
Interactively Querying and Updating Freebase with Web Tables

Alan Ritter and Evan Herbst

Introduction
Recently there have been a growing number of large general
purpose databases, such as Freebase(Bollacker et al. 2008),
Wikipedia, and DbPedia(Auer et al. 2007), which have been
enabling many new applications. 1 These data sources rely
on volunteers to manually enter structured data, which can
be tedious, thus discouraging ordinary users from contribut-
ing. Some recent work has addressed this issue, by auto-
matically extending these resources with information extrac-
tion techniques(Wu and Weld 2007), and providing an inter-
face which allows casual users to quickly verify extracted
results(Hoffman et al. 2009).

In addition to data extracted from unstructured text, there
exists a large amount of semi-structured data on the web,
much of it in the form of HTML tables (Cafarella et al.
2008). This data could be harvested to automatically extend
databases such as Freebase, however there are many data in-
tegration challenges. It seems unlikely that 100% accuracy
can be achieved, which is unacceptable for many applica-
tions, so it is necessary to rely on humans to map these data
sources to Freebase. Ordinary users, however, are unlikely
to voluntarily contribute matchings to various data sources
unless they receive some benefit from doing it.

We propose to do 3 things:

1. Automatically find candidate matchings between the
columns of HTML tables to Freebase types or properties.
This will provide a good set of matchings to display to the
user and enable (2) and (3)

2. Allow the user to display related information from Free-
base which is not present in the original HTML table (this
will give users some incentive to use the system, and do
the matching)

3. Allow the user to contribute the data contained in the table
to Freebase with minimal effort

Freebase
Freebase(Bollacker et al. 2008) is a large collaborative
database of general human knowledge. It is publicly read-
able and writable using an HTTP-based query language.

1For a list of applications based on Freebase, see
http://www.freebase.com/view/freebase/
metaweb_application

Freebase represents data using objects and properties.
Every object has properties /type/object/name and
/type/object/type, so for any given surface form
(string) we can easily query Freebase for all objects with
that name, and generate a list of possible types. Since an
object’s type determines what other properties it possesses,
we can then use these candidate types to get candidate prop-
erties to map to the other columns of the table.

For example, Seattle has the following types and associ-
ated properties (among many others):
• /location/location

– area = 369.073305723
– containedby = [‘‘King County’’,
‘‘Washington’’, ‘‘United States’’]

• /location/statistical region

– population = 582454

Schema Matching
There has been much work on automatic schema matching
(Rahm and Bernstein 2001). One example which shares
some similarity is (Doan, Domingos, and Halevy 2001), in
which an automatic procedure for matching source schemas
to a shared mediated schema is learned from a few match-
ing examples. In our work the mediated schema could be
viewed as the Freebase ontology. Our work is different,
however in that Freebase is already populated with a large
amount of open-domain data. We therefore are able to rely
on overlap in content between HTML tables and Freebase.
Additionally, because every data element in Freebase con-
tains associated type information, we can easily generate a
list of candidate Freebase types for each table column, and
generate a list of candidate properties for each column in
relation to a type selected by the user.

(Tuchinda, Szekely, and Knoblock 2008) allow users to
scrape data from Webpages interactively by exploiting the
structure of the web page’s DOM tree. In this respect they
are not limited to extracting information only from tables,
but instead can extract data from any website which contains
some structure which can be exploited. These same DOM
extraction techniques could be easily incorporated into our
work as well. For the integration step, they make a similar
assumption that the webpage will contain data which over-
laps with data from another (already scraped) webpage. In

their case, however, they do not start with an existing pop-
ulated database (such as Freebase), but instead have to start
from scratch. From our experience, it is not very difficult to
find tables which contain some overlap in information with
Freebase, as Freebase contains a huge number of concepts
on a wide variety of topics.

Matching Procedure
The following procedure is used to map Freebase type
schemas to HTML tables. More detail is provided in the
following sections.

1. First of all we need to decide which Freebase schemas
to consider matching to the table, and which columns
represent keys. For each column containing string
data, we take the entries to be entity names and query
Freebase for possible types. For example, “Ama-
zon” could have the types /business/company and
/geography/river. For each candidate type a score
is computed for how well it covers the values in the col-
umn. Note that although a given string (e.g. “Amazon”)
may be ambiguous, the set of all strings in a column of a
relational table shouldn’t have more than a few types in
common. Additionally a name and type are usually suffi-
cient to disambiguate a specific item.2

2. For the top k (e.g. 10) types for each of these (possible)
key columns, Freebase is queried to get all properties of
each type, and the values of all these properties for the
entities we’ve identified.

