Bayesian Networks

Alan Ritter

Problem: Non-IID Data

- Most real-world data is not IID
 - (like coin flips)
- Multiple correlated variables
- Examples:
 - Pixels in an image
 - Words in a document
 - Genes in a microarray
- We saw one example of how to deal with this
 - Markov Models + Hidden Markov Models

Questions

- How to compactly represent $P(X|\theta)$?
- How can we use this distribution to infer one set of variables given another?
- How can we learn the parameters with a reasonable amount of data?

The Chain Rule of Probability

$$P(x_{1:N}) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)P(x_4|x_1,x_2,x_3)\dots P(x_N|x_{1:N-1})$$

Problem: this distribution has 2^(N-1) parameters

- Can represent any joint distribution this way
- Using any ordering of the variables...

Conditional Independence

- This is the key to representing large joint distributions
- X and Y are conditionally independent given Z
 - if and only if the conditional joint can be written as a product of the conditional marginals

$$X \perp Y|Z \iff P(X,Y|Z) = P(X|Z)P(Y|Z)$$

(non-hidden) Markov Models

 "The future is independent of the past given the present"

$$x_{t+1} \perp x_{1:t-1} | x_t$$

$$P(x_1, x_2, x_3, \dots, x_n)$$

$$= P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \dots P(x_n|x_1, x_2, x_3, \dots, x_{n-1})$$

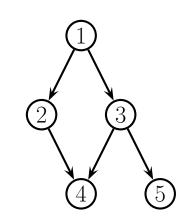
$$= P(x_1)P(x_2|x_1)P(x_3|x_2) \dots P(x_n|x_{n-1})$$

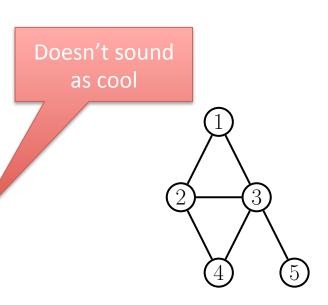
Graphical Models

- First order Markov assumption is useful for 1d sequence data
 - Sequences of words in a sentence or document
- Q: What about 2d images, 3d video
 - Or in general arbitrary collections of variables
 - Gene pathways, etc...

Graphical Models

- A way to represent a joint distribution by making conditional independence assumptions
- Nodes represent variables
- (lack of) edges represent conditional independence assumptions
- Better name: "conditional independence diagrams"





Graph Terminology

- Graph (V,E) consists of
 - A set of nodes or verticies V={1..V}
 - A set of edges {(s,t) in V}
- Child (for directed graph)
- Ancestors (for directed graph)
- Decedents (for directed graph)
- Neighbors (for any graph)
- Cycle (Directed vs. undirected)
- Tree (no cycles)
- Clique / Maximal Clique

Directed Graphical Models

- Graphical Model whose graph is a DAG
 - Directed acyclic graph
 - No cycles!
- A.K.A. Bayesian Networks
 - Nothing inherently Bayesian about them
 - Just a way of defining conditional independences
 - Just sounds cooler I guess...

Directed Graphical Models

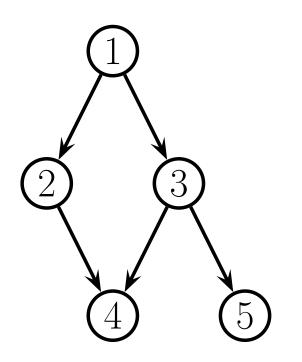
- Key property: Nodes can be ordered so that parents come before children
 - Topological ordering
 - Can be constructed from any DAG
- Ordered Markov Property:
 - Generalization of first-order Markov Property to general DAGs
 - Node only depends on it's parents (not other predecessors)

$$x_s \perp x_{\operatorname{pred}(s)-\operatorname{parents}(s)} | x_{\operatorname{parents}(s)} |$$

