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Abstract 

This  work  concerns  the  use  of  machine  learning 
techniques  (genetic  algorithms)  to  optimize  load 
balancing  policies  in  the  openMosix  distributed 
operating system. Parameters/alternative algorithms 
in  the  openMosix  kernel  were  dynamically 
altered/selected  based  on the results  of  a  genetic 
algorithm  fitness  function.   In  this  fashion  optimal 
parameter  settings  and  algorithms  choices  were 
sought  for  the  loading scenarios  used  as  the test 
cases.

1 Introduction

The  objective  of  this  work  is  to  discover  ways  to 
improve  the  openMosix  load  balancing  algorithm. 
The approach we have taken is to create entries in 
the /proc files which can be used to set parameter 
values and select alternative algorithms used in the 
kernel to apply a load balancing strategy. The /proc 
files  are  writable  from  user  processes  with 
appropriate permissions which creates the capability 
to write a user  land script  to execute a battery of 
tests,  evaluate  a  fitness  function,  and  set  the 
parameters to a different set of values determined by 
a genetic algorithm. In this fashion we can search for 
configurations which improve the performance of the 
system as defined by the fitness function. There are 
many criteria  which could  have been used for  the 
fitness function; throughput, response time etc. For 
these  tests  we  chose  a  fitness  function  which 
measures throughput. 

2 Background MOSIX and openMOSIX 

This work utilizes the readily available open source 
distributed  operating  system  openMOSIX.   The 
openMosix  project  [2, 11]  is  derived  from  MOSIX 
[3,5,6,10]  and  is  released  under  an  open  source 
software license. MOSIX has a long history having 
been  implemented  on  top  of  various  versions  of 
UNIX.  The  current  version  of  MOSIX  exists  as  a 
patch  to  a  Linux  kernel.   At  the  time  the  work 
described here was carried out the stable version of 
openMOSIX was a patch to the 2.4 Linux kernel. The 

2.6  Linux  kernel  openMOSIX  patch  was  in  the 
process of being developed.  

2.1 Load Balancing in openMosix

The  standard  load  balancing  policy for  openMosix 
uses  a  probabilistic,  decentralized  approach  to 
disseminate  load  balancing  information  to  other 
nodes in the cluster. [4] This allows load information 
to be distributed efficiently while providing excellent 
scalability. The major components of the openMosix 
load  balancing  scheme  are  the  information 
dissemination and migration kernel daemons.   The 
information  dissemination  daemon  runs  on  each 
node and is responsible for  sending and receiving 
load messages to/from other nodes.  The migration 
daemon  receives  migration  requests  from  other 
nodes and, if willing, carries out the migration of the 
process.  Thus,  the  system  is  sender  initiated  to 
offload excess load. In addition, a third daemon, the 
memory daemon, is started at system initialization to 
obtain an ongoing profile of memory utilization.

The information daemon has two basic functions, the 
sending  and  receiving  of  load  information.  The 
sending part operates as follows. A periodic alarm, 
set  to  1  second  in  the  current  implementation,  is 
used to trigger the sending of load information. Two 
nodes are selected at random from two groups.  The 
first group consists of all nodes that have contacted 
us "recently" with their load information. The second 
group is chosen from all nodes in the cluster.1

 These two nodes are then informed of the sending 
node's  current  load.  The  load  is  calculated  as 
follows.  

The load calculation is attached to the clock interrupt 
routine.  At  each  clock  interrupt  the  number  of 
running  processes  is  added  to  an  accumulator. 

1 The list of nodes comes from a configuration file. 
It is possible to select a node which is not up. 
openMOSIX can also utilize an auto discover 
option in which case only nodes that have been in 
operation since this node booted will be added to 
the list.  It is still possible to select a node which is 
not currently up.
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When  the number  of  clock  interrupts  completes  a 
second the load is calculated. The accumulated load 
is  first  normalized  to  the  CPU  speed  of  this 
processor  using  the  maximum  CPU speed  in  the 
system  versus  the  local  node's  calculated  CPU 
speed.2 The load is computed as a combination of 
the old load modified by a decay value added to the 
newly accumulated load number.  The system then 
compares the accumulated load for the last second 
with  a  value  representing  the  highest  load  it  has 
recorded over any one second period. The maximum 
of the two is retained. If the current load is smaller 
than the current maximum load the new maximum 
load is computed to be the old maximum load times 
7 plus the newly accumulated load all divided by 8. In 
this  fashion,  the  maximum  observed  load  decays 
away gradually if  the current  load continues  to  be 
smaller than the maximum. 

