Lecture 8: RNNSs

Alan Ritter

(many slides from Greg Durrett)

Administrivia

» Reading: RNNs
» Goldberg 10, 11
» Jurafsky and Martin, Chapter 9

» Homework 3 Due Next week on Monday
» Guest lecture next week on Wednesday

» Midterm is next week on Friday
» Will cover everything up to this Friday

» Practice Questions:
» https://docs.google.com/document/d/1eidU29ni8ZeTIBcrTyQ67duurxU74vk7116fUok X8s/edit?usp=sharing

https://docs.google.com/document/d/1eidU29ni8ZeTlBcrTyQ67duurxU74vk7I16fUok_X8s/edit?usp=sharing

Recall: Training Tips

Recall: Training Tips

» Parameter initialization is critical to get good gradients, some useful
heuristics (e.g., Xavier initializer)

Recall: Training Tips

» Parameter initialization is critical to get good gradients, some useful
heuristics (e.g., Xavier initializer)

» Dropout is an effective regularizer

Recall: Training Tips

» Parameter initialization is critical to get good gradients, some useful

heuristics (e.g., Xavier

initializer)

» Dropout is an effective regularizer

» Think about your £
optimizer: Adam ;
or tuned SGD F
work well

6.0

5.8}
5.6}
5.4}
5.2}

20 40 60 80
Epoch

(e) Generative Parsing (Training Set)

Development Perplexity

6.0
>8I\ Adam (Default): 5.470.02 ‘
5.6} /dam: 5.35+0.01 ____—1
5 al ./ RMSProp: 5.28+0.00
5.2} HB: 5.13+0.01"
Y
AdaGrad: 5.24+0.02 5':)
>-0 20 40 60 80 100
Epoch

(f) Generative Parsing (Development Set)

president |the of
president |the said «/
governor |the of
governor |the appointed
said sources ¢
said president __ that
reported |sources ¢

Recall: Word Vectors

president
governor

said
reported

[Finch and Chater 92, Shuetze 93, many others]

president |the of
president |the said «/
governor |the of
governor |the appointed
said sources ¢
said president that
reported |sources ¢

[Finch and Chater 92, Shuetze 93, many others]

Recall: Word Vectors

president
governor

said
reported

great

good
enjoyable

dog

bad IS

Recall: Continuous Bag-of-Words

» Predict word from context Mikolov et al. (2013)

Recall: Continuous Bag-of-Words

» Predict word from context Mikolov et al. (2013)

dog

the

Recall: Continuous Bag-of-Words

» Predict word from context Mikolov et al. (2013)

dog

sum, size d

the

Recall: Continuous Bag-of-Words

» Predict word from context Mikolov et al. (2013)

theédog bit theéman
aog (¥ I m,u\l,sply

sum, size d

the

Recall: Continuous Bag-of-Words

» Predict word from context Mikolov et al. (2013)

theédog bit theéman
P _
sum, size d (ww—1, W)

the

Recall: Continuous Bag-of-Words

» Predict word from context E , Mikolov et al. (2013)
the:dog bit the:man
dog Multiply
softmax
. -
P _
sum, size d (w1, w1)

the » Matrix factorization approaches useful for learning
vectors from really large data

Using Word Embeddings

Using Word Embeddings

» Approach 1: learn embeddings directly from data in your neural model,
no pretraining

» Often works pretty well

Using Word Embeddings

» Approach 1: learn embeddings directly from data in your neural model,
no pretraining

» Often works pretty well

» Approach 2: pretrain using GloVe, keep fixed
» Faster because no need to update these parameters

» Need to make sure GloVe vocabulary contains all the words you need

Using Word Embeddings

» Approach 1: learn embeddings directly from data in your neural model,
no pretraining

» Often works pretty well

» Approach 2: pretrain using GloVe, keep fixed
» Faster because no need to update these parameters

» Need to make sure GloVe vocabulary contains all the words you need

» Approach 3: initialize using GloVe, fine-tune

» Not as commonly used anymore

Compositional Semantics

Compositional Semantics

» What if we want embedding representations for whole sentences?

Compositional Semantics

» What if we want embedding representations for whole sentences?

» Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level (more later)

Compositional Semantics

» What if we want embedding representations for whole sentences?

» Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized
to a sentence level (more later)

» |Is there a way we can compose vectors to make sentence
representations? Summing? RNNs?

