
Machine Learning Approach to Tuning Distributed Operating System Load Balancing
Algorithms

Dr. J. Michael Meehan
Computer Science Department
Western Washington University
Bellingham, Washington, 98225 USA
meehan@wwu.edu

Alan Ritter
Computer Science Department
Western Washington University
Bellingham, Washington, 98225 USA
ritter.alan@gmail.com

Abstract

This work concerns the use of machine learning
techniques (genetic algorithms) to optimize load
balancing policies in the openMosix distributed
operating system. Parameters/alternative algorithms
in the openMosix kernel were dynamically
altered/selected based on the results of a genetic
algorithm fitness function. In this fashion optimal
parameter settings and algorithms choices were
sought for the loading scenarios used as the test
cases.

1 Introduction

The objective of this work is to discover ways to
improve the openMosix load balancing algorithm.
The approach we have taken is to create entries in
the /proc files which can be used to set parameter
values and select alternative algorithms used in the
kernel to apply a load balancing strategy. The /proc
files are writable from user processes with
appropriate permissions which creates the capability
to write a user land script to execute a battery of
tests, evaluate a fitness function, and set the
parameters to a different set of values determined by
a genetic algorithm. In this fashion we can search for
configurations which improve the performance of the
system as defined by the fitness function. There are
many criteria which could have been used for the
fitness function; throughput, response time etc. For
these tests we chose a fitness function which
measures throughput.

2 Background MOSIX and openMOSIX

This work utilizes the readily available open source
distributed operating system openMOSIX. The
openMosix project [2, 11] is derived from MOSIX
[3,5,6,10] and is released under an open source
software license. MOSIX has a long history having
been implemented on top of various versions of
UNIX. The current version of MOSIX exists as a
patch to a Linux kernel. At the time the work
described here was carried out the stable version of
openMOSIX was a patch to the 2.4 Linux kernel. The

2.6 Linux kernel openMOSIX patch was in the
process of being developed.

2.1 Load Balancing in openMosix

The standard load balancing policy for openMosix
uses a probabilistic, decentralized approach to
disseminate load balancing information to other
nodes in the cluster. [4] This allows load information
to be distributed efficiently while providing excellent
scalability. The major components of the openMosix
load balancing scheme are the information
dissemination and migration kernel daemons. The
information dissemination daemon runs on each
node and is responsible for sending and receiving
load messages to/from other nodes. The migration
daemon receives migration requests from other
nodes and, if willing, carries out the migration of the
process. Thus, the system is sender initiated to
offload excess load. In addition, a third daemon, the
memory daemon, is started at system initialization to
obtain an ongoing profile of memory utilization.

The information daemon has two basic functions, the
sending and receiving of load information. The
sending part operates as follows. A periodic alarm,
set to 1 second in the current implementation, is
used to trigger the sending of load information. Two
nodes are selected at random from two groups. The
first group consists of all nodes that have contacted
us "recently" with their load information. The second
group is chosen from all nodes in the cluster.1

 These two nodes are then informed of the sending
node's current load. The load is calculated as
follows.

The load calculation is attached to the clock interrupt
routine. At each clock interrupt the number of
running processes is added to an accumulator.

1 The list of nodes comes from a configuration file.
It is possible to select a node which is not up.
openMOSIX can also utilize an auto discover
option in which case only nodes that have been in
operation since this node booted will be added to
the list. It is still possible to select a node which is
not currently up.

122

mailto:meehan@wwu.edu

When the number of clock interrupts completes a
second the load is calculated. The accumulated load
is first normalized to the CPU speed of this
processor using the maximum CPU speed in the
system versus the local node's calculated CPU
speed.2 The load is computed as a combination of
the old load modified by a decay value added to the
newly accumulated load number. The system then
compares the accumulated load for the last second
with a value representing the highest load it has
recorded over any one second period. The maximum
of the two is retained. If the current load is smaller
than the current maximum load the new maximum
load is computed to be the old maximum load times
7 plus the newly accumulated load all divided by 8. In
this fashion, the maximum observed load decays
away gradually if the current load continues to be
smaller than the maximum.