The  load  information  sent  to  the  two  randomly 
selected nodes is different from this load calculated 
for  internal use. This is part of the strategy used to 
prevent  migration thrashing.  The  actual  load value 
sent  to other  nodes,  known as the  export  load,  is 
slightly higher than the internally calculated load. The 
export load value is a combination of the decaying 
maximum  load  value  described  above  and  a 
stabilizing  factor.  In  addition,  the  export  load  is 
increased by the CPU utilized in the last second by 
any process “recently" migrated to this node. This is 
done to prevent receiving too many new processes 
too quickly. Finally a value is added which increases 
with  the  number  of  processes  currently  in  the 
process table to make nodes with nearly full process 
tables  less  attractive  than  those  with  fewer 
processes.  

The  receiving  portion  of  the  information 
dissemination  daemon  performs  the  following 
actions.  Upon  receiving  load  information  from 
another node the information is added to the local 
load  vector.  The  standard  implementation  simply 
utilizes  a  circular  queue  of  eight  entries.  The  first 
entry is reserved for this node's internal load. Thus, 
the  oldest  information  is  overwritten  by  newly 
received information. After the new load information 
has been placed in the queue, a check is made to 
determine if there exists a node in the eight entries 
that has a lower load than this node.  As we have 
seen, the export load sent by the other processors is 
padded somewhat when compared to our internally 
calculated local load.  A target node for the migration 
is NOT selected at this point. Instead the choose () 

2 The maximum CPU value is settable by the 
operator by placing a value in a file in /proc. It 
would be better it at initialization a node exchange 
values with each other node. 

function is executed to determine which process will 
be  selected  for  migration.  Determination  of  the 
process  to  be  migrated  is  based  on  the  following 
criteria.  

Processes  can  be  locked,  meaning  they  are  not 
subject to migration. This feature is accessible as an 
SVC and from the command line. If a process is still 
in  its  creation  phase  it  is  not  considered  by  the 
choose() function. If a process is in the act of being 
transferred  to  another  node  it  is  obviously  not 
considered. If a process is using a shared memory 
region it is not considered. If  any process is found 
which has already been selected for  migration the 
search is aborted.  If a process has not accumulated 
enough CPU usage to reach residency on this node 
then  it  is  not  considered  for  migration.   The 
residency period is set to an estimate of the amount 
of time it would take to migrate the process over the 
network.  There  is  also  a  threshold  value  of  CPU 
utilization which must  be met  for  a  process  to  be 
considered  for  migration.  The  attractiveness  of  a 
process  as  a  candidate  is  based  on  its  CPU use 
since we last visited its PCB looking for candidates. 
This  is  combined  with  a  value  which  attempts  to 
measure  the  process'  contribution  to  the  load 
currently  on  the  machine.   Processes  which  are 
"frequent forkers" are given an offset to make them 
more attractive for migration under the reasoning the 
once migrated they will continue to fork children thus 
spreading the load as they are  bounced from one 
node to another.

Once the process to be migrated has been selected 
a  flag is  set  in  its  PCB so that  the next  time the 
system  attempts  to  dispatch  this  process  it  will 
instead be migrated. Just before placing a process 
into  execution  the  dispatcher  looks  to  see  if  the 
process  is  to  be migrated.  If  it  is,  the  consider  () 
function is executed. The consider() function runs in 
its own kernel thread and the dispatcher goes about 
its normal routine. The consider() function will select 
the  target  node  for  the  migration.  The  target  is 
determined  by  computing  the  opportunity  cost for 
each of the eight nodes in the local load vector. For 
an explanation of the concept of an opportunity cost 
for  migration target  selection refer  to the paper by 
Yair Amir et al.  [1]   For a simplified explanation of 
the  way  the  opportunity  cost  is  computed  in 
openMOSIX consider the sum  (current cpu usage /  
maximum cpu  usage)  +  (current  memory  usage  /  
maximum memory usage) for each node in the load 
vector. The  "marginal cost" is the amount this sum 
would increase if the process was migrated to that 
node. The idea is that minimizing this marginal cost 
provides the optimal target node for migration.  The 
node with the least opportunity cost is selected.  An 
attempt is made to migrate the selected process to 
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this  node.  The  prospective  receiving  node  may 
decline the migration in which case the next node in 
an array sorted by opportunity cost is tried.  The local 
node is included in the target selection process. The 
local  node  is  made  less  attractive  by  adding  in 
offsets for situations such as nearly out of memory or 
the process table is nearly full etc. If the local node is 
selected then the process is simply "unmarked" for 
migration. 

