Hidden Markov Models
Alan Ritter
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Sequences of R.V.s

Previously we assumed IID data
P(lev L2y L3,y .. 73777,)

This is a useful assumption

— Makes inference easy

But, often too restrictive
— E.g. Sequences of words not really independent
Q: how can we introduce some dependence

without blowing up inference and
#parameters?



(nhon-hidden) Markov Models

* Answer: Markov Assumption
P(zg|z1, w2, 23, ..., 2k—1) = P(wk|Tr—1)

* Entire history is captured by previous state

P(iﬁl,ZEQ,Qfg, R wrn)

= P(x1)P(xs|x1) P3|z, 22) ... P(xn|T1, 22,23, ...,Tn_1)

— P(Clil)P(CEQ‘CEl)P(CCngQ) .. P(Cl?n|£l?n_1)



Application: Language Modeling

Random variables:
— Sequences of words or characters

Estimate transition probabilities from data
using maximum likelihood

State space: all English words

IID Assumption => unigram language model
First-order Markov Model => bigram LM
Second-order => trigram LM



Application: Language Modeling

* Unigram LM:
P(ka‘ﬂ?l,ﬂfz,ﬂfg,. X 75616—1) — P(xkﬁ)

* Bigram LM (First-order Markov Model):

P(iEk‘ZEl,ZUQ,Q?g,. .. ,Zl?k_l) — P(Z’k|$k_1)

* Trigram LM (Second-order Markov Model):

P(xg|r1, 22, 23,...,0k—1) = P(zk|Tr—1,Tk—2)
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.16098
.06687
.01414
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Unigrams
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abcdefghi
N E NN NN |
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Bigrams



What is Language Modeling Used For?
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Hidden Markov Models

(Slides from Pedro Domingos)




Example: The dishonest casino

A casino has two dice:
« Fairdie

P(1)=P(2)=P(3)=P(4)=P(5) =P(6) =1/6
« Loaded die

P(1)=P(2)=P(3)=P(4)=P(5)=1/10
P(6)=1/2

Casino player switches from
fair to loaded die with probability 1/20 at each turn

Game:
1. You bet $1
You roll (always with a fair die)

Casino player rolls (maybe with fair die, maybe
with loaded die)

Highest number wins $2

@ N

B




Question # 1 — Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

FAIR LOADED FAIR
QUESTION

What portion of the sequence was generated with the fair die, and what
portion with the loaded die?

This is the DECODING question in HMMs



Question # 2 — Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

SN— -
——

Prob = 1.3 x 10-3°

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs



Question # 3 — Learning

GIVEN

A sequence of rolls by the casino player

Prob(6) = 64%
QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How
often does the casino player change from fair to loaded, and
back?

This is the LEARNING question in HMMs



The dishonest casino model

0.95

PA1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

0.05

0.05

LOADED

0.95

PA|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4]L) = 1/10
P(5|L) = 1/10
P(B|L) = 1/2



An HMM is memoryless

At each time step t,
the only thing that affects future states
Is the current state




An HMM is memoryless

At each time step t,

the only thing that affects future states
Is the current state

P(m,.., = k| “whatever happened so far”) =

P(mtuq = K| my, T, o0y T Xq, Xo, ovny Xg)=




An HMM is memoryless

At each time step t,

the only thing that affects x;
Is the current state

P(x,= b | “whatever happened so far”) =

P(x,=b | mq, mp, ..., T, Xyq, Xp, ovny Xpy) =
P(x,=b | m,)



Definition of a hidden Markov
model

Definition: A hidden Markov model (HMM)

* Alphabet  X={by, b, ..., by}

« SetofstatesQ={1, ..., K}

« Transition probabilities between any two states

a; = transition prob from state i to state |
a,+..+a,=1, forallstatesi=1...K

« Start probabilities a;

gyt ... tay =1

« Emission probabilities within each state

ei(b) = P(x; =D | m = k)
ei(bs) + ... +e(by) =1, forallstatesi=1...K



A parse of a sequence

Given a sequence X = X;...... XN
A parse of x is a sequence of states t =, ......, TON




Generating a sequence by the
model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state rt, according to prob a_;
2. Emit letter x, according to prob e_4(x,)
3. Go to state m, according to prob a_,.,
4. ... until emitting x,

O

— )
x - @:



Likelihood of a parse

Given a sequence X = X;...... XN
andaparsex =m,, ......, TONs

To find how likely this scenario is: X1 Xy X3 Xk
(given our HMM)

P(X, ) = P(Xq, ..oy Xy gy ceenen,s ) =
Pxy | mty) Py | 7tyeq) «oeeee P(x; | m,) Py | 7tq) P(x; | 7tq) P(my) =

A0t Arx2- -+ -BaNoAaN Ex1(Xq)- o en(Xn)



Example: the dishonest casino

Let the sequence of rolls be:

x=1,2,1,5,6,2,1,5,2,4

Then, what is the likelihood of

n = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs age,i = 72, 8o oaded = 72)

Y2 x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

Y x (1/6)19 x (0.95)° = .00000000521158647211 ~= 0.5 x 10



Example: the dishonest casino

So, the likelihood the die is fair in this run
is just 0.521 x 107

What is the likelihood of

7t = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded?