3. For each candidate type a match score is computed for
each of its properties wrt each non-key column in the table
using the following criteria (more details below):
• String similarity between property name and column

header
• Average string similarity between property values and

column elements (for string data)
• Average percentage numeric difference between prop-

erty values and column elements (for numeric data)
• Cosine distance between the vectors of property values

and column elements (for numeric data)
• Score from #1 above (how well the type matches the

key column)

Scoring Column Types
To score how well type ti corresponds to column j in the
table, we use the following formula:

TypeScoreij =
Tj(ti)√

min(F (ti), M)

Where Tj(ti) is the number of strings with type ti in column
j of the table, F (ti) is the number of entities with type ti in
Freebase, and M is a parameter which we (somewhat arbi-
trarily) set to 1000 to ensure the denominator doesn’t grow
too large.

2Additional mapped columns of the table could be used for
further disambiguation if necessary, although we have not imple-
mented this feature yet.

Note that we penalize types that occur very frequently in
Freebase, as they are likely to match strings in the table by
chance. For example, there are about 4.4 million entities of
type /music/track in Freebase. We found that without
this type of discounting, columns would very frequently be
mistaken as containing music tracks.

Match Criteria
In order to provide robust results even with missing ta-
ble headers, or noisy data, we use a hybrid matching ap-
proach(Rahm and Bernstein 2001), combining both schema-
and instance-level match criteria.

Header/Property String Similarity One indication of a
good column/property matching is if the Freebase property
name is similar to the HTML column header. This use-
ful in finding a good match especially when there is no in-
stance data available for a given attribute in Freebase. We
use the Levenshtein Distance between the column header
of the HTML table and the name of the Freebase property
weighted by string length. As an example, in a table of
buildings (see Figure 1), the “Structural Height” property of
type /architecture/structure has large similarity
to column header “height” in figure 1.

Instance-Level String Similarity If the instances in the
column consist of string data (not numeric data or dates),
then for each row of the HTML table, we can perform string
comparisons between attributes of Freebase objects corre-
sponding to that row, and the data in the table cell. For
example, the outflow column in figure 2 contains the value
“Mediterranean Sea” which is very similar to the value of
the “Mouth” property of the /geography/river type
for the instance “Nile” which corresponds to that row.

Instance-Level Magnitude Similarity For columns con-
taining numeric data, a Freebase property is a good match
if its values are roughly equal. Many types of numeric data
can be close, but not exactly the same. E.g. populations of
cities change from year to year. To determine how well at-
tribute ai corresponds to column j in the table, we use the
following formula:

MagScoreij =

∑n
k=1

|aik−cjk|
min(|aik|,|cjk|)

n

This is simply the average, over all rows for which Freebase
contains a value for the property aik, of the difference be-
tween aik and cjk normalized by the minimum of the two.
This is a relative error estimate, which ensures that differ-
ences between large values do not dominate the score.

Instance-Level Cosine Distance In some cases numeric
data in a table may have strong correlation with data in Free-
base, but have very different magnitude. For example, if
Freebase contains height in meters, and the table contains
height in feet, MagScoreij will be confused. If we can rec-
ognize that such a column maps to the correct attribute in
Freebase, then it should be straightforward to convert from
feet to meters, as we have several examples.

In order to measure the relative similarity between nu-

Figure 1: We automatically recognize that the “Structural Height” property of the /architecture/structure type from
Freebase maps to the Height column of the table

meric attributes and columns we use cosine distance, a stan-
dard distance measure between two vectors a and c:

cos(a, c) =
a · c
‖a‖‖c‖

Combining Match Criteria
We combine our five match criteria m0, . . . m4 using logistic
regression:

MatchScore =
1

1 + e−
Pk

i=0 wimi

Ideally we would learn the weights, w0, . . . , w4, from posi-
tive and negative examples of matchings; so far we make the
simplifying assumption that all matching criteria are equally
important, assigning wi = 1∀i. We have found this to work
reasonably well in practice.

Note that by providing matchings users are not only di-
rectly contributing data to Freebase, but are also providing
positive and negative examples of matchings which could
be used labeled training data. This data could be used to
learn weights for the match criteria using standard optimiza-
tion techniques. So by providing matchings users could both
immediately contribute data to Freebase in addition to con-
tributing labeled training data which improves improves fu-
ture match suggestions, and may even enable fully automatic
matching on some high-confidence tables. Learning weights
for the matching criteria is an item for future work.

Contributing Data to Freebase
The output of the matching step is a score for each candidate
property/column match. From this we can easily produce a
ranked list of matches for each column in the table. The
user can quickly view these, and select the correct property
or determine that there is no good match in Freebase3

Augmenting Tables with Data from Freebase
Once we have a good list of candidate types for the key
columns, we can offer the user the option to display addi-
tional columns not originally present in the HTML table.
This provides direct benefit to users; we feel that it will give
users incentive to use the system and contribute data to Free-
base.

For example, consider the New York times article in figure
3. A list of “The Best 1,000” movies is presented with dates.
What if a user wants to select a movie to watch, and would
like to know what language each movie is in, who directed it,
or other similar information in order to make the decision?

Because our system can automatically detect that col-
umn 1 of this table corresponds to the Freebase type

3It would be easy to add an option for the user to add a new
property to one of the types found for the id column. We chose
not to, as this is more a schema design problem than a data entry
one.

