Exact Inference

Inference

e Basic task for inference:

— Compute a posterior distribution for some query
variables given some observed evidence

— Sum out nuisance variables

* |n general inference in GMs is intractable...
— Tractable in certain cases, e.g. HMMs, trees

— Approximate inference techniques
e Active research area...

— More later

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B]j,m) 2

= P(B.j.m)/P(j.m) ‘\}E{@
= aP(B,j,m)

= ZG ZU, P<B, e,a,], m) @ @

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

=« 2, 2, P(B)P(e)P(a|B,e)P(j|la)P(m|a)

= aP(B) X, P(e) 2, P(a|B,e)P(jla)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time

Evaluation tree

P(alb,e) P(alb,—e) P(nalbme)
95 05 94 06
P(jla) P(jl—a) P(jla) P(jl—a)
90 05 90 05
O O O O
P(mla) P(ml=a) P(mla) P(ml=a)
70 01 70 01
O O O O

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(ml|a) for each value of ¢

Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
=aP(B) 2. P(e) 2 (G\Bﬂf) ('\)P(1)
= aP(B)L.P(e) 4. P(a \B,e) (7]a)fu(a)
= aP(B)L.P(e)L.P(al B, e)fs(a) fula)
= aP(B)2.P(e) L fala, b, e) fs(a) fula)
= ozP(B)ZPP()fa72(b,€e) (sum out A)
= aP(B)fpi7,() (sum out E)
= afp(b) X fEism(b)

Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

ipfiX e X fro=fix oo X i 2y fpa X X fe=fix o X fi X fg
assuming fi,..., f; do not depend on X

Pointwise product of factors [and f5:
f1<l‘1, cey Ty YL, - ;yk) X f2<y1, ey Yy 21, .. ,Z[)
= f(T1, T, Yty e Yks 2y e e 20)
E.g., f1<CL, b) X f2<b7 C) - f(CL, b7 C>

Summing Out A Variable From a Factor

a'| b'| '] 025
a' | b'| c?| 035
al | b*| c'| 0.08
al| b%| ¢?| 0.16 a' | c!']033
a’>| b'| ' 005 al | ¢? 051
a’| b'| %] 007 a’ | ¢! 0.05
at| b2 oo a’ | ¢ | 0.07
a’l| b%| 2| 0 a’| cl]024
a®| b'| ' o015 a | ¢ 039
a’| b'| % 0.21
a’| b*| '] 0.09
a’ | b?| c?| 0.18

0.5

0.8

Factor Product

0.1

0.3

0.9

bt | ¢t |05
bl | ¢?] 0.7
b?> | c'| 0.1
b? | ¢? |02

a' | b | ¢! | 0.5-0.5=0.25
a' | b' | ¢2]05-0.7=0.35
a | b2 | ¢! 10.8:0.1=0.08
a' | b2 | ¢?]0802=0.16
a’? | b'| ¢! 10.1:0.5=0.05
a’> | b'| ¢ 0.1-:0.7=0.07
a | b*|] 0.01=0

a | b?| 2| 0-02=0

a® | b' | ¢! 03-05=0.15
a® | b'| ¢]03:0.7=021
a® | b2 | ¢! 0.9:0.1=0.09
a’ | b%| ¢?10.9-02=0.18

Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1, ..., X))

factors <« []; vars<— REVERSE(VARS[bn])
for each var in vars do

factors — [MAKE-FACTOR(var, e)|factors]

if var is a hidden variable then factors«< SuM-OuT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

Belief Propagation: Motivation

 What if we want to compute all marginals, not
just one?

* Doing variable elimination for each one
in turn is inefficient

* Solution: Belief Propagation
— Same idea as Forward-backward for HMMs

Belief Propagation

* Previously: Forward-backward algorithm

— Exactly computes posterior marginals P(h_i|V) for
chain-structured graphical models (e.g. HMMs)

* Where V are visible variables
* h_iis the hidden variable at position |

* Now we will generalize this to arbitrary graphs
— Bayesian and Markov Networks
— Arbitrary graph structures (not just chains)

 We'll just describe the algorithms and omit
derivations (K+F book has good coverage)

BP: Initial Assumptions

Pairwise MRF:

(X‘V H ws xs H % LES,CEt

SGV (s,t)e&

One factor for each variable

One factor for each edge
Tree-structure

models with higher-order cliques later...

