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Junction Trees: Motivation 

•  What if we want to compute all marginals, 
not just one? 

•  Doing variable elimination for each one 
in turn is inefficient 

•  Solution: Junction trees 
(a.k.a. join trees, clique trees) 



Junction Trees: Basic Idea 

•  In HMMs, we efficiently computed all 
marginals using dynamic programming 

•  An HMM is a linear chain, but the same 
method applies if the graph is a tree 

•  If the graph is not a tree, reduce it to one by 
clustering variables 



The Junction Tree Algorithm 

1.  Moralize graph (if Bayes net) 
2.  Remove arrows (if Bayes net) 
3.  Triangulate graph 
4.  Build clique graph 
5.  Build junction tree 
6.  Choose root 
7.  Populate cliques 
8.  Do belief propagation 



Imagine we start with a Bayes Net having the following structure.

Example 



Step 1: Moralize the Graph 
Add an edge between non-adjacent (unmarried)
parents of the same child.



Step 2: Remove Arrows 



Step 3: Triangulate the Graph 
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Step 4: Build Clique Graph 
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Find all cliques in the moralized, triangulated graph.  A clique
becomes a node in the clique graph.  If two cliques intersect      
below, they are joined in the clique graph by an edge
labeled with their intersection from below (shared nodes).



The Clique Graph 
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Junction Trees 
•  A junction tree is a subgraph of the clique 

graph that: 
1. Is a tree 
2. Contains all the nodes of the clique graph 
3. Satisfies the running intersection property. 

•  Running intersection property: 
For each pair U, V of cliques with 
intersection S, all cliques on the path between 
U and V contain S. 



Step 5: Build the Junction Tree 
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Step 6: Choose a Root 
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Step 7: Populate the Cliques 

•  Place each potential from the original 
network in a clique containing all the 
variables it references 
 

•  For each clique node, form the product 
of the distributions in it (as in variable 
elimination). 



Step 7: Populate the Cliques 
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Step 8: Belief Propagation 

1.  Incorporate evidence 

2.  Upward pass: 
Send messages toward root 

3.  Downward pass: 
Send messages toward leaves 



Step 8.1: Incorporate Evidence 

•  For each evidence variable, go to one table 
that includes that variable. 

•  Set to 0 all entries in that table that disagree 
with the evidence. 



Step 8.2: Upward Pass 
•  For each leaf in the junction tree, send a message 

to its parent.  The message is the marginal of its 
table, summing out any variable not in the 
separator. 

•  When a parent receives a message from a child, 
it multiplies its table by the message table to 
obtain its new table. 

•  When a parent receives messages from all its 
children, it repeats the process (acts as a leaf). 

•  This process continues until the root receives 
messages from all its children. 



Step 8.3: Downward Pass 
•  Reverses upward pass, starting at the root. 
•  The root sends a message to each of its children. 
•  More specifically, the root divides its current table 

by the message received from the child, 
marginalizes the resulting table to the separator, 
and sends the result to the child.  

•  Each child multiplies its table by its parent’s table 
and repeats the process (acts as a root) until leaves 
are reached. 

•  Table at each clique is joint marginal of its 
variables; sum out as needed. We’re done! 



Inference Example: Going Up 
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(No evidence) 



Status After Upward Pass 
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Going Back Down 
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Status After Downward Pass 
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Why Does This Work? 

•  The junction tree algorithm is just a way to 
do variable elimination in all directions at 
once, storing intermediate results at each 
step. 



The Link Between Junction Trees 
and Variable Elimination 

•  To eliminate a variable at any step, 
we combine all remaining tables involving 
that variable. 

•  A node in the junction tree corresponds to 
the variables in one of the tables created 
during variable elimination (the other 
variables required to remove a variable). 

•  An arc in the junction tree shows the flow 
of data in the elimination computation. 



Junction Tree Savings 

•  Avoids redundancy in repeated variable 
elimination 

•  Need to build junction tree only once ever 
 

•  Need to repeat belief propagation only when 
new evidence is received 



Exact Inference is Intractable in 
the worst case 

•  Exponential in the treewidth of the graph 
– Treewidth can be O(number of nodes) in the 

worst case… 
– These algorithms can be exponential in the 

problem size 
– Could there be a better algorithm? 



Exact Inference is NP-Hard 

•  Can encode any 3-SAT problem as a DGM 
•  Use deterministic CPTs 



Exact Inference is NP-Hard 
(3-SAT) 

•  Q’s are binary random variables 
•  C’s are (deterministic) clauses 
•  A’s are a chain of AND gates 

Q1 QnQ4Q3Q2

C1

A1 XAm–2A2

CmCm–1C3C2

. . .

. . .



Actually even worse… 

•  #P complete 
•  To compute the normalizing constant we 

have to count the # of satisfying clauses. 


