## **Markov Networks**

Alan Ritter

## Markov Networks

Undirected graphical models



Potential functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum_{x} \prod_{c} \Phi_{c}(x_{c})$$

| Smoking | Cancer | Ф(S,C) |
|---------|--------|--------|
| False   | False  | 4.5    |
| False   | True   | 4.5    |
| True    | False  | 2.7    |
| True    | True   | 4.5    |

# Undirected Graphical Models: Motivation

- Terminology:
  - Directed graphical models = Bayesian Networks
  - Undirected graphical models = Markov Networks
- We just learned about DGMs (Bayes Nets)
- For some domains being forced to choose a direction of edges is awkward.
- Example: consider modeling an image
  - Assumption: neighboring pixels are correlated
  - We could create a DAG model w/ 2D topology

# 2D Bayesian Network

$$X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{4} \rightarrow X_{5}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{6} \rightarrow X_{7} \rightarrow X_{8} \rightarrow X_{9} \rightarrow X_{10}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{11} \rightarrow X_{12} \rightarrow X_{13} \rightarrow X_{14} \rightarrow X_{15}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{16} \rightarrow X_{17} \rightarrow X_{18} \rightarrow X_{19} \rightarrow X_{20}$$

# Markov Random Field (Markov Network)

$$X_{1}$$
 —  $X_{2}$  —  $X_{3}$  —  $X_{4}$  —  $X_{5}$  —  $X_{6}$  —  $X_{7}$  —  $X_{8}$  —  $X_{9}$  —  $X_{10}$  —  $X_{11}$  —  $X_{12}$  —  $X_{13}$  —  $X_{14}$  —  $X_{15}$  —  $X_{16}$  —  $X_{17}$  —  $X_{18}$  —  $X_{19}$  —  $X_{20}$ 

# UGMs (Bayes Nets) vs DGMs (Markov Nets)

### Advantages

- 1. Symmetric
  - More natural for certain domains (e.g. spatial or relational data)
- 2. Discriminative UGMs (A.K.A Conditional Random Fields) work better than discriminative UGMs

### Disadvantages

- 1. Parameters are less interpretable and modular
- 2. Parameter estimation is computationally more expensive

## Conditional Independence Properties

- Much Simpler than Bayesian Networks
  - No d-seperation, v-structures, etc...
- UGMs define CI via simple graph separation

$$X_A \perp_G X_B | X_E \iff E \text{ separates } A \text{ from } B \text{ in } G$$

 E.g. if we remove all the evidence nodes from the graph, are there any paths connecting A and B?

## Markov Blanket

- Also Simple
  - Markov blanket of a node is just the set of it's immediate neighbors
  - Don't need to worry about co-parents

## Independence Properties



Pairwise:  $1 \perp 7 | rest$ 

Local:  $1 \perp rest | 2, 3$ 

Global:  $1, 2 \perp 6, 7 | 3, 4, 5$ 

# Converting a Bayesian Network to a Markov Network

### Tempting:

- Just drop directionality of the edges
- But this is clearly incorrect (v-structure)
- Introduces incorrect CI statements

#### Solution:

- Add edges between "unmarried" parents
- This process is called moralization

## **Example:** moralization



- Unfortunately, this looses some CI information
  - Example:  $4 \perp 5|2$

## Directed vs. Undirected GMs

- Q: which has more "expressive power"?
- Recall:
  - G is an I-map of P if:  $I(G) \subseteq I(P)$
- Now define:
  - G is a **perfect I-map** of P if: I(G) = I(P)
    - Graph can represent all (and only) CIs in P

Bayesian Networks and Markov Networks are perfect maps for different sets of distributions



### Parameterization

- No topological ordering on undirected graph
- Can't use the chain rule of probability to represent P(y)
- Instead we will use potential functions:
  - associate potential functions with each maximal clique in the graph  $\,\psi_c(y_c|\theta_c)$
  - A potential can be any non-negative function
- Joint distribution is defined to be proportional to product of clique potentials

# Parameterization (con't)

- Joint distribution is defined to be proportional to product of clique potentials
- Any positive distribution whose CI properties can be represented by an UGM can be represented this way.

# Hammersly-Clifford Theorem

 A positive distribution P(Y) > 0 satisfies the CI properties of an undirected graph G iff P can be represented as a product of factors, one per maximal clique

$$P(y|\theta) = \frac{1}{Z(\theta)} \prod_{c \in C} \psi_c(y_c|\theta_c)$$

Z is the partition function

$$Z(\theta) = \sum_{y} \prod_{c \in C} \psi_c(y_c | \theta_c)$$

# Example

 If P satisfies the conditional independence assumptions of this graph, we can write



$$P(y|\theta) = \frac{1}{Z(\theta)} \psi_{123}(y_1, y_2, y_3) \psi_{234}(y_2, y_3, y_4) \psi_{35}(y_3, y_5)$$

$$Z(\theta) = \sum_{\mathbf{y}} \psi_{123}(y_1, y_2, y_3) \psi_{234}(y_2, y_3, y_4) \psi_{35}(y_3, y_5)$$

## Pairwise MRF

- Potentials don't need to correspond to maximal cliques
- We can also restrict parameterization to edges (or any other cliques)



Pairwise MRF:

$$P(y|\theta) = \psi_{12}(y_1, y_2)\psi_{13}(y_1, y_3)\psi_{23}(y_2, y_3)\psi_{24}(y_2, y_4)\psi_{34}(y_3, y_4)\psi_{35}(y_3, y_5)$$

## Representing Potential Functions

- Can represent as CPTs like we did for Bayesian Networks (DGMs)
  - But, potentials are not probabilities
  - Represent relative "compatibility" between various assignments

## Representing Potential Functions

- More general approach:
  - Represent the log potentials as a linear function of the parameters
  - Log-linear (maximum entropy) models

$$\log P(y|\theta) = \sum_{c} \psi_c(y_c)^T \theta_c - \log Z(\theta)$$

# Log-Linear Models



Log-linear model:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$
Weight of Feature *i* Feature *i*

$$f_1(\text{Smoking, Cancer}) = \begin{cases} 1 & \text{if } \neg \text{ Smoking } \lor \text{ Cancer} \\ 0 & \text{otherwise} \end{cases}$$

# Log-Linear models can represent Table CPTs

 Consider pairwise MRF where each edge has an associated potential w/ K<sup>2</sup> features:

$$\phi(y_s, y_t) = [\dots, \mathbb{I}(y_s = j, y_t = k), \dots]$$

 Then we can convert into a potential function using the weight for each feature:

$$\psi(y_s, y_t) = exp([\theta_{st}^T \phi_{st}]_{jk}]) = exp(\theta_{st}(j, k))$$

- But, log-linear model is more general
  - Feature vectors can be arbitrarily designed