
Lecture 11: Seq2Seq + Attention

Alan Ritter
(many slides from Greg Durrett)
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Recall: CNNs vs. LSTMs

‣ Both LSTMs and convolutional layers transform the input using context

the movie was good the movie was good

n x k

c filters, 
m x k each

O(n) x c

n x k

n x 2c

BiLSTM with 
hidden size c

‣ LSTM: “globally” looks at the entire sentence (but local for many problems)

‣ CNN: local depending on filter width + number of layers
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Encoder-Decoder
‣ Encode a sequence into a fixed-sized vector

the  movie  was   great

‣ Now use that vector to produce a series of tokens as output from a 
separate LSTM decoder

le      film   était   bon [STOP]

Sutskever et al. (2014)
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Model
‣ Generate next word conditioned on previous word as well as hidden state

the  movie  was   great <s>

h̄

‣ W size is |vocab| x |hidden state|, softmax over entire vocabulary

Decoder has separate 
parameters from encoder, so 
this can learn to be a language 
model (produce a plausible next 
word given current one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)
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Inference
‣ Generate next word conditioned on previous word as well as hidden state

the  movie  was   great

‣ During inference: need to compute the argmax over the word predictions 
and then feed that to the next RNN state 

le     

<s>

‣ Need to actually evaluate computation graph up to this point to form 
input for the next state

‣ Decoder is advanced one state at a time until [STOP] is reached

film était bon [STOP]
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Implementing seq2seq Models

the  movie  was   great

‣ Encoder: consumes sequence of tokens, produces a vector. Analogous to 
encoders for classification/tagging tasks

le     

<s>

‣ Decoder: separate module, single cell. Takes two inputs: hidden state 
(vector h or tuple (h, c)) and previous token. Outputs token + new state

Encoder

…

film     

le

Decoder Decoder



Training

‣ Objective: maximize

the  movie  was   great <s> le      film   était   bon

le

‣ One loss term for each target-sentence word, feed the correct word 
regardless of model’s prediction

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)
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Training: Scheduled Sampling

‣ Starting with p = 1 and decaying it works best

‣ Scheduled sampling: with probability p, take the gold as input, else take 
the model’s prediction

the  movie  was   great

la      film   étais   bon [STOP]

le film était

‣ Model needs to do the right thing even with its own predictions

Bengio et al. (2015)

sample

‣ Ideally (in theory), use RL for this…
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Implementation Details
‣ Sentence lengths vary for both encoder and decoder:

‣ Typically pad everything to the right length

‣ Encoder: Can be a CNN/LSTM/Transformer…

‣ Decoder: also flexible in terms of architecture (more later). Execute 
one step of computation at a time, so computation graph is 
formulated as taking one input + hidden state

‣ Beam search: can help with lookahead. Finds the (approximate) highest 
scoring sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)
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Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4     

<s>

la

le

les

le: 0.3
les: 0.1     

log(0.4)
log(0.3)

log(0.1)

film: 0.4
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Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4     

<s>

la

le

les

le: 0.3
les: 0.1     

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8     

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)
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Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4     

<s>

la

le

les

le: 0.3
les: 0.1     

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8     

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Do not max over the two film states! Hidden state vectors are different

the  movie  was   great
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Semantic Parsing as Translation

Jia and Liang (2015)

‣ Write down a linearized form of the semantic parse, train seq2seq models 
to directly translate into this representation

‣ Might not produce well-formed logical forms, might require lots of data

“what states border Texas”

lambda x ( state ( x ) and border ( x , e89 ) ) )

‣ No need to have an explicit grammar, simplifies algorithms
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Regex Prediction
‣ Can use for other semantic parsing-like tasks

‣ Predict regex from text

‣ Problem: requires a lot of data: 10,000 examples needed to get ~60% 
accuracy on pretty simple regexes

Locascio et al. (2016)
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SQL Generation
‣ Convert natural language 

description into a SQL 
query against some DB

‣ How to ensure that well-
formed SQL is generated?