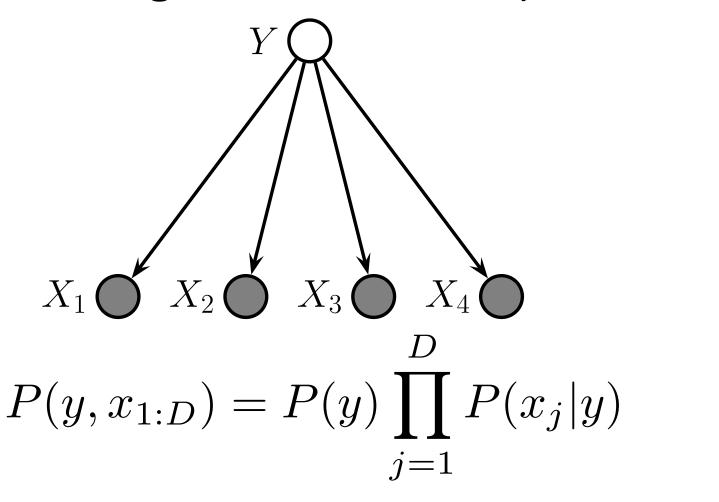
Example

$$P(x_{1:5}) = P(x_1)P(x_2|x_1)P(x_3|x_1, \mathbf{x_2})P(x_4|\mathbf{x_1}, x_2, x_3)p(x_5|\mathbf{x_1}, \mathbf{x_2}, x_3, \mathbf{x_4})$$

$$= P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_3|x_1)P(x_4|x_2, x_3)p(x_5|x_3)$$

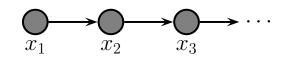


Naïve Bayes (Same as Gaussian Mixture Model w/ Diagonal Covariance)



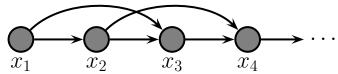
Markov Models

First order Markov Model



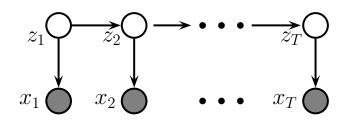
$$P(x_{1:N}) = P(x_1) \prod_{i=2}^{n} P(x_i|x_{i-1})$$

Second order Markov Model



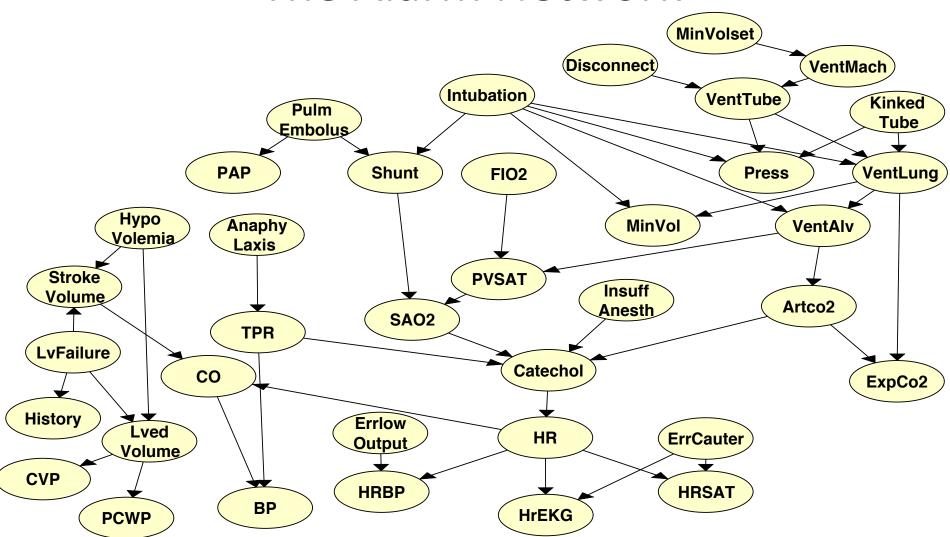
$$P(x_{1:N}) = P(x_1) \prod_{i=2}^{n} P(x_i|x_{i-1}) \qquad P(x_{1:N}) = P(x_1, x_2) \prod_{i=3}^{n} P(x_i|x_{i-1}, x_{i-2})$$

Hidden Markov Model

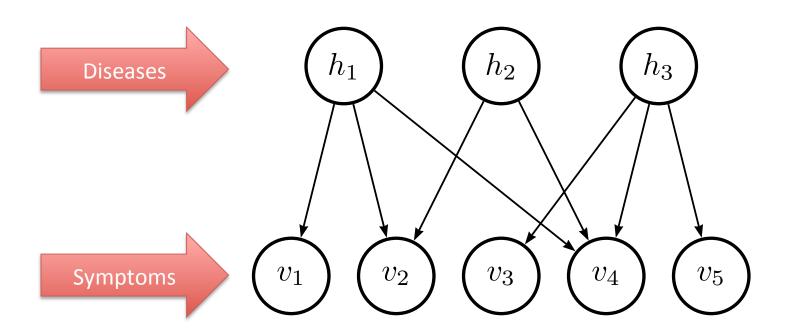


$$P(x_{1:N}) = P(z_1)P(x_1|z_1)\prod_{i=2}^{n} P(z_i|z_{i-1})P(x_i|z_i)$$

Example: medical Diagnosis The Alarm Network



Another medical diagnosis example: QMR network



Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1...U_j, \neg U_{j+1}...\neg U_k) = 1 - \prod_{i=1}^j q_i$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters **linear** in number of parents

