Lecture 8: RNNSs

Alan Ritter

(many slides from Greg Durrett)



Administrivia

» Reading: RNNs
» Goldberg 10, 11
» Jurafsky and Martin, Chapter 9

» Homework 3 Due Next week on Monday
» Guest lecture next week on Wednesday

» Midterm is next week on Friday
» Will cover everything up to this Friday

» Practice Questions:
» https://docs.google.com/document/d/1eidU29ni8ZeTIBcrTyQ67duurxU74vk7116fUok X8s/edit?usp=sharing



https://docs.google.com/document/d/1eidU29ni8ZeTlBcrTyQ67duurxU74vk7I16fUok_X8s/edit?usp=sharing
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Recall: Training Tips

» Parameter initialization is critical to get good gradients, some useful

heuristics (e.g., Xavier

initializer)

» Dropout is an effective regularizer

» Think about your £
optimizer: Adam ;
or tuned SGD F
work well
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[Finch and Chater 92, Shuetze 93, many others]

Recall: Word Vectors

president
governor

said
reported

great

good
enjoyable

dog

bad IS
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» Predict word from context Mikolov et al. (2013)
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Recall: Continuous Bag-of-Words

» Predict word from context E , Mikolov et al. (2013)
the:dog bit the:man
dog Multiply
softmax
. -
P _
sum, size d (w1, w1)

the » Matrix factorization approaches useful for learning
vectors from really large data
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Using Word Embeddings

» Approach 1: learn embeddings directly from data in your neural model,
no pretraining

» Often works pretty well

» Approach 2: pretrain using GloVe, keep fixed
» Faster because no need to update these parameters

» Need to make sure GloVe vocabulary contains all the words you need

» Approach 3: initialize using GloVe, fine-tune

» Not as commonly used anymore
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Compositional Semantics

» What if we want embedding representations for whole sentences?

» Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level (more later)

» |Is there a way we can compose vectors to make sentence
representations? Summing? RNNs?



This Lecture

» Recurrent neural networks

» Vanishing gradient problem
» LSTMs / GRUs

» Applications / visualizations



RNN Basics
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RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

e e

the movie was great that was great |

» These don’t look related (great is in two different orthogonal subspaces)

» Instead, we need to:

1) Process each word in a uniform way

2) ...while still exploiting the context that that token occurs in
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» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)
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RNN Abstraction

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)

outputy
previous h next h
(previous c) (next c)

Input X
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RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment (matmul + softmax)

;I—»;F»;I—»;I< translate
paraphrase/compress

the movie was great
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Elman Networks

output vt ht — taﬂh(WXt -+ Vht_l -+ bh)
PIEV » Updates hidden state based on input
hidden and current hidden state
state hy — h:

Yi — tanh(Uht + by)

» Computes output from hidden state
Input X

» Long history! (invented in the late 1980s)
Elman (1990)
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Training EIman Networks

;I—»;IM—» predict sentiment

the movie was great

» “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

» RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

» “Correct” parameter update is to do a better job of remembering the
sentiment of favorite
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Vanishing Gradient
h)
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Vanishing Gradient
@ h)

t L
<- smaller gradient <- gradient
\ *

tanh
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Vanishing Gradient
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<- smaller gradient <- gradient

tanh

%) ()

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O
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Vanishing Gradient

> o @

<- tiny gradient <- smaller gradient <- gradient

A

tanh

) ()

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gated Connections

» Desighed to fix “vanishing gradient” problem using gates

ht — ht—l ® f -+ fUIlC(Xt) ht — tanh(WXt

gated Elman

» Vector-valued “forget gate” f computed
based on input and previous hidden state
f =oc(W*x, + Wh,_)
h:;

» Sigmoid: elements of f are in (0O, 1)

» Iff=1, we simply sum up a function of
all inputs — gradient doesn’t vanish!

Vh;_ 1
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LSTMSs

» “Cell” ¢ in addition to hidden state h
Ct = Ct—_1 ©® f -+ fUIlC(Xt, ht—l)

» Vector-valued forget gate f depends on the h hidden state
f =oc(W*x, + W' h,_,)

» Basic communication flow: x -> ¢ -> h -> output, each step of this
process is gated in addition to gates from previous timesteps



LSTMs
@ Cj :Cj—l ) f +

f =0 (x;W*' + h;_; W)

» f, 1, 0 are gates that control information flow
» g reflects the main computation of the cell

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMSs

(b cj =1 O f +g O

f ZU(XjWXf + hj_Ith)

g = tanh(x; W*€ + h;_; W"8)

i =0 (x;W* + h;_1 W)
hj — tanh(cj) ® o0

) 0 =0 (x;W*° + h;_; W"°)
» f, 1, 0 are gates that control information flow
» g reflects the main computation of the cell

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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f ZO(XjWXf + hj_Ith)

hj = tanh(cj) OXe
0 =0(x;W*° + h;_; W"°)
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cj=¢;-1 O f +g O
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i =0 (x;W* + h;_1 W)
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» Can we ignore the old value of ¢ for this timestep?



