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A Statistician’s view to MDPs

Markov 
Chain

One-step
Decision Theory

Markov Decision Process

• sequential process
• models state transitions
• autonomous process

• one-step process
• models choice
• maximizes utility

• Markov chain + choice
• Decision theory + sequentiality

• sequential process
• models state transitions
• models choice
• maximizes utility
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A Planning View
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Classical Planning
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Stochastic Planning: MDPs
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Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• Pr(s’|s,a): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state
• J: discount factor

• R(s,a,s’): reward model

factored
Factored MDP

absorbing/
non-absorbing



Objective of an MDP

• Find a policy S: S→ A

• which optimizes 
• minimizes expected cost to reach a goal
• maximizes expected reward
• maximizes expected (reward-cost)

• given a ____ horizon
• finite
• infinite
• indefinite

• assuming full observability

discounted
or

undiscount.



Role of Discount Factor (J)

• Keep the total reward/total cost finite
• useful for infinite horizon problems

• Intuition (economics): 
• Money today is worth more than money tomorrow.

• Total reward: r1 + Jr2 + J2r3 + …

• Total cost: c1 + Jc2 + J2c3 + …



Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP
• <S, A, Pr, C, G, s0>
• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP
• <S, A, Pr, R, J>
• Most often studied in machine learning, economics, operations 

research communities

• Goal-directed, Finite Horizon, Prob. Maximization MDP
• <S, A, Pr, G, s0, T>
• Also studied in planning community

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP
• <S, A, Pr, G, R, s0>
• Relatively recent model

most popular



Bellman Equations for MDP2

• <S, A, Pr, R, s0, J>
• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:



Bellman Backup (MDP2)

• Given an estimate of V* function (say Vn)
• Backup Vn function at state s 

• calculate a new estimate (Vn+1) :

• Qn+1(s,a) : value/cost of the strategy:
• execute action a in s, execute Sn subsequently
• Sn = argmaxa∈Ap(s)Qn(s,a)

V

R VJ

ax



Bellman Backup

V0= 0

V0= 1

V0= 2

Q1(s,a1) = 2 + 0 J
Q1(s,a2) = 5 + J 0.9£ 1 

+ J 0.1£ 2
Q1(s,a3) = 4.5 + 2 J
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Value iteration [Bellman’57]

• assign an arbitrary assignment of V0 to each state.

• repeat
• for all states s

• compute Vn+1(s) by Bellman backup at s.

• until maxs |Vn+1(s) – Vn(s)| < H

Iteration n+1

Residual(s)

H-convergence



Comments

• Decision-theoretic Algorithm
• Dynamic Programming 
• Fixed Point Computation
• Probabilistic version of Bellman-Ford Algorithm

• for shortest path computation
• MDP1 : Stochastic Shortest Path Problem

� Time Complexity

• one iteration: O(|S|2|A|) 

• number of iterations: poly(|S|, |A|, 1/(1-J)) 

� Space Complexity: O(|S|)

� Factored MDPs

• exponential space, exponential time



Convergence Properties

• Vn→ V* in the limit as n→1
• H-convergence: Vn function is within H of V*
• Optimality: current policy is within 2HJ/(1-J) of optimal

• Monotonicity
• V0 ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)
• V0 ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)
• otherwise Vn non-monotonic



Policy Computation

Optimal policy is stationary and time-independent.
• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

ax

ax R VJ

R VJV



Changing the Search Space

• Value Iteration
• Search in value space

• Compute the resulting policy

• Policy Iteration
• Search in policy space

• Compute the resulting value



Policy iteration [Howard’60]

• assign an arbitrary assignment of S0 to each state.

• repeat
• Policy Evaluation: compute Vn+1: the evaluation of Sn

• Policy Improvement: for all states s
• compute Sn+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

• until Sn+1 = Sn

Advantage
• searching in a finite (policy) space as opposed to 

uncountably infinite (value) space ⇒ convergence faster.