% x P(1 | Loaded) P(Loaded, Loaded) ... P(4 | Loaded) =
% x (1/10)° x (1/2)* (0.95)° = .00000000015756235243 ~=0.16 x 107

Therefore, it’ s somewhat more likely that all the rolls are done with the fair
die, than that they are all done with the loaded die



Example: the dishonest casino

=

Let the sequence of rolls be:

x=1,6,6,56,2,6,6,3,6

Now, what is the likelihood t =F, F, ..., F?

Y2 x (1/6)19 x (0.95)° ~= 0.5 x 102, same as before
What is the likelihood

n=L,L,.. L?

Y2 x (1/10)* x (1/2)° (0.95)° = .00000049238235134735 ~= 0.5 x 10”7

So, it is 100 times more likely the die is loaded



The three main questions on HMMs

1. Decoding

GIVEN a HMM M, and a sequence X,
FIND the sequence & of states that maximizes P[ x, m | M ]

2. Evaluation

GIVEN a HMM M, and a sequence X,
FIND Prob[ x | M ]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence X,
FIND  parameters 6 = (g(.), a;) that maximize P[ x | 0 ]



Problem 1: Decoding

Find the most likely parse
of a sequence



Decoding

GIVEN x = xx,...... XN

Findx =m,, ...... , TN
to maximize P[ x, « ]

7' = argmax,, P[ X, 7] | | !

Maximizes a0751 en1 (X1) an1n2 """ aJ‘CN-1J‘CN enN(XN)

Dynamic Programming! Given that we end up in
state k at step i,

Vi(i) = maxgy gy PIXq.. Xiq, Ty, ..., 74, X;, = K] Maximize product to the
left and right

= Prob. of most likely sequence of states ending at state &, = k



Decoding — main idea

Induction: Given that for all states k, and for a fixed position i,

V(i) =max iy PIX4- X, 75 -, T, X, 78 = K]

.. i-1
What is V(i+1)?

From definition,

Vi(i+1) = maxgq P Xg.0 X5 7045 oy Ty X, g =]

= mMaXe  ifPXieqs Ty = 1 Xq0.X, 784,00, ) PIX- X, 5,000, 7T

= maXg P&, T = ) PXg X, 715 200, T, X, 1

= max [P(q, Mg = 1| 0=K) maxg iy PDCG X000, 07004,%,75=K]]
=max, [ P(X,q | T =1) P(m,q = 1| m=k) V(i) ]

= €(Xi44) max, ag V(i)



The Viterbi Algorithm

Input: X = X4...... XN

Initialization:
V,(0) =1 (0 is the imaginary first position)
V. (0)=0, forallk>0

Iteration:
Ptr;(i) = argmax, a,; V(i—1)

Termination:

P(x, =*) = max, V,(N)

Traceback:
my” = argmax, V,(N)
m4* = Ptry (i)




The Viterbi Algorithm

T D X

State 1

Time:
O(K2N)

Space:
O(KN)



Viterbi Algorithm — a practical
detall

Underflows are a significant problem
PLXqeeies Xiy gy oy T ] = Qg @pqppeeeee a_ e (xq)...... e..(x;)

These numbers become extremely small — underflow

Solution: Take the logs of all values

V(i) = log e,(x;) + max, [ V,(i-1) + log a ]



Example

Let x be a long sequence with a portion of ~ 1/6 6’ s,
followed by a portion of ~ 26’ s...

X = 123456123456...12345 6626364656...1626364656

Then, it is not hard to show that optimal parse is (exercise):

6 characters “123456” parsed as F, contribute .956x(1/6)8 = 1.6x10°
parsed as L, contribute .95%x(1/2)'x(1/10)° = 0.4x10°

“162636” parsed as F, contribute .956x(1/6)° = 1.6x105
parsed as L, contribute .956x(1/2)3x(1/10)3 = 9.0x10



Problem 2: Evaluation

Compute the likelihood that a
sequence is generated by the model



Generating a sequence by the
model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state rt, according to prob a_;
2. Emit letter x, according to prob e_4(x,)
3. Go to state m, according to prob a_,.,
4. ... until emitting x,

— )
x-@: ©0




A couple of questions

Given a sequence X,
 What is the probability that
» Given a position i, what is tt

Example: the dishonest ca

P(box: FFFFFFFFFFF) =
(1/6)11 * 0.9512 =
2.76° * 0.54 =

1.49°

P(box: LLLLLLLLLLL) =

[ (1/2)6 * (1/10)5 ] * 0.9510 * 0.052 =
1.56*107 * 1.53=

0.23°

Say x = 12341...231626

-

~

F
Most likely path: & = FF.