The load information sent to the two randomly
selected nodes is different from this load calculated
for internal use. This is part of the strategy used to
prevent migration thrashing. The actual load value
sent to other nodes, known as the export load, is
slightly higher than the internally calculated load. The
export load value is a combination of the decaying
maximum load value described above and a
stabilizing factor. In addition, the export load is
increased by the CPU utilized in the last second by
any process “recently" migrated to this node. This is
done to prevent receiving too many new processes
too quickly. Finally a value is added which increases
with the number of processes currently in the
process table to make nodes with nearly full process
tables less attractive than those with fewer
processes.

The receiving portion of the information
dissemination daemon performs the following
actions. Upon receiving load information from
another node the information is added to the local
load vector. The standard implementation simply
utilizes a circular queue of eight entries. The first
entry is reserved for this node's internal load. Thus,
the oldest information is overwritten by newly
received information. After the new load information
has been placed in the queue, a check is made to
determine if there exists a node in the eight entries
that has a lower load than this node. As we have
seen, the export load sent by the other processors is
padded somewhat when compared to our internally
calculated local load. A target node for the migration
is NOT selected at this point. Instead the choose ()

2 The maximum CPU value is settable by the
operator by placing a value in a file in /proc. It
would be better it at initialization a node exchange
values with each other node.

function is executed to determine which process will
be selected for migration. Determination of the
process to be migrated is based on the following
criteria.

Processes can be locked, meaning they are not
subject to migration. This feature is accessible as an
SVC and from the command line. If a process is still
in its creation phase it is not considered by the
choose() function. If a process is in the act of being
transferred to another node it is obviously not
considered. If a process is using a shared memory
region it is not considered. If any process is found
which has already been selected for migration the
search is aborted. If a process has not accumulated
enough CPU usage to reach residency on this node
then it is not considered for migration. The
residency period is set to an estimate of the amount
of time it would take to migrate the process over the
network. There is also a threshold value of CPU
utilization which must be met for a process to be
considered for migration. The attractiveness of a
process as a candidate is based on its CPU use
since we last visited its PCB looking for candidates.
This is combined with a value which attempts to
measure the process' contribution to the load
currently on the machine. Processes which are
"frequent forkers" are given an offset to make them
more attractive for migration under the reasoning the
once migrated they will continue to fork children thus
spreading the load as they are bounced from one
node to another.

Once the process to be migrated has been selected
a flag is set in its PCB so that the next time the
system attempts to dispatch this process it will
instead be migrated. Just before placing a process
into execution the dispatcher looks to see if the
process is to be migrated. If it is, the consider ()
function is executed. The consider() function runs in
its own kernel thread and the dispatcher goes about
its normal routine. The consider() function will select
the target node for the migration. The target is
determined by computing the opportunity cost for
each of the eight nodes in the local load vector. For
an explanation of the concept of an opportunity cost
for migration target selection refer to the paper by
Yair Amir et al. [1] For a simplified explanation of
the way the opportunity cost is computed in
openMOSIX consider the sum (current cpu usage /
maximum cpu usage) + (current memory usage /
maximum memory usage) for each node in the load
vector. The "marginal cost" is the amount this sum
would increase if the process was migrated to that
node. The idea is that minimizing this marginal cost
provides the optimal target node for migration. The
node with the least opportunity cost is selected. An
attempt is made to migrate the selected process to

123

this node. The prospective receiving node may
decline the migration in which case the next node in
an array sorted by opportunity cost is tried. The local
node is included in the target selection process. The
local node is made less attractive by adding in
offsets for situations such as nearly out of memory or
the process table is nearly full etc. If the local node is
selected then the process is simply "unmarked" for
migration.

2.2 Observations

You will observe that whenever new load information
arrives from another node, finding a node in the load
vector (7 external nodes in the standard kernel) with
a load less than this machine triggers the search of
all process control blocks in the system. It is
possible to do all the work to search all the PCBs to
select a process and then not have anywhere to
migrate it. It is also possible that the local node may
end up with the least opportunity cost and so the
selected process is not migrated. In this case all the
effort of the choose () and consider () functions was
for naught. In addition, all nodes selected as
migration targets could refuse to accept the
migration, although this is not likely.