2.2 Observations

You will observe that whenever new load information 
arrives from another node, finding a node in the load 
vector (7 external nodes in the standard kernel) with 
a load less than this machine triggers the search of 
all process  control  blocks  in  the  system.  It  is 
possible to do all the work to search all the PCBs to 
select  a  process  and  then  not  have  anywhere  to 
migrate it. It is also possible that the local node may 
end up with the least  opportunity cost  and so the 
selected process is not migrated. In this case all the 
effort of the choose () and consider () functions was 
for  naught.  In  addition,  all nodes  selected  as 
migration  targets  could  refuse  to  accept  the 
migration, although this is not likely. 

It is import to understand that the system does not 
directly incorporate a lower bound for the difference 
between internal load and another node's load. This 
is  handled  by  each  node  advertising  a  slightly 
modified  version  of  its  load  rather  than  the  value 
computed for internal use, the internal load versus 
the export load. Thus, there is in a sense a built-in 
offset  between  our  load  value  and  the  numbers 
found  in  the  load  vector.  Each  machine  believes 
each other machine is slightly busier than it really is. 
This  built-in  offset  accomplishes  two  things.  It 
prevents the long search of all process control block 
in  the  event  that  the  difference  between the  local 
node and the remote nodes in marginal. In addition, 
it  prevents,  to  some  degree,  migration  thrashing 
which might occur if no retarding factor were applied. 

3 Genetic Algorithm Fitness Function Parameter 
Space

You will observe from the description of the standard 
openMOSIX load balancing algorithm that there are 
a number of “voodoo constants” which appear in the 
equations  used  to  regulate  the  load  balancing 
algorithms.  For each of these constants a /proc file 
entry has been created in order to test a range of 
values.   Additionally,  we  provide  a  number  of 
alternative algorithms to be tested in conjunction with 
the various parameter settings. Below we describe 
each parameter / algorithm choice dimension in the 
search space.

3.1 Reporting Frequency (MF)

The  reporting  frequency  used  in  the  standard 
openMOSIX load balancing algorithm is one second. 
This value is, of course, somewhat arbitrary. We turn 
the reporting frequency into a parameter that can be 
varied between 0.01 of a second and 2 seconds in 
increments of 0.01 of a second.  The way the code is 
implemented  in  the  standard  kernel  the  load 
reporting frequency is intimately tied to the calculated 
load  values.  Every  1/100th  second  each  node 
receives a timer interrupt and adds the current length 
of the run queue into an accumulator [11]. After t of 
these time intervals the local load is calculated and 
sent off  to two randomly selected nodes. If  t  is too 
large, then the spread of information is too slow. On 
the other  hand if  it  is  too  small  then the reported 
loads are inaccurate and subject to transient spikes 
as the estimation of load is based on sampling the 
length of the run queue.

3.2 Amount of Hearsay Information 
(HEARSAY_INFO)

In  one of  the  predecessors  to  the  current  MOSIX 
system [4], the load reporting messages included not 
only information about the sending node’s load, but 
other  information  from  its  load  vector  as  well.  In 
openMOSIX,  however,  no  hearsay  information  is 
reported due to the overhead of integrating the newly 
received values into the old load vector [5]. Recent 
work [8] has suggested that hearsay information may 
improve the response time in openMosix. We have 
thus  made  the  amount  of  hearsay  information  a 
parameter of the search space. Note that it would be 
possible for each node to send a different amount of 
hearsay information. We have chosen not to allow 
this degree of variability in our current experiments 
due to the combinatorial explosion of the size of the 
search space this would cause and the difficulty in 
interpreting the results. In the current experiments, 
when the degree of hearsay information of varied the 
same value is applied to all nodes equally. This value 
varies between 1 and the number of entries kept in 
the internal load vector.

