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Markov Networks

* Undirected graphical models
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e Potential functions defined over cliques

P(x) %H‘Dc(’%)

Z=Z[[<I>c<xc>

Smoking | Cancer P(S,C)
False False 4.5
False True 4.5
True False 2.7
True True 4.5




Undirected Graphical Models:
Motivation

Terminology:

— Directed graphical models = Bayesian Networks
— Undirected graphical models = Markov Networks
We just learned about DGMs (Bayes Nets)

For some domains being forced to choose a
direction of edges is awkward.
Example: consider modeling an image

— Assumption: neighboring pixels are correlated
— We could create a DAG model w/ 2D topology



2D Bayesian Network

X1 = X5 a@» X4 = X5
} L |
X6 Xg —> Xg —> X10

X1 = X = X3 = Xy = X5

{ y V } }

X6 = X7 = X3 = X9 = Xo



Markov Random Field
(Markov Network)




UGMs (Bayes Nets) vs
DGMs (Markov Nets)

* Advantages

1. Symmetric

* More natural for certain domains (e.g. spatial or
relational data)

2. Discriminative UGMs (A.K.A Conditional Random
Fields) work better than discriminative UGMs

* Disadvantages
1. Parameters are less interpretable and modular

2. Parameter estimation is computationally more
expensive



Conditional Independence Properties

* Much Simpler than Bayesian Networks
— No d-seperation, v-structures, etc...

* UGMs define Cl via simple graph separation
X4 lg Xp|Xgp < FE separates A from B in G

* E.g.if we remove all the evidence nodes from

the graph, are there any paths connecting A
and B?



Markov Blanket

* Also Simple

— Markov blanket of a node is just the set of it’s
immediate neighbors

— Don’t need to worry about co-parents



Independence Properties
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Converting a Bayesian Network to a
Markov Network

* Tempting:
— Just drop directionality of the edges
— But this is clearly incorrect (v-structure)
— Introduces incorrect Cl statements

e Solution:
— Add edges between “unmarried” parents
— This process is called moralization



Example: moralization

2 4
e
3 0
* Unfortunately, this looses some Cl information

— Example: 4 | 5|2




Directed vs. Undirected GMs

* Q: which has more “expressive power”?
e Recall:

—Gisanl-mapofPif: [(G) C I(P)

e Now define:

—Gisa perfect I-map of Pif: [ (G) = I (P)

e Graph can represent all (and only) Clsin P

Bayesian Networks and Markov Networks are
perfect maps for different sets of distributions




Probabilistic Models

Graphical Models

Directed

Undirected




Parameterization

No topological ordering on undirected graph

Can’t use the chain rule of probability to
represent P(y)

Instead we will use potential functions:

— associate potential functions with each maximal
clique in the graph wc(yc‘é’c)
— A potential can be any non-negative function

Joint distribution is defined to be
proportional to product of clique potentials



Parameterization (con’t)

* Joint distribution is defined to be
proportional to product of clique potentials

* Any positive distribution whose Cl properties
can be represented by an UGM can be
represented this way.



Hammersly-Clifford Theorem

* A positive distribution P(Y) > O satisfies the Cl
properties of an undirected graph G iff P can
be represented as a product of factors, one
per maximal clique

P(yl0) = H Ve(YelOe)

CEC’

— Z H ¢C(yc|ec)

y ceC




Example

* |f P satisfies the conditional
independence assumptions
of this graph, we can write

P(y|0) = Z%@) V123(Y1, Y2, Y3)W234 (Y2, Y3, Ya)¥35(Y3, Ys)

Z(0) = Z V123(Y1, Y2, Y3) V234 (Y2, U3, Y4) V35 (Y3, ¥s)

Yy



Pairwise MRF

e Potentials don’t need to
correspond to maximal
cliques

 We can also restrict
parameterization to edges
(or any other cliques)

* Pairwise MRF:
P(y|0) = ¥12(y1, y2)Y13(y1, y3)V23(y2, Y3) W24 (Y2, Ya) V34 (Y3, Ya) 35 (Y3, Ys)




Representing Potential Functions

* Can represent as CPTs like we did for Bayesian
Networks (DGMs)

— But, potentials are not probabilities

— Represent relative “compatibility” between
various assignments



Representing Potential Functions

* More general approach:

— Represent the log potentials as a linear function of
the parameters

— Log-linear (maximum entropy) models

log P(yl0) = ch ye) 0. — log Z(0)



Log-Linear Models
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e Log-linear model:

|
P(x)=—eXp(EWf,-(x))
7 .
[\

Weight of Feature i Feature i

f,(Smoking, Cancer) =
w, = 0.51

1 1f - Smoking v Cancer
0 otherwise



Log-Linear models can
represent Table CPTs

* Consider pairwise MRF where each edge has
an associated potential w/ K”2 features:

¢(?/sayt) — [---,H(ys = 7, Yt = k),]

 Then we can convert into a potential function
using the weight for each feature:

w(ysv yt) — 6xp([‘9g;¢8t]jk]) — 6£Ep((98t(j, k))

* But, log-linear model is more general
— Feature vectors can be arbitrarily designed



