
Markov Decision Processes
(Slides from Mausam)

Markov Decision Process

Operations

Research

Artificial

Intelligence

Machine

Learning

Graph

Theory

Robotics Neuroscience

/Psychology

Control

Theory
Economics

model the sequential decision making of a rational agent.

A Statistician’s view to MDPs

Markov
Chain

One-step
Decision Theory

Markov Decision Process

• sequential process
• models state transitions
• autonomous process

• one-step process
• models choice
• maximizes utility

• Markov chain + choice
• Decision theory + sequentiality

• sequential process
• models state transitions
• models choice
• maximizes utility

s s s u

s s

u

a

a

A Planning View

What action
next?

Percepts Actions

Environment

Static vs. Dynamic

Fully
vs.

Partially
Observable

Perfect
vs.

Noisy

Deterministic
vs.

Stochastic

Instantaneous
vs.

Durative

Predictable vs. Unpredictable

Classical Planning

What action
next?

Percepts Actions

Environment

Static

Fully
Observable

Perfect

Predictable

Instantaneous

Deterministic

Stochastic Planning: MDPs

What action
next?

Percepts Actions

Environment

Static

Fully
Observable

Perfect

Stochastic

Instantaneous

Unpredictable

Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• Pr(s’|s,a): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state
• J: discount factor

• R(s,a,s’): reward model

factored
Factored MDP

absorbing/
non-absorbing

Objective of an MDP

• Find a policy S: S→ A

• which optimizes
• minimizes expected cost to reach a goal
• maximizes expected reward
• maximizes expected (reward-cost)

• given a ____ horizon
• finite
• infinite
• indefinite

• assuming full observability

discounted
or

undiscount.

Role of Discount Factor (J)

• Keep the total reward/total cost finite
• useful for infinite horizon problems

• Intuition (economics):
• Money today is worth more than money tomorrow.

• Total reward: r1 + Jr2 + J2r3 + …

• Total cost: c1 + Jc2 + J2c3 + …

Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP
• <S, A, Pr, C, G, s0>
• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP
• <S, A, Pr, R, J>
• Most often studied in machine learning, economics, operations

research communities

• Goal-directed, Finite Horizon, Prob. Maximization MDP
• <S, A, Pr, G, s0, T>
• Also studied in planning community

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP
• <S, A, Pr, G, R, s0>
• Relatively recent model

most popular

Bellman Equations for MDP2

• <S, A, Pr, R, s0, J>
• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:

Bellman Backup (MDP2)

• Given an estimate of V* function (say Vn)
• Backup Vn function at state s

• calculate a new estimate (Vn+1) :

• Qn+1(s,a) : value/cost of the strategy:
• execute action a in s, execute Sn subsequently
• Sn = argmaxa∈Ap(s)Qn(s,a)

V

R VJ

ax

Bellman Backup

V0= 0

V0= 1

V0= 2

Q1(s,a1) = 2 + 0 J
Q1(s,a2) = 5 + J 0.9£ 1

+ J 0.1£ 2
Q1(s,a3) = 4.5 + 2 J

max

V1= 6.5
(J~1)

agreedy = a3

5 a2

a1

a3

s0

s1

s2

s3

Value iteration [Bellman’57]

• assign an arbitrary assignment of V0 to each state.

• repeat
• for all states s

• compute Vn+1(s) by Bellman backup at s.

• until maxs |Vn+1(s) – Vn(s)| < H

Iteration n+1

Residual(s)

H-convergence

Comments

• Decision-theoretic Algorithm
• Dynamic Programming
• Fixed Point Computation
• Probabilistic version of Bellman-Ford Algorithm

• for shortest path computation
• MDP1 : Stochastic Shortest Path Problem

� Time Complexity

• one iteration: O(|S|2|A|)

• number of iterations: poly(|S|, |A|, 1/(1-J))

� Space Complexity: O(|S|)

� Factored MDPs

• exponential space, exponential time

Convergence Properties

• Vn→ V* in the limit as n→1
• H-convergence: Vn function is within H of V*
• Optimality: current policy is within 2HJ/(1-J) of optimal

• Monotonicity
• V0 ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)
• V0 ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)
• otherwise Vn non-monotonic

Policy Computation

Optimal policy is stationary and time-independent.
• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

ax

ax R VJ

R VJV

Changing the Search Space

• Value Iteration
• Search in value space

• Compute the resulting policy

• Policy Iteration
• Search in policy space

• Compute the resulting value

Policy iteration [Howard’60]

• assign an arbitrary assignment of S0 to each state.