It is import to understand that the system does not
directly incorporate a lower bound for the difference
between internal load and another node's load. This
is handled by each node advertising a slightly
modified version of its load rather than the value
computed for internal use, the internal load versus
the export load. Thus, there is in a sense a built-in
offset between our load value and the numbers
found in the load vector. Each machine believes
each other machine is slightly busier than it really is.
This built-in offset accomplishes two things. It
prevents the long search of all process control block
in the event that the difference between the local
node and the remote nodes in marginal. In addition,
it prevents, to some degree, migration thrashing
which might occur if no retarding factor were applied.

3 Genetic Algorithm Fitness Function Parameter
Space

You will observe from the description of the standard
openMOSIX load balancing algorithm that there are
a number of “voodoo constants” which appear in the
equations used to regulate the load balancing
algorithms. For each of these constants a /proc file
entry has been created in order to test a range of
values. Additionally, we provide a number of
alternative algorithms to be tested in conjunction with
the various parameter settings. Below we describe
each parameter / algorithm choice dimension in the
search space.

3.1 Reporting Frequency (MF)

The reporting frequency used in the standard
openMOSIX load balancing algorithm is one second.
This value is, of course, somewhat arbitrary. We turn
the reporting frequency into a parameter that can be
varied between 0.01 of a second and 2 seconds in
increments of 0.01 of a second. The way the code is
implemented in the standard kernel the load
reporting frequency is intimately tied to the calculated
load values. Every 1/100th second each node
receives a timer interrupt and adds the current length
of the run queue into an accumulator [11]. After t of
these time intervals the local load is calculated and
sent off to two randomly selected nodes. If t is too
large, then the spread of information is too slow. On
the other hand if it is too small then the reported
loads are inaccurate and subject to transient spikes
as the estimation of load is based on sampling the
length of the run queue.

3.2 Amount of Hearsay Information
(HEARSAY_INFO)

In one of the predecessors to the current MOSIX
system [4], the load reporting messages included not
only information about the sending node’s load, but
other information from its load vector as well. In
openMOSIX, however, no hearsay information is
reported due to the overhead of integrating the newly
received values into the old load vector [5]. Recent
work [8] has suggested that hearsay information may
improve the response time in openMosix. We have
thus made the amount of hearsay information a
parameter of the search space. Note that it would be
possible for each node to send a different amount of
hearsay information. We have chosen not to allow
this degree of variability in our current experiments
due to the combinatorial explosion of the size of the
search space this would cause and the difficulty in
interpreting the results. In the current experiments,
when the degree of hearsay information of varied the
same value is applied to all nodes equally. This value
varies between 1 and the number of entries kept in
the internal load vector.

3.3 Load Vector Size (INFO_WIN)

The load vector size, λ, is considered a critical factor
in the load balancing algorithm [8]. It must be large
enough to facilitate rapid information dissemination,
yet not so large that outdated information is
propagated. It is widely believed that it should be
tuned for each specific cluster of computers. In the
original openMosix kernel, the load vector is a
compile-time constant with a default value of 8 which
allows for retaining 7 external load values.

We use the load vector size as a parameter of the

124

search space, and let it vary between 1 and the
number of nodes in the cluster.

3.4 LOAD_TARGETS_ANY

This is the number of nodes to send load messages
to every MF/100 second(s). This value ranges from 1
to half the load vector size. In the standard kernel it
is always 2.

3.5 LOAD_TARGETS_UP

This is the number of nodes to send load messages
to every MF/100 second(s) that we have talked to
recently. This parameter ranges from 1 to half load
vector size. The standard kernel attempts to pick one
of the two nodes it reports to, to be one that has had
a recent communication. The rational given for this is
that it causes newly joined nodes to be more quickly
assimilated into the system.

3.6 MIN_CHOOSE

This is the minimum number of tasks to look at in
choose (). The standard kernel traverses the entire
task structure list. In our experiments the fraction of
the total list to traverse can be varied. This
parameter allows us to set a minimum number to be
traversed regardless of the number of processes
currently executing.