Zhong et al. (2017)

‣ Three seq2seq models

‣ How to capture column 
names + constants?
‣ Pointer mechanisms
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‣ Need some notion of input coverage or what input words we’ve 
translated

‣ Encoder-decoder models like to repeat themselves:
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‣ Often a byproduct of training these models poorly



Problems with Seq2seq Models

‣ Unknown words:

‣ No matter how much data you have, you’ll need some mechanism to 
copy a word like Pont-de-Buis from the source to target



Problems with Seq2seq Models

‣ Bad at long sentences: 1) a fixed-size representation doesn’t scale; 2) 
LSTMs still have a hard time remembering for really long periods of time

RNNsearch: introduces 
attention mechanism to give 
“variable-sized” 
representation

Bahdanau et al. (2014)
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Aligned Inputs

<s>      le      film   était   bon

the   movie  was   great

the movie was great

le film était bon

‣ Much less burden on the hidden 
state

‣ Suppose we knew the source and 
target would be word-by-word 
translated

‣ Can look at the corresponding 
input word when translating — 
this could scale!

le      film   était    bon   [STOP]

‣ How can we achieve this without hardcoding it?
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Attention

‣ At each decoder state, 
compute a distribution over 
source inputs based on 
current decoder statethe  movie  was   great <s> le

the
movie was

gre
atthe

movie was
gre

at

… …

‣ Use that in output layer
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‣ For each decoder state, 
compute weighted sum of 
input states

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Unnormalized 
scalar weight

‣ Weighted sum 
of input hidden 
states (vector)

le

↵ij =
exp(eij)P
j0 exp(eij0)

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄i)‣ No attn: 

the
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Attention

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Note that this all uses outputs of hidden layers

f(h̄i, hj) = tanh(W [h̄i, hj ])

f(h̄i, hj) = h̄i · hj

f(h̄i, hj) = h̄>
i Whj

‣ Bahdanau+ (2014): additive

‣ Luong+ (2015): dot product

Luong et al. (2015)

‣ Luong+ (2015): bilinear

le

↵ij =
exp(eij)P
j0 exp(eij0)
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What can attention do?
‣ Learning to copy — how might this work?

Luong et al. (2015)

0 3 2 1 

0 3 2 1 

‣ LSTM can learn to count with the right weight matrix

‣ This is effectively position-based addressing
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‣ Decoder hidden states are now 
mostly responsible for selecting 
what to attend to

‣ Doesn’t take a complex hidden 
state to walk monotonically 
through a sentence and spit 
out word-by-word translations

‣ Encoder hidden states capture 
contextual source word identity
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Batching Attention

Luong et al. (2015)

the  movie  was   great

token outputs: batch size x sentence length x dimension

sentence outputs: 
batch size x hidden size

<s>

hidden state: batch size 
x hidden size

eij = f(h̄i, hj)

↵ij =
exp(eij)P
j0 exp(eij0)

attention scores = batch size x sentence length

c = batch size x hidden size ci =
X

j

↵ijhj

‣ Make sure tensors are the right size!
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Results
‣ Machine translation: BLEU score of 14.0 on English-German -> 16.8 with 

attention, 19.0 with smarter attention (we’ll come back to this later)

Luong et al. (2015) 
Chopra et al. (2016) 
Jia and Liang (2016)

‣ Summarization/headline generation: bigram recall from 11% -> 15%

‣ Semantic parsing: ~30% accuracy -> 70+% accuracy on Geoquery
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Unknown Words

Jean et al. (2015), Luong et al. (2015)

‣ Want to be able to copy named entities like Pont-de-Buis

1

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

from attention from RNN 
hidden state

‣ Still can only generate from the vocabulary
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Learning	to	Copy

‣ Suppose	we	only	care	about	being	able	to	copy	words	from	the	input	
(maybe	we’re	summarizing	a	document)

‣ Standard	models	predict	from	a	vocabulary,	but	here	the	vocabulary	
changes	with	every	new	input

On	Thursday,	police	arrested	two	suspects police	arrested	two

the	movie	was,	despite	its	many	flaws,	great the	movie	was	great

‣ Predic?ng	from	a	fixed	vocabulary	doesn’t	make	sense	here
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Output	Space

‣ Let	[x1,	…,	xn]	be	the	set	of	words	in	the	input

‣ Key	observa,on:	this	is	exactly	the	same	thing	that	a8en?on	gives	
us!

