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Problem: Non-IID Data

Most real-world data is not |ID
— (like coin flips)

Multiple correlated variables
Examples:

— Pixels in an image

— Words in a document

— Genes in a microarray

We saw one example of how to deal with this
— Markov Models + Hidden Markov Models



Questions

* How to compactly represent P(X|9) ?

e How can we use this distribution to infer one
set of variables given another?

* How can we learn the parameters with a
reasonable amount of data?



The Chain Rule of Probability

P(x1.n) = P(x1)P(x2|x1)P(x3|zy, 22) P(x4|T1, 2, 23) . .. P(X*N|T1.N—1)

Problem: this distribution has 2*(N-1) parameters

* Can represent any joint distribution this way
* Using any ordering of the variables...



Conditional Independence

* This is the key to representing large joint
distributions

 XandY are conditionally independent given Z

— if and only if the conditional joint can be written
as a product of the conditional marginals

X LY|Z «— P(X,Y|Z)=P(X|2)P(Y|Z)



(non-hidden) Markov Models

 “The future is independent of the past given
the present”

Ti41 $1:t—1|$t

P(331,372,333, R 7In)

= P(x1)P(z2|x1) P3|z, x2) ... P(xp|T1, 2, 23,...,Tn_1)

— P(CEl)P(CE‘Q‘CCl)P(CEg‘ZEQ) .. P(CCnICCn_l)



Graphical Models

* First order Markov assumption is useful for 1d
sequence data

— Sequences of words in a sentence or document
 Q: What about 2d images, 3d video

— Or in general arbitrary collections of variables
* Gene pathways, etc...



Graphical Models

A way to represent a joint
distribution by making
conditional independence
assumptions

Nodes represent variables
(lack of) edges represent

conditional independence
assumptions
(2)

(1)
) an
Better name: “conditional

\/

independence diagrams” D @




Graph Terminology

Graph (V,E) consists of
— A set of nodes or verticies V={1..V}
— A set of edges {(s,t) in V}

Child (for directed graph)
Ancestors (for directed graph)
Decedents (for directed graph)
Neighbors (for any graph)
Cycle (Directed vs. undirected)
Tree (no cycles)

Clique / Maximal Clique



Directed Graphical Models

* Graphical Model whose graph is a DAG
— Directed acyclic graph
— No cycles!

 A.K.A. Bayesian Networks

— Nothing inherently Bayesian about them
 Just a way of defining conditional independences
 Just sounds cooler | guess...



Directed Graphical Models

* Key property: Nodes can be ordered so that
parents come before children

— Topological ordering
— Can be constructed from any DAG

* Ordered Markov Property:

— Generalization of first-order Markov Property to
general DAGs

— Node only depends on it’s parents (not other
predecessors)

Trs L Lpred(s)—parents(s) ‘xparents(s)



Example

P(x1:5) = P(x1)P(w2|z1) P(23|71, X2) P(24|X1, T2, ¥3)p(25|X1, X2, T3, X4)

= P(z1)P(z2|z1)P(zs|e1) P(za|ze, 23)p(25]23)




Nalve Bayes
(Same as Gaussian Mixture Model w/
Diagonal Covariance)




Markov Models

First order Markov Model Second order Markov Model
X1 X2 X3 Xy
P(x1.y) = P(x1) H P(xi|wi_1) P(z1.n) = P(a1,22) [ [ Plailwi1, zi2)
i=3

Hidden Markov Model

1

P(z1.n) = P(21)P (fli‘llzl). P(zi|zi—1) P(wi|2;)



Example: medical Diaghosis
The Alarm Network




Another medical diagnosis example:
QMR network
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U; ... U} include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= P(X‘UlUJ,_' j+1..._|Uk>:1—H‘g_1q,,j

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2 x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=10.6 x 0.2

T T T 0.988 0.012 =0.6 x 0.2 x 0.1

Number of parameters linear in number of parents




Probabilistic Inference

* Graphical Models provide a compact way to
represent complex joint distributions

* Q: Given a joint distribution, what can we do
with it?
e A: Main use = Probabilistic Inference

— Estimate unknown variables from known ones



Examples of Inference

* Predict the most likely cluster for X in R*n
given a set of mixture components

— This is what you did in HW #1
 Viterbi Algorithm, Forward/Backward (HMMs)