Probabilistic Inference

- Graphical Models provide a compact way to represent complex joint distributions
- Q: Given a joint distribution, what can we do with it?
- A: Main use = Probabilistic Inference
 - Estimate unknown variables from known ones

Examples of Inference

- Predict the most likely cluster for X in R^n given a set of mixture components
 - This is what you did in HW #1
- Viterbi Algorithm, Forward/Backward (HMMs)
 - Estimate words from speech signal
 - Estimate parts of speech given sequence of words in a text

General Form of Inference

- We have:
 - A correlated set of random variables
 - Joint distribution: $P(x_{1:V}|\theta)$
 - Assumption: parameters are known
- Partition variables into:
 - Visible: x_{η}
 - Hidden: x_h
- Goal: compute unknowns from knowns

$$P(x_h|x_v,\theta) = \frac{P(x_h, x_v|\theta)}{P(x_v|\theta)} = \frac{P(x_h, x_v|\theta)}{\sum_{x_h'} P(x_h', x_v|\theta)}$$

General Form of Inference

$$P(x_h|x_v,\theta) = \frac{P(x_h, x_v|\theta)}{P(x_v|\theta)} = \frac{P(x_h, x_v|\theta)}{\sum_{x_h'} P(x_h', x_v|\theta)}$$

- Condition data by clamping visible variables to observed values.
- Normalize by probability of evidence

Nuisance Variables

Partition hidden variables into:

– Query Variables: x_q

- Nuisance variables: xu

$$P(x_q|x_v,\theta) = \sum_{x_u} P(x_q, x_u|x_v)$$

Inference vs. Learning

- Inference:
 - Compute $P(x_h|x_v,\theta)$
 - Parameters are assumed to be known
- Learning
 - Compute MAP estimate of the parameters

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{N} \log P(x_{i,v}|\theta) + \log P(\theta)$$

Bayesian Learning

- Parameters are treated as hidden variables
 - no distinction between inference and learning
- Main distinction between inference and learning:
 - # hidden variables grows with size of dataset
 - # parameters is fixed

Conditional Independence Properties

A is independent of B given C

$$X_A \perp_G X_B | X_C$$

- I(G) is the set of all such conditional independence assumptions encoded by G
- G is an I-map for P iff $I(G) \subseteq I(P)$
 - Where I(P) is the set of all CI statements that hold for P
 - In other words: G doesn't make any assertions that are not true about P

Conditional Independence Properties (cont)

- Note: fully connected graph is an I-map for all distributions
- G is a minimal I-map of P if:
 - G is an I-map of P
 - There is no G' ⊆ G which is an I-map of P
- Question:
 - How to determine if $X_A \perp_G X_B | X_C$?
 - Easy for undirected graphs (we'll see later)
 - Kind of complicated for DAGs (Bayesian Nets)

D-separation

• Definitions:

- An undirected path P is d-separated by a set of nodes E (containing evidence) iff at least one of the following conditions hold:
 - P contains a chain s -> m -> t or s <- m <- t where m is evidence
 - P contains a fork s <- m -> t where m is in the evidence
 - P contains a v-structure s -> m <- t where m is not in the evidence, nor any descendent of m

D-seperation (cont)

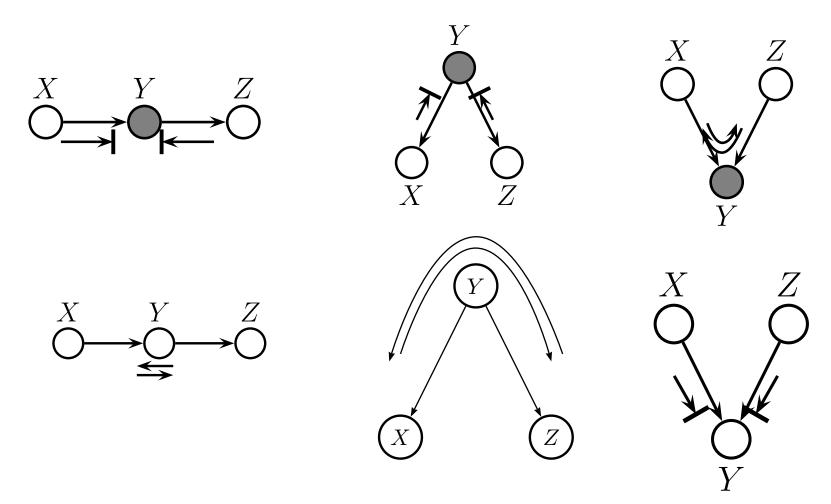
- A set of nodes A is **D-separated** from a set of nodes B, if given a third set of nodes E iff each undirected path from every node in A to every node in B is dseperated by E
- Finally, define the CI properties of a DAG as follows:

 $X_A \perp_G X_B | X_E \iff A \text{ is d-seperated from B given E}$

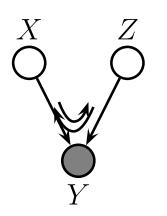
Bayes Ball Algorithm

- Simple way to check if A is d-separated from B given E
 - 1. Shade in all nodes in E
 - 2. Place "balls" in each node in A and let them "bounce around" according to some rules
 - Note: balls can travel in either direction
 - 3. Check if any balls from A reach nodes in B

Bayes Ball Rules



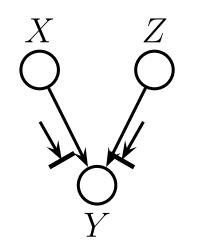
Explaining Away (inter-causal reasoning)



$$P(x,z|y) = \frac{P(x)P(z)P(y|x,z)}{P(y)}$$

$$\implies x \not\perp z|y$$

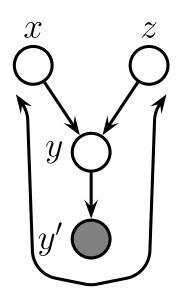
Example: Toss two coins and observe their sum



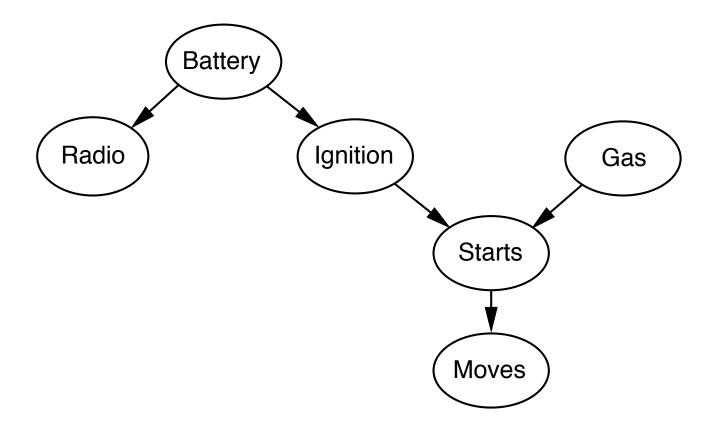
$$P(x,z) = P(x)P(z)$$

$$\implies x \perp z$$

Boundary Conditions



Example



Are Gas and Radio independent? Given Battery? Ignition? Starts? Moves?

Other Independence Properties

1. Ordered Markov Property

$$t \perp pred(t) - pa(t)|pa(t)|$$

2. Directed local Markov property

$$t \perp nd(t) - pa(t)|pa(t)|$$

3. D separation (we saw this already)

 $X_A \perp_G X_B | X_E \iff A \text{ is d-seperated from B given E}$

Easy to see:
$$3 \implies 2 \implies 1$$
Less Obvious: $1 \implies 2 \implies 3$

Markov Blanket

• Definition:

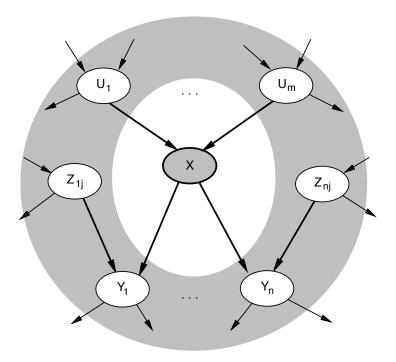
 The smallest set of nodes that renders a node t conditionally independent of all the other nodes in the graph.

Markov blanket in DAG is:

- Parents
- Children
- Co-parents (other nodes that are also parents of the children)

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents



Q: why are the co-parents in the Markov Blanket?

$$P(x_t|\mathbf{x}_{-t}) = \frac{P(x_t, \mathbf{x}_{-t})}{P(\mathbf{x}_{-t})}$$

All terms that do not involve x_t will cancel out between numerator and denominator

$$P(x_t|\mathbf{x}_{-t}) \propto P(x_t|x_{\mathrm{pa}(t)}) \prod_{s \in \mathrm{ch}(t)} p(x_s|\mathbf{x}_{\mathrm{pa}(s)})$$