‣ Instead	of	a	tradi?onal	soWmax	layer,	we	use	a1en,on	to	predict	the	
output	directly.

‣ Rather	than	distribu?on	over	the	vocabulary,	predict	distribu?on	
over	the	xi

‣ This	is	called	a	pointer	network	(or	a	copy	mechanism)
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Pointer	Networks

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

‣ Pointer	network:	predict	from	source	words	instead	of	target	vocab

th
e

mo
vie

wa
s

gre
ata of … … …

the		movie				…			great th
e

mo
vie

wa
s

gre
ata of … … …

‣ Standard	decoder	(Pvocab):	soWmax	
over	vocabulary,	all	words	get	>0	prob

{ 0	otherwise

w1									w2									w3										wn

Ppointer(yi|x, y1, . . . , yi�1) /
<latexit sha1_base64="/P0oXrWO7G7mmaRuLo+24t1JeVE="></latexit>

exp(h>
j V h̄i) if yi = wj

<latexit sha1_base64="tOA9re2eChbbXkXm9a02nE8oZ0U="></latexit>
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Pointer	Generator	Mixture	Models

‣Marginalize	over	copy	variable	during	training	and	inference

th
e

mo
vie

wa
s

gre
ata of … … …

‣ Define	the	decoder	model	as	a	mixture	model	of	the															and															
models	(previous	slide)

Pvocab
<latexit sha1_base64="k5lQoH6h0XuhCfhj4fQI5yX6m0I="></latexit>

Ppointer
<latexit sha1_base64="f1/X0Ciabmq34fdPhxXMO0arOIw="></latexit>

P (yi|x, y1, . . . , yi�1) = P (copy)Ppointer + (1� P (copy))Pvocab
<latexit sha1_base64="fqBWECHCI/gP/IDKuP6MSgfsh98="></latexit>

‣ Predict	P(copy)	based	on	decoder	state,	input,	etc.

‣Model	will	be	able	to	both	
generate	and	copy,	flexibly	adapt	
between	the	two
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Copying

{ {the
a

zebra

Pont-de-Buis
ecotax

…

‣ Vocabulary contains “normal” vocab as well as 
words in input. Normalizes over both of these:

‣ Bilinear function of input representation + output hidden state

{P (yi = w|x, y1, . . . , yi�1) /
expWw[ci; h̄i]

h>
j V h̄i

if w in vocab
if w = xj
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Results

Jia and Liang (2016)

‣ In many settings, attention can roughly do the same things as 
copying

‣ For semantic parsing, copying tokens from the input (texas) can be 
very useful
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Rare	Words:	Character	Models

Luong	et	al.	(2016)

‣ If	we	predict	an	unk	token,	generate	the	results	
from	a	character	LSTM

‣ Can	poten?ally	transliterate	new	concepts,	
but	architecture	is	more	complicated	and	
slower	to	train

‣We	will	talk	about	alterna?ves	to	this	when	
we	talk	about	machine	transla?on
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Decoding	Strategies
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Greedy	Decoding
‣ Generate	next	word	condi?oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predic?ons	
and	then	feed	that	to	the	next	RNN	state.	This	is	greedy	decoding

le					

<s>

film était bon [STOP]

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ypred = argmaxyP (y|x, y1, . . . , yi�1)
<latexit sha1_base64="BKzIm/yKraU6a64Z2EgswwSRmsQ="></latexit>

(or	a8en?on/copying/etc.)
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Problems	with	Greedy	Decoding

‣ Only	returns	one	solu?on,	and	it	may	not	be	op?mal

‣ Can	address	this	with	beam	search,	which	usually	works	be8er…but	even	
beam	search	may	not	find	the	correct	answer!	(max	probability	sequence)

Stahlberg	and	Byrne	(2019)
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“Problems”	with	Beam	Decoding
‣ For	machine	transla?on,	the	highest	probability	sequence	is	oWen	the	
empty	string!	(>50%	of	the	?me)

Stahlberg	and	Byrne	(2019)

‣ Beam	search	results	in	fortuitous	search	errors	that	avoid	these	bad	
solu?ons
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Sampling
‣ Beam	search	may	give	many	similar	sequences,	and	these	actually	may	be	
too	close	to	the	op?mal.	Can	sample	instead:

‣ Text	degeneraIon:	greedy	solu?on	can	be	uninteres?ng	/	vacuous	for	
various	reasons.	Sampling	can	help.