Belief Propagation

Pick an arbitrary node: call it the root
Orient edges away from root (dangle down)
Well-defined notion of parent and child

2 phases to BP algorithm:
1. Send messages up to root (collect evidence)

2. Send messages back down from the root
(distribute evidence)

Generalize forward-backward from chains to
trees

Collect to root phase

root

7\ //\

S1 59 U1 usg

Collect to root: Details

* Bottom-up belief state: bel, (z:) = p(x¢|v;)
— Probability of x_t given all the evidence at or
below node t in the tree

* How to compute the bottom up belief state?

* “messages” from t’s children

— Recursively defined based on belief states of
children

— Summarize what they think t should know about
the evidence in their subtrees

Mgt (T1) = Pt V)

Computing the upward belief state

bel, (x4) = p(ae|vy) = —wt Ty) H m. . (x¢)

cech(t)

e Belief state at node t is the normalized
product of:

— Incoming messages from children

— Local evidence

Q: how to compute upward messages?

* Assume we have computed belief states of
children, then message is:

My (T¢) Z%t Ts,vy)bely (xg)

e Convert beliefs about child (s) into belifs
about parent (t) by using the edge potential

Completing the Upward Pass

* Continue in this way until we reach the root
* Analogous to forward pass in HMM

* Can compute the probability of evidence as a
side effect

Can now pass messages
down from root

Computing the belief state for node s

bely(xs) = p(as|v)

e Combine the bottom-up belief for node s with
a top-down message for t

— Top-down message summarizes all the
information in the rest of the graph:

My (s) = p(ae|vi)

— v_st+ is all the evidence on the upstream (root)
side of the edge s - t

Send to Root Distribute from

Root

vst

Computing Beliefs:

bels(xs) = p(xs|v) x bel; () H m;, (.

* Combine bottom-up beliefs with top-down
messages

Q: how to compute top-down
messages?

Consider the message fromttos
Suppose t's parentisr

t’s children are sand u

(like in the figure)

Q: how to compute top-down
messages?

 We want the message to include all the
information t has received except information
that s sent it

bel; (x
m, (@) = plailvh) Z¢ vy, my) 2e(Z0)

ms—>t (:Bt)

Sum-product algorithm

* Really just the same thing

e Rather than dividing, plug in the definition of
node t’s belief to get:

|
c€ch(t),c#s pEpa(t)

 Multiply together all messages coming into t
— except message recipient node (s)

Parallel BP

III

 So far we described the “serial” version
— This is optimal for tree-structured GMs
— Natural extension of forward-backward

* Can also do in parallel

— All nodes receive messages from their neighbors in
parallel

— Initialize messages to all 1’s
— Each node absorbs messages from all it’s neighbors
— Each node sends messages to each of it’s neighbors

 Converges to the correct posterior marginal

Loopy BP

* Approach to “approximate inference”

* BPis only guaranteed to give the correct
answer on tree-structured graphs

e But, can run it on graphs with loops, and it
gives an approximate answer

— Sometimes doesn’t converge

Generalized Distributive Law

e Abstractly VE can be thought of as computing
the following expression:

P(xglx,) o 3 T velxe)

— Where visible variables are clamped and not
summed over

— Intermediate results are cached and not re-
computed

Generalized Distributive Law

* Other important task: MAP inference

X" = arg max H Ve (Xe)

— Essentially the same algorithm can be used
— Just replace sum with max (also traceback step)

Generalized Distributive Law

* |In general VE can be applied to any commutative
semi-ring
— A set K, together with two binary operations called
“+” and “x” which satisfy the axioms:
* The operation “+” is associative and commutative
* There is an additive identity “0”
— k+0=k
The operation “x” is associative and commutative
There is a multiplicative identity “1”
— kx1=k
The distributive law holds:
— (axb)+(axc)=ax(b+c)

Generalized Distributive Law

e Semi-ring For marginal inference (sum-
product):

— “x” = multiplication

o, n

— 4+ =sum
e Semi-ring For MAP inference (max-product):
— “x” = multiplication

o, n

— + = Mmax