This Lecture

» Recurrent neural networks

» Vanishing gradient problem
» LSTMs / GRUs

» Applications / visualizations

RNN Basics

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

the movie was great

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

m—

the movie was great

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

e e

the movie was great that was great |

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

e e

the movie was great that was great |

» These don’t look related (great is in two different orthogonal subspaces)

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

e e

the movie was great that was great |

» These don’t look related (great is in two different orthogonal subspaces)

» Instead, we need to:

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

e e

the movie was great that was great |

» These don’t look related (great is in two different orthogonal subspaces)

» Instead, we need to:

1) Process each word in a uniform way

RNN Motivation

» Feedforward NNs can’t handle variable length input: each position in the
feature vector has fixed semantics

e e

the movie was great that was great |

» These don’t look related (great is in two different orthogonal subspaces)

» Instead, we need to:

1) Process each word in a uniform way

2) ...while still exploiting the context that that token occurs in

RNN Abstraction

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)

outputy

previous h next h

—_—

Input X

RNN Abstraction

» Cell that takes some input x, has some hidden state h, and updates that
hidden state and produces output y (all vector-valued)

outputy
previous h next h
(previous c) (next c)

Input X

RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment (matmul + softmax)

Y

the movie was great

RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment (matmul + softmax)

;I—»;IMZ: translate

the movie was great

RNN Uses

» Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
output y = score for each tag, then softmax

r 1t 1t 1

the movie was great

» Acceptor/encoder: encode a sequence into a fixed-sized vector and use

that for some purpose
predict sentiment (matmul + softmax)

;I—»;F»;I—»;I< translate
paraphrase/compress

the movie was great

Elman Networks

output vt

prev

hidden

state hy.; — h:
Input Xt

Elman (1990)

Elman Networks

output vt ht — taﬂh(WXt -+ Vht_l -+ bh)
PIEV » Updates hidden state based on input
hidden and current hidden state
state hy — h:

Input X

Elman (1990)

Elman Networks

output vt ht — taﬂh(WXt -+ Vht_l -+ bh)
PIEV » Updates hidden state based on input
hidden and current hidden state
state hy — h:

Yi — tanh(Uht + by)

» Computes output from hidden state
Input X

Elman (1990)

Elman Networks

output vt ht — taﬂh(WXt -+ Vht_l -+ bh)
PIEV » Updates hidden state based on input
hidden and current hidden state
state hy — h:

Yi — tanh(Uht + by)

» Computes output from hidden state
Input X

» Long history! (invented in the late 1980s)
Elman (1990)

Training EIman Networks

;I—»;IM—» predict sentiment

the movie was great

Training EIman Networks

;I—»;IM—» predict sentiment

the movie was great

» “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

Training EIman Networks

;I—»;IM—» predict sentiment

the movie was great

» “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

» RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

Training EIman Networks

;I—»;IM—» predict sentiment

the movie was great

» “Backpropagation through time”: build the network as one big
computation graph, some parameters are shared

» RNN potentially needs to learn how to “remember” information for a
long time!

it was my favorite movie of 2016, though it wasn’t without problems -> +

» “Correct” parameter update is to do a better job of remembering the
sentiment of favorite

Vanishing Gradient
h)

© 6
L. Lo, L

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient
h)

6 6
L ~ E <\- gradient T\

tanh

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient
@ h)

t L
<- smaller gradient <- gradient
\ *

tanh

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient
°® o o

<- smaller gradient <- gradient

tanh

%) ()

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

> o @

<- tiny gradient <- smaller gradient <- gradient

A

tanh

) ()

» Gradient diminishes going through tanh; if
not in [-2, 2], gradient is almost O

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs/GRUSs

Gated Connections

» Desighed to fix “vanishing gradient” problem using gates

ht — ht—l O f -+ fUIlC(Xt)
gated

ht — tanh(WXt

Elman

Vh;_ 1

Gated Connections

» Desighed to fix “vanishing gradient” problem using gates

ht — ht—l ® f -+ fUIlC(Xt) ht — tanh(WXt

gated Elman

» Vector-valued “forget gate” f computed
based on input and previous hidden state

f =oc(W*x, + W' h,_1)

» Sigmoid: elements of f are in (0O, 1)

Vhy

Gated Connections

» Desighed to fix “vanishing gradient” problem using gates

ht — ht—l ® f -+ fUIlC(Xt) ht — tanh(WXt

gated Elman

» Vector-valued “forget gate” f computed
based on input and previous hidden state
f =oc(W*x, + Wh,_)
h:;

» Sigmoid: elements of f are in (0O, 1)

Vhy

Gated Connections

» Desighed to fix “vanishing gradient” problem using gates

ht — ht—l ® f -+ fUIlC(Xt) ht — tanh(WXt

gated Elman

» Vector-valued “forget gate” f computed
based on input and previous hidden state
f =oc(W*x, + Wh,_)
h:;

» Sigmoid: elements of f are in (0O, 1)

» Iff=1, we simply sum up a function of
all inputs — gradient doesn’t vanish!