— Estimate words from speech signal

— Estimate parts of speech given sequence of words
In a text



General Form of Inference

* We have:
— A correlated set of random variables
— Joint distribution: P(x1.y/|6)
¢ Assumption: parameters are known
* Partition variables into:
— Visible: @,
— Hidden: Tp,
e Goal: compute unknowns from knowns

P(xp,x,|0) P(xp,x,|0)
P ’1)79 — — .
nlee0) = Tple) S, Pl w0




General Form of Inference

P rUH P 9 UH
P(enle,,0) = D ul) _ D 2419)

PJd) X Pl c.l0)

* Condition data by clamping visible variables to
observed values.

* Normalize by probability of evidence



Nuisance Variables

 Partition hidden variables into:
— Query Variables: Lg
— Nuisance variables: ZLu

P(z4|z,,0) ZP Tqy Ty |To )



Inference vs. Learning

* Inference:

— Compute P(th‘xm 6’)
— Parameters are assumed to be known

* Learning

— Compute MAP estimate of the parameters

N
) — log P(x; ., log P
0 = arg mQaX; og P(z; ,|0) + log P(0)



Bayesian Learning

e Parameters are treated as hidden variables
— no distinction between inference and learning

* Main distinction between inference and
learning:
— # hidden variables grows with size of dataset
— # parameters is fixed



Conditional Independence Properties

* Aisindependent of B given C
XA lg XB|Xc

* |(G) is the set of all such conditional
independence assumptions encoded by G

* Gisanl-map for P iff I(G) C I(P)

— Where I(P) is the set of all Cl statements that hold
for P

— In other words: G doesn’t make any assertions
that are not true about P



Conditional Independence Properties
(cont)

* Note: fully connected graph is an I-map for all
distributions

* Gis a minimal I-map of P if:
— GisanI|-map of P
— There is no G’ C G which is an I-map of P

* Question:
— How to determineif X 4 Lo Xp|Xc?
— Easy for undirected graphs (we’ll see later)
— Kind of complicated for DAGs (Bayesian Nets)



D-separation

* Definitions:
— An undirected path P is d-separated by a set of
nodes E (containing evidence) iff at least one of
the following conditions hold:

e Pcontainsachains->m->tors<-m<-twhere mis
evidence

e P contains a fork s <- m ->twhere misin the evidence

e P contains a v-structure s -> m <- t where mis not in
the evidence, nor any descendent of m



D-seperation (cont)

 Aset of nodes A is D-separated from a set of nodes
B, if given a third set of nodes E iff each undirected

path from every node in A to every node in B is d-
seperated by E

* Finally, define the CI properties of a DAG as
follows:

X4 lg Xp|Xg <= A is d-seperated from B given E



Bayes Ball Algorithm

* Simple way to check if A is d-separated from B
given E

1. Shadein all nodesinE

2. Place “balls” in each node in A and let them
“bounce around” according to some rules

e Note: balls can travel in either direction

3. Check if any balls from A reach nodes in B



Bayes Ball Rules
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Explaining Away (inter-causal

reasoning)
5\! f P, 3ly) - P<w>P<;z;<y|x,z>
v — z L zly

Example: Toss two coins and observe their sum

N



Boundary Conditions




Example

Battery

Are Gas and Radio independent? Given Battery? Ignition? Starts? Moves?

13



Other Independence Properties

1. Ordered Markov Property

t L pred(t) — pa(t)|pa(t)
2. Directed local Markov property
t L nd(t) — pa(t)|pa(t)
3. D separation (we saw this already)
XA lg XB|XE <= A is d-seperated from B given E

Easy to see: 3 — 2 — ].
Less Obvious: 1 — 2 — 3




Markov Blanket

e Definition:
— The smallest set of nodes that renders a node t

conditionally independent of all the other nodes
in the graph.

e Markov blanket in DAG is:
— Parents
— Children

— Co-parents (other nodes that are also parents of
the children)



Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents




Q: why are the co-parents in the
Markov Blanket?
Pz, x_¢)
P(x_4)

Plxi|x_3) =

All terms that do not involve x_t will cancel out between numerator and denominator

P(:lj‘t|X_ ) X P ft‘xpa(t) H p $S|Xpa(s)
s€ch(t)



