
Junction Trees
And Belief Propagation

(Slides from Pedro Domingos)

Junction Trees: Motivation

•  What if we want to compute all marginals,
not just one?

•  Doing variable elimination for each one
in turn is inefficient

•  Solution: Junction trees
(a.k.a. join trees, clique trees)

Junction Trees: Basic Idea

•  In HMMs, we efficiently computed all
marginals using dynamic programming

•  An HMM is a linear chain, but the same
method applies if the graph is a tree

•  If the graph is not a tree, reduce it to one by
clustering variables

The Junction Tree Algorithm

1.  Moralize graph (if Bayes net)
2.  Remove arrows (if Bayes net)
3.  Triangulate graph
4.  Build clique graph
5.  Build junction tree
6.  Choose root
7.  Populate cliques
8.  Do belief propagation

Imagine we start with a Bayes Net having the following structure.

Example

Step 1: Moralize the Graph
Add an edge between non-adjacent (unmarried)
parents of the same child.

Step 2: Remove Arrows

Step 3: Triangulate the Graph

1 2

3 4

5

6

7

8

9

10 11

12

Step 4: Build Clique Graph

1 2

3 4

5

6

7

8

9

10 11

12

Find all cliques in the moralized, triangulated graph. A clique
becomes a node in the clique graph. If two cliques intersect
below, they are joined in the clique graph by an edge
labeled with their intersection from below (shared nodes).

The Clique Graph

C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3 3,4,5

5

4,5

4,5,6
5,7

9,10

9
5,7,9

5,7

6 6
8
5,6,7

6,8

5,7,8

The label of an edge between two cliques is called the separator.

5,6

5 5

5,7

5
5

Junction Trees
•  A junction tree is a subgraph of the clique

graph that:
1. Is a tree
2. Contains all the nodes of the clique graph
3. Satisfies the running intersection property.

•  Running intersection property:
For each pair U, V of cliques with
intersection S, all cliques on the path between
U and V contain S.

Step 5: Build the Junction Tree

C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3,4,5

4,5,6

9,10
5,7,9

5,6,7

6,8

5,7,8

Step 6: Choose a Root

C7
5,7,9,10

C4
4,5,6,7

C8
9,10,11

C6
5,7,8,9

C1
1,2,3

C2
2,3,4,5

C3
3,4,5,6

3,4,5

2,3

C9
6,8,12

C5
5,6,7,8
6,8

5,6,7 5,7,8

4,5,6
5,7,9

9,10

Step 7: Populate the Cliques

•  Place each potential from the original
network in a clique containing all the
variables it references

•  For each clique node, form the product
of the distributions in it (as in variable
elimination).

Step 7: Populate the Cliques

DEFBCD.7 .3
.6.4

.5 .5

.4 .6

.1 .5
.5.9 .6 .2

.4 .8ABC

CDE

.007.003
.648.162 .018.072

.063.027

CD DE

BC

a
¬a

¬d B|d B|
b

¬b

e C| ¬e C|
c

¬c

de e ¬e¬e
¬d

f D E| ,
¬ f D E| ,

b ¬b
cc ¬c¬c

P()A,B,C

P()E C|

P()D B|

P()F D E| ,

Step 8: Belief Propagation

1.  Incorporate evidence

2.  Upward pass:
Send messages toward root

3.  Downward pass:
Send messages toward leaves

Step 8.1: Incorporate Evidence

•  For each evidence variable, go to one table
that includes that variable.

•  Set to 0 all entries in that table that disagree
with the evidence.

Step 8.2: Upward Pass
•  For each leaf in the junction tree, send a message

to its parent. The message is the marginal of its
table, summing out any variable not in the
separator.

•  When a parent receives a message from a child,
it multiplies its table by the message table to
obtain its new table.

•  When a parent receives messages from all its
children, it repeats the process (acts as a leaf).

•  This process continues until the root receives
messages from all its children.

Step 8.3: Downward Pass
•  Reverses upward pass, starting at the root.
•  The root sends a message to each of its children.
•  More specifically, the root divides its current table

by the message received from the child,
marginalizes the resulting table to the separator,
and sends the result to the child.

•  Each child multiplies its table by its parent’s table
and repeats the process (acts as a root) until leaves
are reached.

•  Table at each clique is joint marginal of its
variables; sum out as needed. We’re done!

Inference Example: Going Up

.081.099
.651.169

1.0 1.0
1.0 1.0

DEFBCD

ABC

CDE
CD DE

BC

.330

.124.126
.420

¬dd
c
¬c

|e |¬ e
|d
|¬ d

b
¬b

c ¬c
P()B,C

P(D,E)|
P()C D,

(No evidence)

Status After Upward Pass

.1 .5
.5.9 .6 .2

.4 .8

.007.003
.648.162 .018.072

.063.027

DEFBCD

ABC

CDE
CD DE

BC

.068.101
.024.057 .069.030

.260.391

.062.062
.198.132 .168.252

.063.063

b
¬b

c
¬d

e ¬e

P()A,B,C

P()C D E, ,P()B C D, ,

P()F D E| ,

e
d
¬c

¬e

¬dd
c

¬c

d ¬d

Going Back Down

.194.260

.231.315

DEFBCD

ABC

CDE
CD DE

BC

1.0 1.0

Will have no
effect - ignore

¬dd
e

¬e
P(D,E)c ¬c

Status After Downward Pass

.019.130
.130.175 .139.063

.092.252

.007.003
.648.162 .018.072

.063.027

DEFBCD

ABC

CDE
CD DE

BC

.068.101
.024.057 .069.030

.260.391

.062.062
.198.132 .168.252

.063.063

b
¬b

c
¬d

e ¬e

P()A,B,C

P()C D E, ,P()B C D, ,

P(,)D E,F

e
d
¬c

¬e

¬dd
c

¬c

d ¬d

d ¬dee ¬e ¬e
f

¬ f
b ¬b

c c¬c ¬c
a

¬a

Why Does This Work?

•  The junction tree algorithm is just a way to
do variable elimination in all directions at
once, storing intermediate results at each
step.

The Link Between Junction Trees
and Variable Elimination

•  To eliminate a variable at any step,
we combine all remaining tables involving
that variable.

•  A node in the junction tree corresponds to
the variables in one of the tables created
during variable elimination (the other
variables required to remove a variable).

•  An arc in the junction tree shows the flow
of data in the elimination computation.

Junction Tree Savings

•  Avoids redundancy in repeated variable
elimination

•  Need to build junction tree only once ever

•  Need to repeat belief propagation only when
new evidence is received

Exact Inference is Intractable in
the worst case

•  Exponential in the treewidth of the graph
– Treewidth can be O(number of nodes) in the

worst case…
– These algorithms can be exponential in the

problem size
– Could there be a better algorithm?

Exact Inference is NP-Hard

•  Can encode any 3-SAT problem as a DGM
•  Use deterministic CPTs

Exact Inference is NP-Hard
(3-SAT)

•  Q’s are binary random variables
•  C’s are (deterministic) clauses
•  A’s are a chain of AND gates

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .

Actually even worse…

•  #P complete
•  To compute the normalizing constant we

have to count the # of satisfying clauses.