3.3 Load Vector Size (INFO_WIN)

The load vector size, λ, is considered a critical factor 
in the load balancing algorithm [8]. It must be large 
enough to facilitate rapid information dissemination, 
yet  not  so  large  that  outdated  information  is 
propagated.  It  is  widely believed that  it  should  be 
tuned for each specific cluster of computers. In the 
original  openMosix  kernel,  the  load  vector  is  a 
compile-time constant with a default value of 8 which 
allows for retaining 7 external load values.

We use the load vector size as a parameter of the 
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search  space,  and  let  it  vary  between  1  and  the 
number of nodes in the cluster.

3.4 LOAD_TARGETS_ANY 

This is the number of nodes to send load messages 
to every MF/100 second(s). This value ranges from 1 
to half the load vector size. In the standard kernel it 
is always 2.

3.5 LOAD_TARGETS_UP 

This is the number of nodes to send load messages 
to every MF/100 second(s)  that  we have talked to 
recently. This parameter ranges from 1 to half load 
vector size. The standard kernel attempts to pick one 
of the two nodes it reports to, to be one that has had 
a recent communication. The rational given for this is 
that it causes newly joined nodes to be more quickly 
assimilated into the system.

3.6 MIN_CHOOSE 

This is the minimum number of tasks to look at in 
choose ().  The standard kernel traverses the entire 
task structure list. In our experiments the fraction of 
the  total  list  to  traverse  can  be  varied.  This 
parameter allows us to set a minimum number to be 
traversed  regardless  of  the  number  of  processes 
currently executing.

3.7 choose_frac 

This  is  the  fraction  of  the  task  list  to  traverse  in 
choose (), see above. The motivation for traversing 
only a  fraction of  the total  processes  comes  from 
considerations  similar  to  the  reasoning  behind 
statistical  best  fit  algorithms used  to  search  for 
storage  area  allocations  in  real  memory  variable 
partition  storage allocation systems.   Refer  to  any 
standard operating systems text for a discussion of 
this concept.

3.8 VV1 

In  order  to  prevent  migration  thrashing the  load 
calculation  is  not  allowed  to  change  dramatically 
from one calculation to the next. The method used in 
the standard kernel to accomplish this is to multiply 
the old load by a fraction to “decay it away” and allow 
the rest of the load to be represented by the current 
load calculation. The standard kernel uses 7/8 of the 
old  load  and  1/8th of  the  new  value.  In  our 
experiments we allow these proportions to vary. 

load = (VV1/8)*old_load + (8- VV1)/8*new_load

where VV1 varies from 1 to 7.

3.9 INVERSE_LOAD_REPORTING 

This  value  determines  whether  we are  using  load 
reporting controlled by the MF value or are running 
an alternative algorithm known as inverse response 
ratio  load  reporting.  [8].  This  approach  was 
implemented  in  the  DICE  distributed  operating 
system  in  a  slightly  different  form  from  what  is 
implemented in our current experiments.  The basic 
idea  behind  the  inverse  reporting  frequency 
algorithm is that the busier a system is the less often 
it will notify other systems of its load. If a system is 
very busy then other nodes are not concerned with 
being up to date regarding its load, as that system 
has no excess load to offer other systems anyway. 
This  approach also has  the nice property that  the 
overhead  associated  with  the  algorithm  decreases 
the  busier  the  system  becomes.  It  also  has  the 
interesting property that an “infinitely busy” system is 
essentially a crashed node, as it will never report its 
load.  This information is inferred from the lack of a 
load  message.  For  further  information  concerning 
the inverse response ratio approach see [8]. 

3.10 The Linux /proc File system

New files were created for each of these values in 
the  Linux  /proc  file  system.  Thus  a  user-space 
process, with appropriate permissions,  can set and 
get the current value of these parameters by simply 
reading  or  writing  a  file.  The  ability  to  search  the 
parameter space from user space is essential to this 
work,  as  the  overhead  of  running  the  GA  in  the 
kernel would skew the results.