Vh;_ 1

LSTMSs

» “Cell” ¢ in addition to hidden state h
Ct = C¢_1 © f —+ fUIlC(Xt, ht—l)

LSTMSs

» “Cell” cin addition to hidden state h

Ct = Ct_1 ©® f -+ fUIlC(Xt, ht—l)

» Vector-valued forget gate f depends on the h hidden state
f =oc(W*x, + W' h,_,)

LSTMSs

» “Cell” ¢ in addition to hidden state h
Ct = Ct—_1 ©® f -+ fUIlC(Xt, ht—l)

» Vector-valued forget gate f depends on the h hidden state
f =oc(W*x, + W' h,_,)

» Basic communication flow: x -> ¢ -> h -> output, each step of this
process is gated in addition to gates from previous timesteps

LSTMs
@ Cj :Cj—l) f +

f =0 (x;W*' + h;_; W)

» f, 1, 0 are gates that control information flow
» g reflects the main computation of the cell

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMSs

(b cj =1 O f +g O

f ZU(XjWXf + hj_Ith)

g = tanh(x; W*€ + h;_; W"8)

i =0 (x;W* + h;_1 W)

» f, 1, 0 are gates that control information flow
» g reflects the main computation of the cell

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMSs

(b cj =1 O f +g O

f ZU(XjWXf + hj_Ith)

g = tanh(x; W*€ + h;_; W"8)

i =0 (x;W* + h;_1 W)
hj — tanh(cj) ® o0

) 0 =0 (x;W*° + h;_; W"°)
» f, 1, 0 are gates that control information flow
» g reflects the main computation of the cell

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs
@ Cj =Cj_1) f +

f ZO(XjWXf + hj_Ith)

hj = tanh(cj) OXe
0 =0(x;W*° + h;_; W"°)

&

(ipd

0] ta

(tanh>

T LL $
gl
1917

LSTMSs

cj=¢;-1 O f +g O
f :U(XjWXf + hj_Ith)
g = ta,nh(ijxg + hj_lwhg)

i =0 (x;W* + h;_1 W)
hj = tanh(cj) OXe
O :O'(ijxo -I- hj_IWh°)

» Can we ignore the old value of ¢ for this timestep?

LSTMs
@ Cj :Cj—l) f +

f ZU(XjWXf + hj_Ith)

C;
'EL T g = tanh(x; W*€ + h;_; W"8)
X X ¢ YA7XI1 _ hi
L :EF‘- 1 —U(XJW —{—hJ_lW)
;h_j'{ hj ztanh(cj) OXe

0 =0(x;W*° + h;_; W"°)
» Can we ignore the old value of ¢ for this timestep?
» Can an LSTM sum up its inputs x?

(X &

[o

o] [o][ta
|

(tanh>

‘ %)

oL
>

LSTMSs

cj=¢;-1 O f +g O
f ZO'(XjWXf + hj_Ith)
g = tanh(x; W*€ + h;_; W"8)

i =0 (x;W* + h;_1 W)
h; =tanh(c;) © o
0 =0(x;W*® + h;_; Wh°)

» Can we ignore the old value of ¢ for this timestep?

» Can an LSTM sum up its inputs x?
» Can we ignore a particular input x?

LSTMSs

(b cj =1 O f +g O

f ZG(XjWXf + hj_Ith)

g = ta,nh(ijxg + hj_IWhg)

i =0 (x;W* + h;_1 W)
hj — tanh(cj) ® o0

S 0 =0 (x;W*° + h;_; Wh°)
» Can we ignore the old value of ¢ for this timestep?

» Can an LSTM sum up its inputs x?

» Can we ignhore a particular input x?

» Can we output something without changing c?