LSTMs
@ Cj :Cj—l ) f +

f ZU(XjWXf + hj_Ith)

C;
'EL T g = tanh(x; W*€ + h;_; W"8)
X X ¢ YA7XI1 _ hi
L :EF‘- 1 —U(XJW —{—hJ_lW )
;h_j'{ hj ztanh(cj) OXe

0 =0(x;W*° + h;_; W"°)
» Can we ignore the old value of ¢ for this timestep?
» Can an LSTM sum up its inputs x?
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LSTMSs

cj=¢;-1 O f +g O
f ZO'(XjWXf + hj_Ith)
g = tanh(x; W*€ + h;_; W"8)

i =0 (x;W* + h;_1 W)
h; =tanh(c;) © o
0 =0(x;W*® + h;_; Wh°)

» Can we ignore the old value of ¢ for this timestep?

» Can an LSTM sum up its inputs x?
» Can we ignore a particular input x?



LSTMSs

(b cj =1 O f +g O

f ZG(XjWXf + hj_Ith)

g = ta,nh(ijxg + hj_IWhg)

i =0 (x;W* + h;_1 W)
hj — tanh(cj) ® o0

S 0 =0 (x;W*° + h;_; Wh°)
» Can we ignore the old value of ¢ for this timestep?

» Can an LSTM sum up its inputs x?

» Can we ignhore a particular input x?

» Can we output something without changing c?
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LSTMSs

» Ignoring recurrent state entirely:

» Lets us get feedforward layer over token

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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» Ignoring recurrent state entirely:

» Lets us get feedforward layer over token
» Ignoring input:

» Lets us discard stopwords
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LSTMSs

» lgnoring recurrent state entirely:

» Lets us get feedforward layer over token
» Ignoring input:

» Lets us discard stopwords

» Summing inputs:

» Lets us compute a bag-of-words
representation

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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» Gradient still dlmmlshes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

'<- gradient —»>

A

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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tanug O

» LSTM: more complex and
slower, may work a bit better

GRUSs

» GRU: faster, a bit simpler

» Two gates: z (forget, mixes s and
h) and r (mixes h and x)



What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence



What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)



What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors



Multilayer Bidirectional RNN



Multilayer Bidirectional RNN



Multilayer Bidirectional RNN
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Multilayer Bidirectional RNN

e e e S [

the movie was great the movie was great

» Token classification based on

I:I concatenation of both directions’
I:I token representations

I —

» Sentence classification
based on concatenation
of both final outputs
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Training RNNSs

soogH

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

» Example: sentiment analysis



Training RNNSs

I | BN | I |

BEED

the movie was great



Training RNNSs
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the movie was great
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Training RNNSs

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)
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What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (later in the course)
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Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them
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Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them

» Counter: know when to generate \n

The sole 1mportance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and ¢th general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled

at a continually i1ncreasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block 1ts path. This was shown not so much by the arrangements 1it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
Who were with the French transport, all--carried on by wvis 1inertiae- -
pressed forward into boats and into the i1ice-covered water and did not,
surrender.

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track
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Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Binary switch: tells us if we’re in a quote or not

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

CONFIG AUDITSYSCALL

f

S lCc inline int@Eaudaitt_mRarrcn_ciliass_ _Dbritfs{1ne class, U332 "nmask)
{

I'mE s
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iT (maskiil] & slassesiclass]ixn)
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}
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Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 "mask)
{
o I T - (-
i Elasseslclassl) #

fior (2 = @2 1 < AUDET _BITHNASKEESIEEDHET)

iT (maskiil] & slassesiclass]ixn)

"eturn 6

return 1;

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

lter field'si'string represéntation from User-space
pack_string(veiid **bufp, size_t Xremain, size_t len)

pack
buffer

@har MEUdit
_

lI'la

r

r
(
t
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! nt
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ed sitring fields, PRATHIMNAX
gth

Karpathy et al. (2015)



Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

piclmltir-eld-trﬂno répres@intation firom @WSer-space
buffer
{lhar faudit pAlckDstring(lllid FEbufp, slzelt:t "HEENEE", SHzem: NEEN)

Karpathy et al. (2015)
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What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

» Textual entailment

» Encode two sentences, predict
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Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping
T ] d
An older and younger man smiling neutral WO Men are SIS an

laughing at cats playing

» Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

» Early datasets: small (hundreds of pairs), very ambitious (lots of world
knowledge, temporal reasoning, etc.)
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SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs 3-way S°fm;a" i
200d tanh 1
» Encode each sentence and process p—
200d tanh 1
100D LSTM: 78% accuracy T
200d tanh 1
300D LSTM: 80% accuracy - - 3<
(Bmean et al., 2016) 100d premise 100d hypothesis
. f f
300D BILSTM: 83% accura Cy sentence model sentence model
with premise input with hypothesis input

(Liu et al., 2016)
» Later: better models for this Bowman et al. (2015)



Takeaways

» RNNs can transduce inputs (produce one output for each input) or
compress the whole input into a vector

» Useful for a range of tasks with sequential input: sentiment analysis,
language modeling, natural language inference, machine translation

» Next time: CNNs and neural CRFs