• all other properties follow!

costly: O(n3)

approximate
by value iteration 
using fixed policy

Modified 
Policy Iteration



Modified Policy iteration

• assign an arbitrary assignment of S0 to each state.

• repeat
• Policy Evaluation: compute Vn+1 the approx. evaluation of Sn

• Policy Improvement: for all states s
• compute Sn+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

• until Sn+1 = Sn

Advantage
• probably the most competitive synchronous dynamic 

programming algorithm.



Asynchronous Value Iteration

� States may be backed up in any order
• instead of an iteration by iteration

� As long as all states backed up infinitely often
• Asynchronous Value Iteration converges to optimal



Asynch VI: Prioritized Sweeping

� Why backup a state if values of successors same?

� Prefer backing a state
• whose successors had most change

� Priority Queue of (state, expected change in value)

� Backup in the order of priority

� After backing a state update priority queue
• for all predecessors



Reinforcement Learning



Reinforcement Learning

� Still have an MDP
• Still looking for policy S

� New twist: don’t know Pr and/or R
• i.e. don’t know which states are good

• and what actions do

� Must actually try out actions to learn



Model based methods

� Visit different states, perform different actions
� Estimate Pr and R

� Once model built, do planning using V.I. or 
other methods

� Con: require _huge_ amounts of data



Model free methods

� Directly learn Q*(s,a) values

� sample = R(s,a,s’) + Jmaxa’Qn(s’,a’)

� Nudge the old estimate towards the new sample

� Qn+1(s,a) Å (1-D)Qn(s,a) + D[sample]



Properties

� Converges to optimal if
• If you explore enough

• If you make learning rate (D) small enough

• But not decrease it too quickly

• ∑iD(s,a,i) = ∞

• ∑iD2(s,a,i) < ∞
where i is the number of visits to (s,a)



Model based vs. Model Free RL

� Model based
• estimate O(|S|2|A|) parameters

• requires relatively larger data for learning

• can make use of background knowledge easily

� Model free
• estimate O(|S||A|) parameters

• requires relatively less data for learning



Exploration vs. Exploitation

� Exploration: choose actions that visit new states in 
order to obtain more data for better learning.

� Exploitation: choose actions that maximize the 
reward given current learnt model.

� H-greedy
• Each time step flip a coin

• With prob H, take an action randomly

• With prob 1-H take the current greedy action

� Lower H over time 
• increase exploitation as more learning has happened



Q-learning

� Problems
• Too many states to visit during learning

• Q(s,a) is still a BIG table

� We want to generalize from small set of training examples

� Techniques
• Value function approximators

• Policy approximators

• Hierarchical Reinforcement Learning



Partially Observable Markov Decision Processes



Partially Observable MDPs

What action 
next?

Percepts Actions

Environment

Static

Partially 
Observable 

Noisy

Stochastic 

Instantaneous 

Unpredictable



POMDPs

� In POMDPs we apply the very same idea as in MDPs.

� Since the state is not observable, 
the agent has to make its decisions based on the belief state 
which is a posterior distribution over states.

� Let b be the belief of the agent about the current state

� POMDPs compute a value function over belief space:

γa b, a
a



POMDPs

� Each belief is a probability distribution, 

• value fn is a function of an entire probability distribution.

� Problematic, since probability distributions are continuous.

� Also, we have to deal with huge complexity of belief spaces.

� For finite worlds with finite state, action, and observation 
spaces and finite horizons, 

• we can represent the value functions by piecewise linear 
functions. 



Applications

� Robotic control

• helicopter maneuvering, autonomous vehicles

• Mars rover - path planning, oversubscription planning

• elevator planning

� Game playing - backgammon, tetris, checkers

� Neuroscience

� Computational Finance, Sequential Auctions

� Assisting elderly in simple tasks

� Spoken dialog management

� Communication Networks – switching, routing, flow control

� War planning, evacuation planning


