the	whole	input	into	a	vector

‣ Useful	for	a	range	of	tasks	with	sequenFal	input:	senFment	analysis,	
language	modeling,	natural	language	inference,	machine	translaFon

‣ Next	Fme:	CNNs	and	neural	CRFs