Also, user’s could add new types to existing objects, this too is
an item for future work.

Figure 2: The “Mouth” attribute of /geography/river maps to the “Outflow” column in the table

/film/film, the user can choose to display any properties
for those films present in Freebase. This provides direct ben-
efit to the user, as they can choose what attributes to display.
They are not limited to seeing only the static information
chosen by the authors of the page.

Implementation
We implemented our entire system in Javascript using the
Greasemonkey4 firefox extension (it should be trivial to con-
vert our system to a standalone firefox extension). To access
Freebase we query the public read and write APIs using the
Metaweb Query Language (MQL)5.

Implementing our entire system as a browser plugin
which directly queries Freebase has the advantage that it is
easy to distribute, and does not require a server to process
the data. It is worth noting, that this implementation is some-
what slow on large HTML tables due to the time needed to
query Freebase in addition to CPU time spent computing co-
sine and string edit distances. The tables in our evaluation
took about 15 seconds on average to load. We feel confi-
dent, however that this time could be substantially reduced
with sufficient engineering effort.

Evaluation
In order to evaluate our system, we measured performance
at matching table columns to attributes in Freebase. Note
that this also indirectly measures performance at identifying
types for columns, as this is part of the matching criteria.

We collected a set of 12 tables which met the following
criteria:

1. They contained relational data (each row represents a tu-
ple, each column an attribute).
• This requirement eliminates tables which are used for

formatting purposes, or tables where rows and columns
have no significance.

2. They have some overlap with data contained in Freebase.
• We feel it should be fairly obvious to users from the

lack of related types and attributes if a table does not
correspond to any data in Freebase.

These 12 tables contained a total of 61 non-key columns,
each of which we hand-labeled with a “ground-truth” Free-
base property. Out of the 61 columns, we found 39 (64%)
corresponded to an attribute existing in Freebase. Many of
the other columns represented attributes missing from Free-
base which could be added; again this is a schema design
issue which our system does not currently handle6.

Out of the 39 columns for which a good match exists, our
system found the correct property as its first guess for 30 of
them (or about 77% of the time). The rest of the matches
were mostly in the top 10 results presented to the user. A
histogram of the rank of the correct match is displayed in
figure 4.

4http://www.greasespot.net/
5http://mql.freebaseapps.com/
6Users can easily use the Freebase schema editor to add missing

properties, at which point our system could populate the instances.

position

F
re

qu
en

cy

0 10 20 30

0
5

10
15

20
25

30

Figure 4: Histogram of the rank of correct match for each of
the 39 columns for which such a match exists. For 77% of
the columns the correct match was the first guess.

Conclusions
We have presented a system for semi-automatically mapping
between HTML tables and Freebase, an online database.
Because data integration is rarely 100% accurate, some hu-
man supervision is needed in the process. We hope our sys-
tem will allow ordinary surfers to contribute large volumes
of structured data easily by quickly verifying our mapping
results. In addition, we provide some incentive for using our
system, by allowing users to view additional data not present
in the original table, but available in Freebase.

References
Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; and Ives,
Z. 2007. Dbpedia: A nucleus for a web of open data. In In
6th Intl Semantic Web Conference, Busan, Korea, 11–15.
Springer.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Tay-
lor, J. 2008. Freebase: a collaboratively created graph
database for structuring human knowledge. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 1247–1250. New
York, NY, USA: ACM.
Cafarella, M. J.; Halevy, A. Y.; Wang, D. Z.; 0002, E. W.;
and Zhang, Y. 2008. Webtables: exploring the power of
tables on the web. PVLDB 1(1):538–549.
Doan, A.; Domingos, P.; and Halevy, A. 2001. Reconcil-
ing schemas of disparate data sources: A machine-learning
approach. In In SIGMOD Conference, 509–520.
Hoffman, R.; Amershi, S.; Fogarty, J.; Patel, K.; Weld,
D.; and Wu, F. 2009. ”amplifying community content
creation with mixed-initiative information extraction”. In

(a) (b)

(c)

Figure 3: (a) A table of movies (b) Displaying a list of Freebase properties that can be shown (c) Table has been augmented
with directors and writers from Freebase

ACM Conference on Human Factors in Computing Systems
(CHI 2009).
Rahm, E., and Bernstein, P. A. 2001. A survey of ap-
proaches to automatic schema matching. The VLDB Jour-
nal 10(4):334–350.
Tuchinda, R.; Szekely, P.; and Knoblock, C. A. 2008.
Building mashups by example. In IUI ’08: Proceedings
of the 13th international conference on Intelligent user in-
terfaces, 139–148. New York, NY, USA: ACM.
Wu, F., and Weld, D. S. 2007. Autonomously semantifying
wikipedia. In CIKM ’07: Proceedings of the sixteenth ACM
conference on Conference on information and knowledge
management, 41–50. New York, NY, USA: ACM.