4. Hypothesis Representation and Evaluation

Hypotheses are represented as a set of values for 
the parameters of the load balancing algorithm. To 
measure the fitness of a given hypothesis we set the 
hypotheses’ parameter values on each of the nodes 
in the cluster.  Next  we start  up a fixed number of 
processes doing a fixed amount of computation. As 
each  of  these  processes  exits  it  records  the 
completion times in log files. The fitness of a given 
hypothesis  is then the reciprocal  of  the sum of  all 
these  times.  Using  the  reciprocal  gives  us  the 
property  that  more  favorable  hypotheses  have  a 
higher fitness value, which is useful for the roulette 
selection  used  in  the  GA’s  Crossover  and  Mutate 
operations.

The Genetic Algorithm used is as follows:

Generate a random population, P
while |P| > f do
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Evaluate the fitness of each m 2 P
Write each m 2 P to the log file
Crossover (P)
Mutate (P)

Remove the r|P| least fit members from P
end while

4.1 Preliminary Runs

The approach described was run on a cluster of 11 
homogeneous  Pentium  IV  class  machines  for  48 
hours using a subset  of  the parameters  described 
above  in  order  to  test  the  approach.  These 
preliminary  results  indicated  that  for  that  the 
stressors  used  and  using  only  throughput  as  the 
fitness  function  we  can  improve  on  the  standard 
openMOSIX parameters for the cluster used in the 
experiment.  The  stressors  used  in  the  preliminary 
runs  were  completely  synthetic  tests  which  were 
totally CPU bound processes. Successive spikes of 
90 processes each were injected on two fixed nodes 
for  repeatability  from  one  iteration  of  the  genetic 
algorithm to the next.

4.2 Subsequent Experiment Sets

The  system  was  executed  on  a  collection  of  13 
heterogeneous  nodes  using  three  different  initial 
population sizes.  For each of the three subsequent 
tests the experiment was configured to remove up to 
half  of  the  population  after  each  generation 
depending on how promising the member was. Next 
the  GA  performed  the  crossover  and  mutation 
phases.  The  experiments  were  set  to  terminate 
when the population sized was lass than or equal to 
four.   Only  three  parameters  were  allowed  to  be 
varied for these three experiments. This is because it 
took  approximately  one  week  of  cluster  time  to 
execute  the  experiment  varying  only  three 
parameters across the search space. We wished to 
obtain  some  initial  results  before  embarking  on 
longer tests.  The three parameter  values varied in 
these tests were INFO_WIN, MF, and choose_frac. 
We  are  currently running  the  experiments  with  all 
parameters  being  varied  and  will  in  all  probability 
have those results available by the time this paper is 
presented

The  first  of  the  three  tests  utilized  an  initial 
population  size  of   120.    This  test  ran  for  7 
generations.  The  log  of  this  and  all  other  tests 
referred to herein can be accessed at this link.

The fitness function values, which are  the reciprocal 
of the total of all process run times is shown below 
with the parameter values which produced them for 
the seventh generation. 

INFO_WIN choose_frac MF fitness
6 9/20 86 0.0005

681818
181818
18

6 12/20 46 0.0005
646527
385657
82

7 20/20 71 0.0005
128205
128205
13

8 12/20 86 0.0005
197505
197505
2

Table 1

Recall that the higher the value of the 
fitness function the better it is. 

The second of the three tests used an initial 
population size of 200.  This test required 8 
generations with a final population of 4. 

INFO_WIN choose_frac MF fitness

11 13/20 40 0.000574
7126436
78161

11 3/20 62 0.000542
8881650
38002

13 9/20 51 0.000556
7928730
51225

11 13/20 51 0.000582
7505827
50583

Table 2

The third and final experiment used an 
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initial population size of 300.  This test ran 
for nine generations with a final population 
size of three.

INFO_WIN choose_frac MF fitness

12 13/20 221 0.000562
4296962
87964

11 6/20 36 0.000578
3689994
21631

11 13/20 221 0.000499
0019960
07984

Table 3

5. Conclusions

The  following  chart  shows  the  elapsed  execution 
times of the sum of all processes in the tests versus 
generations.  It  is clear from these results that we 
are able to improve the throughput of the system for 
the synthetic loads we utilized versus the standard 
kernel  configuration.  These  initial  results  were 
obtained  varying  only  three  of  the  parameters 
available to us in the modified kernel. We anticipate 
that  results  of  varying all  parameters  will  produce 
even greater improvements.
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