3.7 choose_frac

This is the fraction of the task list to traverse in
choose (), see above. The motivation for traversing
only a fraction of the total processes comes from
considerations similar to the reasoning behind
statistical best fit algorithms used to search for
storage area allocations in real memory variable
partition storage allocation systems. Refer to any
standard operating systems text for a discussion of
this concept.

3.8 VV1

In order to prevent migration thrashing the load
calculation is not allowed to change dramatically
from one calculation to the next. The method used in
the standard kernel to accomplish this is to multiply
the old load by a fraction to “decay it away” and allow
the rest of the load to be represented by the current
load calculation. The standard kernel uses 7/8 of the
old load and 1/8th of the new value. In our
experiments we allow these proportions to vary.

load = (VV1/8)*old_load + (8- VV1)/8*new_load

where VV1 varies from 1 to 7.

3.9 INVERSE_LOAD_REPORTING

This value determines whether we are using load
reporting controlled by the MF value or are running
an alternative algorithm known as inverse response
ratio load reporting. [8]. This approach was
implemented in the DICE distributed operating
system in a slightly different form from what is
implemented in our current experiments. The basic
idea behind the inverse reporting frequency
algorithm is that the busier a system is the less often
it will notify other systems of its load. If a system is
very busy then other nodes are not concerned with
being up to date regarding its load, as that system
has no excess load to offer other systems anyway.
This approach also has the nice property that the
overhead associated with the algorithm decreases
the busier the system becomes. It also has the
interesting property that an “infinitely busy” system is
essentially a crashed node, as it will never report its
load. This information is inferred from the lack of a
load message. For further information concerning
the inverse response ratio approach see [8].

3.10 The Linux /proc File system

New files were created for each of these values in
the Linux /proc file system. Thus a user-space
process, with appropriate permissions, can set and
get the current value of these parameters by simply
reading or writing a file. The ability to search the
parameter space from user space is essential to this
work, as the overhead of running the GA in the
kernel would skew the results.

4. Hypothesis Representation and Evaluation

Hypotheses are represented as a set of values for
the parameters of the load balancing algorithm. To
measure the fitness of a given hypothesis we set the
hypotheses’ parameter values on each of the nodes
in the cluster. Next we start up a fixed number of
processes doing a fixed amount of computation. As
each of these processes exits it records the
completion times in log files. The fitness of a given
hypothesis is then the reciprocal of the sum of all
these times. Using the reciprocal gives us the
property that more favorable hypotheses have a
higher fitness value, which is useful for the roulette
selection used in the GA’s Crossover and Mutate
operations.

The Genetic Algorithm used is as follows:

Generate a random population, P
while |P| > f do

125

Evaluate the fitness of each m 2 P
Write each m 2 P to the log file
Crossover (P)
Mutate (P)

Remove the r|P| least fit members from P
end while

4.1 Preliminary Runs

The approach described was run on a cluster of 11
homogeneous Pentium IV class machines for 48
hours using a subset of the parameters described
above in order to test the approach. These
preliminary results indicated that for that the
stressors used and using only throughput as the
fitness function we can improve on the standard
openMOSIX parameters for the cluster used in the
experiment. The stressors used in the preliminary
runs were completely synthetic tests which were
totally CPU bound processes. Successive spikes of
90 processes each were injected on two fixed nodes
for repeatability from one iteration of the genetic
algorithm to the next.

4.2 Subsequent Experiment Sets

The system was executed on a collection of 13
heterogeneous nodes using three different initial
population sizes. For each of the three subsequent
tests the experiment was configured to remove up to
half of the population after each generation
depending on how promising the member was. Next
the GA performed the crossover and mutation
phases. The experiments were set to terminate
when the population sized was lass than or equal to
four. Only three parameters were allowed to be
varied for these three experiments. This is because it
took approximately one week of cluster time to
execute the experiment varying only three
parameters across the search space. We wished to
obtain some initial results before embarking on
longer tests. The three parameter values varied in
these tests were INFO_WIN, MF, and choose_frac.
We are currently running the experiments with all
parameters being varied and will in all probability
have those results available by the time this paper is
presented

The first of the three tests utilized an initial
population size of 120. This test ran for 7
generations. The log of this and all other tests
referred to herein can be accessed at this link.