• repeat
• Policy Evaluation: compute Vn+1: the evaluation of Sn

• Policy Improvement: for all states s
• compute Sn+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until Sn+1 = Sn

Advantage
• searching in a finite (policy) space as opposed to

uncountably infinite (value) space ⇒ convergence faster.

• all other properties follow!

costly: O(n3)

approximate
by value iteration
using fixed policy

Modified
Policy Iteration

Modified Policy iteration

• assign an arbitrary assignment of S0 to each state.

• repeat
• Policy Evaluation: compute Vn+1 the approx. evaluation of Sn

• Policy Improvement: for all states s
• compute Sn+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until Sn+1 = Sn

Advantage
• probably the most competitive synchronous dynamic

programming algorithm.

Asynchronous Value Iteration

� States may be backed up in any order
• instead of an iteration by iteration

� As long as all states backed up infinitely often
• Asynchronous Value Iteration converges to optimal

Asynch VI: Prioritized Sweeping

� Why backup a state if values of successors same?

� Prefer backing a state
• whose successors had most change

� Priority Queue of (state, expected change in value)

� Backup in the order of priority

� After backing a state update priority queue
• for all predecessors

Reinforcement Learning

Reinforcement Learning

� Still have an MDP
• Still looking for policy S

� New twist: don’t know Pr and/or R
• i.e. don’t know which states are good

• and what actions do

� Must actually try out actions to learn

Model based methods

� Visit different states, perform different actions
� Estimate Pr and R

� Once model built, do planning using V.I. or
other methods

� Con: require _huge_ amounts of data

Model free methods

� Directly learn Q*(s,a) values

� sample = R(s,a,s’) + Jmaxa’Qn(s’,a’)

� Nudge the old estimate towards the new sample

� Qn+1(s,a) Å (1-D)Qn(s,a) + D[sample]

Properties

� Converges to optimal if
• If you explore enough

• If you make learning rate (D) small enough

• But not decrease it too quickly

• ∑iD(s,a,i) = ∞

• ∑iD2(s,a,i) < ∞
where i is the number of visits to (s,a)

Model based vs. Model Free RL

� Model based
• estimate O(|S|2|A|) parameters

• requires relatively larger data for learning

• can make use of background knowledge easily

� Model free
• estimate O(|S||A|) parameters

• requires relatively less data for learning

Exploration vs. Exploitation

� Exploration: choose actions that visit new states in
order to obtain more data for better learning.

� Exploitation: choose actions that maximize the
reward given current learnt model.

� H-greedy
• Each time step flip a coin

• With prob H, take an action randomly

• With prob 1-H take the current greedy action

� Lower H over time
• increase exploitation as more learning has happened

Q-learning

� Problems
• Too many states to visit during learning

• Q(s,a) is still a BIG table

� We want to generalize from small set of training examples

� Techniques
• Value function approximators

• Policy approximators

• Hierarchical Reinforcement Learning

Partially Observable Markov Decision Processes

Partially Observable MDPs

What action
next?

Percepts Actions

Environment

Static

Partially
Observable

Noisy

Stochastic

Instantaneous

Unpredictable

POMDPs

� In POMDPs we apply the very same idea as in MDPs.

� Since the state is not observable,
the agent has to make its decisions based on the belief state
which is a posterior distribution over states.

� Let b be the belief of the agent about the current state

� POMDPs compute a value function over belief space:

γa b, a
a

POMDPs

� Each belief is a probability distribution,

• value fn is a function of an entire probability distribution.

� Problematic, since probability distributions are continuous.

� Also, we have to deal with huge complexity of belief spaces.

� For finite worlds with finite state, action, and observation
spaces and finite horizons,

• we can represent the value functions by piecewise linear
functions.

Applications

� Robotic control

• helicopter maneuvering, autonomous vehicles

• Mars rover - path planning, oversubscription planning

• elevator planning

� Game playing - backgammon, tetris, checkers

� Neuroscience

� Computational Finance, Sequential Auctions

� Assisting elderly in simple tasks

� Spoken dialog management

� Communication Networks – switching, routing, flow control

� War planning, evacuation planning