(b

ta

Ganh>

¥ |E°
Em.
Id)

|

LSTMSs

» Ignoring recurrent state entirely:

» Lets us get feedforward layer over token

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMSs

» Ignoring recurrent state entirely:

» Lets us get feedforward layer over token
» Ignoring input:

» Lets us discard stopwords

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMSs

» lgnoring recurrent state entirely:

» Lets us get feedforward layer over token
» Ignoring input:

» Lets us discard stopwords

» Summing inputs:

» Lets us compute a bag-of-words
representation

Goldberg lecture notes
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

1

similar gradient <-

A

)

'<- gradient

i T

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

SN

i
1
&) &)

» Gradient still dlmmlshes, but in a controlled way and generally by less —
usually initialize forget gate = 1 to remember everything to start

'<- gradient —»>

A

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

tanug O

» LSTM: more complex and
slower, may work a bit better

GRUSs

tanug O

» LSTM: more complex and
slower, may work a bit better

GRUSs

» GRU: faster, a bit simpler

tanug O

» LSTM: more complex and
slower, may work a bit better

GRUSs

» GRU: faster, a bit simpler

» Two gates: z (forget, mixes s and
h) and r (mixes h and x)

What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

What do RNNs produce?

\

ﬂ

the movie was great

» Encoding of the sentence — can pass this a decoder or make a
classification decision about the sentence

» Encoding of each word — can pass this to another layer to make a
prediction (can also pool these to get a different sentence encoding)

» RNN can be viewed as a transformation of a sequence of vectors into a
sequence of context-dependent vectors

Multilayer Bidirectional RNN

Multilayer Bidirectional RNN

Multilayer Bidirectional RNN

Multilayer Bidirectional RNN

e e e S [

the movie was great the movie was great

» Sentence classification
based on concatenation
of both final outputs

I | —

Multilayer Bidirectional RNN

e e e S [

the movie was great the movie was great

» Token classification based on

I:I concatenation of both directions’
I:I token representations

I —

» Sentence classification
based on concatenation
of both final outputs

Training RNNSs

e

the movie was great

Training RNNSs

soogH

the movie was great

Training RNNSs

soogH

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

Training RNNSs

soogH

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

Training RNNSs

soogH

the movie was great

» Loss = negative log likelihood of probability of gold label (or use SVM
or other loss)

» Backpropagate through entire network

» Example: sentiment analysis

Training RNNSs

I | BN | I |

BEED

the movie was great

Training RNNSs
o

BEED

the movie was great

Training RNNSs

S ===

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

Training RNNSs

S ===

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

Training RNNSs

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

Training RNNSs

the movie was great

» Loss = negative log likelihood of probability of gold predictions,
summed over the tags

» Loss terms filter back through network

» Example: language modeling (predict next word given context)

Applications

What can LSTMs model?

What can LSTMs model?

» Sentiment

» Encode one sentence, predict

» Language models

» Move left-to-right, per-token prediction

What can LSTMs model?

» Sentiment
» Encode one sentence, predict

» Language models

» Move left-to-right, per-token prediction

» Translation

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (later in the course)

Visualizing LSTMs

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them

The sole importance of the crossin
that it plainly and indubitably
cutting off the enemy's retreat
line of action--the one Kutuzov
demanded--namely, simply to follow

at a continually increasing speed

PEREsnEaTRe 1T Es goal. It fled like

to block its path. This was shown
made for crossing as by what took
broke down, unarmed soldiers, people
who were with the French transport,
into

pressed forward into boats and
surrender.

and
wounded
not
place

from
all--ca

the 1ce

Berezina lies 1n the fact
IanaseY of all the plans s
ndness of the only possible
eral mass of the army

y up The French crowd fled
Lts energy was directed to
nimal and it was impossible
ch by the arrangements 1t

the bridges. When the bridges
oscow and women with children
e on by v1is i1nertiae-=-g
-covered water and did hot,

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells (components of ¢) to understand them

» Counter: know when to generate \n

The sole 1mportance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and ¢th general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled

at a continually i1ncreasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block 1ts path. This was shown not so much by the arrangements 1it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
Who were with the French transport, all--carried on by wvis 1inertiae- -
pressed forward into boats and into the i1ice-covered water and did not,
surrender.

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

ﬁ
}

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Binary switch: tells us if we’re in a quote or not

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

CONFIG AUDITSYSCALL

f

S lCc inline int@Eaudaitt_mRarrcn_ciliass_ _Dbritfs{1ne class, U332 "nmask)
{

I'mE s

i felassesllelanssld H

for (1 = 0;: 1 < AUDIT_BITMASK STIZE i++)
iT (maskiil] & slassesiclass]ixn)
"eturn '

}

FEENEFm LG
}

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Stack: activation based on indentation

#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 "mask)
{
o I T - (-
i Elasseslclassl) #

fior (2 = @2 1 < AUDET _BITHNASKEESIEEDHET)

iT (maskiil] & slassesiclass]ixn)

"eturn 6

return 1;