The fitness function values, which are the reciprocal
of the total of all process run times is shown below
with the parameter values which produced them for
the seventh generation.

INFO_WIN choose_frac MF fitness
6 9/20 86 0.0005

681818
181818
18

6 12/20 46 0.0005
646527
385657
82

7 20/20 71 0.0005
128205
128205
13

8 12/20 86 0.0005
197505
197505
2

Table 1

Recall that the higher the value of the
fitness function the better it is.

The second of the three tests used an initial
population size of 200. This test required 8
generations with a final population of 4.

INFO_WIN choose_frac MF fitness

11 13/20 40 0.000574
7126436
78161

11 3/20 62 0.000542
8881650
38002

13 9/20 51 0.000556
7928730
51225

11 13/20 51 0.000582
7505827
50583

Table 2

The third and final experiment used an

126

http://faculty.cs.wwu.edu/meehan/Research/Ideas/default.htm

initial population size of 300. This test ran
for nine generations with a final population
size of three.

INFO_WIN choose_frac MF fitness

12 13/20 221 0.000562
4296962
87964

11 6/20 36 0.000578
3689994
21631

11 13/20 221 0.000499
0019960
07984

Table 3

5. Conclusions

The following chart shows the elapsed execution
times of the sum of all processes in the tests versus
generations. It is clear from these results that we
are able to improve the throughput of the system for
the synthetic loads we utilized versus the standard
kernel configuration. These initial results were
obtained varying only three of the parameters
available to us in the modified kernel. We anticipate
that results of varying all parameters will produce
even greater improvements.

References

1. [Ami00] AMIR Y., AWERBUCH B., BARAK A., et
al. 2000. An Opportunity Cost Approach for Job As-
signment in a Scalable Computing Cluster. IEEE
Tran. Parallel and Distributed Systems 7, 760-768.

2. [Bar] BAR M. Introduction to openMosix. From the
openMosix web site, in the "Documentation" section.

3. [Bar85] A. Barak and A. Litman. “MOSIX: A Multi-
computer Distributed Operating System.”, Software-
Practice and Experience, 15(8):725-737, August
1985

4. [Bar85] BARAK, A. AND SHILOH, A. 1985. A Dis-
tributed Load-balancing Policy for a Multicomputer.
Software: Practice & Experience 15, 901-913.

5. [Bar93] BARAK, A., GUDAY, S., WHEELER,
R.G.The MOSIX Distributed Operating System -
Load Balancing for UNIX. Lecture Notes in Comput-
er Science Vol. 672 Springer 1993.

6. [Bar98] BARAK, A., LA'ADAN, O. 1998. The
MOSIX multicomputer operating system for high per-
formance cluster computing. Future Generation
Computer Systems 13, 361-372.

7. [Mee95] Distributed Interpretive Computing Envi-
ronment (DICE): A Tool for Prototyping Distributed
Operating Systems, J. Michael Meehan, in Teraflop
Computing and New Grand Challenge Applications,
pg. 367-373, ed. Rajiv Kalia and Priya Vashishta
(eds.) , Nova Science Publishers, Inc. 1995, ISBN 1-
56072-247-9.

8. [Mee06] John Michael Meehan and A.S. Wynne
“Load Balancing Experiments in openMosix”, Inter-
national Conference on Computers and Their Appli-
cations , Seattle WA, March 2006

9. [May03] Maya, Anu, Asmita, Snehal, Krushna.
MigShm: Shared memory over openMosix.
http://mcaserta.com/maask/Migshm_Report.pdf.
April 2003.

10. [Mos] MOSIX web site, http://www.mosix.org/

11. [opp] openMosix web site, http://openmosix.-
sourceforge.net/

0 2 4 6 8 10

25
00

30
00

35
00

40
00

45
00

generation

to
ta

l t
im

e

127