16364616234112...21341

— 7

~—

F

(too “unlikely” to transition F — L — F)

However: marked letters more likely to be L than unmarked

letters




Evaluation

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(x;...x;) Probability of a substring of x given the model
P(w. = k| x) “Posterior” probability that the it" state is k, given x

A more refined measure of which states x may be in




The Forward Algorithm

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:
P(x)= 2 P(x, ) = 2_P(x| x) P(x)

To avoid summing over an exponential number of paths r, define
f (i) = P(X4...X, m = K)  (the forward probability)

“generate i first observations and end up in state k”



The Forward Algorithm —
derivation

Define the forward probability:

f (i) = P(X4...%;, m = K)

= ZJ‘H P(X1...Xi_1, ﬂ:'],---, ni-’h J-':i = k) ek(xi)

...7ti-1

= Z| Zaﬂ...ni-Z P(Xge X, Tqyeen, T, 4 = 1) @ €4(X)

= ZI P(X1...Xi_1, Wiq = I) djk ek(xi)

= (X)) 2| fi(i—1) a



The Forward Algorithm

We can compute f,(i) for all k, i, using dynamic programming!

Initialization:
fo(0) = 1
f(0)=0,forallk>0

lteration:

f(i) = ex(x;) Z| fii —1) ay

Termination:

P(x) = 2 fi(N)



Relation between Forward and
Viterbi

VITERBI FORWARD
Initialization: Initialization:
Vo(0) = 1 f(0) = 1
V, (0)=0, forallk >0 f(0) =0, forallk>0
lteration: Iteration:
V(i) =ex) max, Vi(i—1)ay fili) = e(x) 2 fili—1) ay
Termination: Termination:

P(x, ©*) = max, V,(N) P(x) = 2, fi(N)



Motivation for the Backward
Algorithm

We want to compute

P(m = k | x),
the probability distribution on the it" position, given x
We start by computing

P(m, = K, X) = P(Xq...X, T = K, Xiyq..-Xy)
P(1 Xi, = K) P(Xipq. o Xy | X402 X, 75 = K)
P

X, 7 = K) Pl xy | = k)

A

Forward, f, (i) Backward, b,(i)

Then, P(w, = k | X) = P(m, = k, x) / P(X)



The Backward Algorithm —
derivation

Define the backward probability:

b (i) = P(Xisq...Xy | T = K) “starting from i state = k, generate rest of x”

= Zni+1...nN P(Xis1:Xis2) -0 XN» Tiqs -0, Ty | 7 = K)
= 2| Zni+1...:rcN P(Xir1:Xis2s o5 Xny Tiaq = |, Tiagy ooy 70y | 1 = K)
= Z| €(Xis1) 8y 2ni+1...nN P(Xis2s «ves Xns Tiags oeny Ty | Tiuq = 1)

= 2| €((Xi1) @ by(i+1)



The Backward Algorithm

We can compute b, (i) for all k, i, using dynamic programming

Initialization:

b.(N) =1, for all k

Iteration:

by(i) = 2 €(Xiur) @y bi(i+1)

Termination:

P(x) = 2, ag e(x;) b(1)



Computational Complexity

What is the running time, and space required, for Forward and Backward?

Time: O(K2N)
Space: O(KN)

o

Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each few positions by multiplying
by a constant



Posterior Decoding

We can now calculate

f(i) by
P(m, = K | x) =
P(x)

Then, we can ask

What is the most likely state at position i of sequence x:
Define =" by Posterior Decoding:

n’. = argmax, P(r, = k | X)



Posterior Decoding

 For each state,

— Posterior Decoding gives us a curve of likelihood of state
for each position

— That is sometimes more informative than Viterbi path

« Posterior Decoding may give an invalid sequence of
states (of probability 0)

— Why?



Posterior Decoding

D D XN
State 1 ;"\\/\ /x
— I ¥< —>

« P(m=k|x) = Zn P(x | x) 1(r = k) 1(p) = 1, if y is true
0, otherwise

=2 gl = Ky P %)



Viterbi, Forward, Backward

VITERBI

Initialization:
Vo(0) = 1
V. (0)=0,forallk>0

Iteration:
V(i) = e(x;) max, V,(i-1) ay

Termination:

P(x, #*) = max, V,(N)

FORWARD

Initialization:
f,(0) =1
f(0)=0, forallk>0

Iteration:
fi(i) = e,(x) 2 fi(i-1) a
Termination:

P(x) = Z, f(N)

BACKWARD

Initialization:
b (N) =1, forall k

Iteration:
by(i) = 2, e(x+1) a, by (i+1)

Termination:

P(x) = 2 ag ex(X,) by(1)



Problem 3: Learning

Find the parameters that
maximize the likelihood of the
observed sequence



Estimating HMM parameters

« Easy if we know the sequence of hidden
states
— Count # times each transition occurs
— Count #times each observation occurs in each
state
* Given an HMM and observed sequence,
we can compute the distribution over

paths,
and therefore the expected counts

« “Chicken and egg” problem



Solution: Use the EM algorithm

Guess initial HMM parameters
E step: Compute distribution over paths

M step: Compute max likelihood
parameters

But how do we do this efficiently?



The forward-backward algorithm

* Also known as the Baum-Welch algorithm

« Compute probability of each state at each
position using forward and backward
probabillities

— (Expected) observation counts

« Compute probability of each pair of states
at each pair of consecutive positions / and i

+1 usipg famvard( apd bk 1?/7”’%( [+1)

— (Expected) transﬁlon counts