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

lter field'si'string represéntation from User-space
pack_string(veiid **bufp, size_t Xremain, size_t len)

pack
buffer

@har MEUdit
_

lI'la

r

r
(
t

r

! nt
118

ed sitring fields, PRATHIMNAX
gth

Karpathy et al. (2015)

Visualizing LSTMs

» Train character LSTM language model (predict next character based on
history) over two datasets: War and Peace and Linux kernel source code

» Visualize activations of specific cells to see what they track

» Uninterpretable: probably doing double-duty, or only makes sense in the
context of another activation

piclmltir-eld-trﬂno répres@intation firom @WSer-space
buffer
{lhar faudit pAlckDstring(lllid FEbufp, slzelt:t "HEENEE", SHzem: NEEN)

Karpathy et al. (2015)

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

» Textual entailment

What can LSTMs model?

» Sentiment

» Encode one sentence, predict
» Language models

» Move left-to-right, per-token prediction
» Translation

» Encode sentence + then decode, use token predictions for attention
weights (next lecture)

» Textual entailment

» Encode two sentences, predict

Natural Language Inference

Premise Hypothesis

A boy plays in the snow A boy is outside

Natural Language Inference

Premise Hypothesis

A boy plays in the snow entails A boy is outside

Natural Language Inference

Premise Hypothesis

A boy plays in the snow entails A boy is outside

A man inspects the uniform of a figure The man is sleeping

Natural Language Inference

Premise Hypothesis

A boy plays in the snow entails A boy is outside

A man inspects the uniform of a figure contradicts The man is sleeping

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping

Two men are smiling and

An older and younger man smiling laughing at cats playing

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping

Two men are smiling and

An older and younger man smiling neutral . .
laughing at cats playing

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping
T] d
An older and younger man smiling neutral WO Men are SIS an

laughing at cats playing

» Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

Natural Language Inference

Premise Hypothesis
A boy plays in the snow entails A boy is outside
A man inspects the uniform of a figure contradicts The man is sleeping
T] d
An older and younger man smiling neutral WO Men are SIS an

laughing at cats playing

» Long history of this task: “Recognizing Textual Entailment” challenge in
2006 (Dagan, Glickman, Magnini)

» Early datasets: small (hundreds of pairs), very ambitious (lots of world
knowledge, temporal reasoning, etc.)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs

Bowman et al. (2015)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs 3-way sofm;ax classifier

200d tanh 1
» Encode each sentence and process S—

200d tanh layer

A
200d tanh layer

N

100d premise 100d hypothesis

f f

sentence model sentence model
with premise input with hypothesis input

Bowman et al. (2015)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs 3-way sofm;ax classifier

200d tanh 1
» Encode each sentence and process p—

200d tanh layer

100D LSTM: 78% accuracy A

200d tanh layer

PN

100d premise 100d hypothesis

f f

sentence model sentence model
with premise input with hypothesis input

Bowman et al. (2015)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

3-way softmax classifier

A
200d tanh layer

» >500,000 sentence pairs

» Encode each sentence and process \
200d tanh layer
100D LSTM: 78% accuracy }
200d tanh layer
300D LSTM: 80% accuracy 7 ~_
(BOWma n et al . 2016) 100d premise 100d hypothesis
| |
sentence model sentence model
with premise input with hypothesis input

Bowman et al. (2015)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

3-way softmax classifier

A
200d tanh layer

» >500,000 sentence pairs

» Encode each sentence and process \

100D LSTM: 78% accuracy —

300D LSTM: 80% accuracy ﬁoftanh 13<
(Bowman et al., 2016) 100d premise 100d hypothesis

300D BiLSTM: 83% accuracy Semencl model Semencl model

with premise input with hypothesis input

(Liu et al., 2016)
Bowman et al. (2015)

SNLI| Dataset

» Show people captions for (unseen) images and solicit entailed / neural /
contradictory statements

» >500,000 sentence pairs 3-way S°fm;a" i
200d tanh 1
» Encode each sentence and process p—
200d tanh 1
100D LSTM: 78% accuracy T
200d tanh 1
300D LSTM: 80% accuracy - - 3<
(Bmean et al., 2016) 100d premise 100d hypothesis
. f f
300D BILSTM: 83% accura Cy sentence model sentence model
with premise input with hypothesis input

(Liu et al., 2016)
» Later: better models for this Bowman et al. (2015)

Takeaways

» RNNs can transduce inputs (produce one output for each input) or
compress the whole input into a vector

» Useful for a range of tasks with sequential input: sentiment analysis,
language modeling, natural language inference, machine translation

» Next time: CNNs and neural CRFs