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ysampled ⇠ P (y|x, y1, . . . , yi�1)
<latexit sha1_base64="PRMh0d0POdeSz1TX/ixzw2HuV+c="></latexit>
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Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)
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Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)

‣ These	are	samples	from	an	uncondi?oned	language	model	(not	seq2seq	
model)

‣ Sampling	is	be8er	but	some?mes	draws	too	far	from	the	tail	of	the	
distribu?on
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Decoding	Strategies

‣ Greedy
‣ Beam	search

‣ Sampling

‣ Nucleus	or	top-k	sampling:

‣ Nucleus:	take	the	top	p%	(95%)	of	the	distribu?on,	sample	from	
within	that

‣ Top-k:	take	the	top	k	most	likely	words	(k=5),	sample	from	those
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Genera?on	Tasks
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Genera?on	Tasks

Uncondi?oned	sampling/	
“story	genera?on”

Dialogue Transla?on

Summariza?on

Text-to-code

Less	constrained More	constrained

Data-to-text

‣ There	are	a	range	of	seq2seq	modeling	tasks	we	will	address

‣ For	more	constrained	problems:	greedy/beam	decoding	are	usually	best

‣ For	less	constrained	problems:	nucleus	sampling	introduces	favorable	
varia?on	in	the	output



Transformers
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Sentence	Encoders

the		movie		was			great

‣ LSTM	abstrac?on:	maps	each	vector	in	
a	sentence	to	a	new,	context-aware	
vector

‣ CNNs	do	something	similar	with	filters

‣ A8en?on	can	give	us	a	third	way	to	do	this

Vaswani	et	al.	(2017)

the		movie		was			great
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Self-A8en?on

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ Pronouns	need	to	look	at	antecedents
‣ Ambiguous	words	should	look	at	context

‣ Assume	we’re	using	GloVe	—	what	do	we	want	our	neural	network	to	do?

‣What	words	need	to	be	contextualized	here?

‣Words	should	look	at	syntac?c	parents/children

‣ Problem:	LSTMs	and	CNNs	don’t	do	this
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Self-A8en?on

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣Want:

‣ LSTMs/CNNs:	tend	to	look	at	local	context

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ To	appropriately	contextualize	embeddings,	we	need	to	pass	informa?on	
over	long	distances	dynamically	for	each	word
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the  movie  was   great

‣ Each word forms a “query” which then 
computes attention over each word 

‣ Multiple “heads” analogous to different convolutional filters. Use 
parameters Wk and Vk to get different attention values + transform vectors
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scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
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↵k,i,jVkxj



52

What	can	self-a8en?on	do?

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣Why	mul?ple	heads?	SoWmaxes	end	up	being	peaked,	single	distribu?on	
cannot	easily	put	weight	on	mul?ple	things

0.5 0.20.10.10.10 0 0 0 0 0 0

‣ This	is	a	demonstra?on,	we	will	revisit	what	these	models	actually	learn	
when	we	discuss	BERT

‣ A8end	nearby	+	to	seman?cally	related	terms

0.5 0 0.40 0.1 0 0 0 0 0 0 0
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Transformer	Uses

‣ Supervised:	transformer	can	replace	LSTM	as	encoder,	decoder,	or	both;	
will	revisit	this	when	we	discuss	MT

‣ Unsupervised:	transformers	work	be8er	than	LSTM	for	unsupervised	
pre-training	of	embeddings:	predict	word	given	context	words

‣ BERT	(Bidirec?onal	Encoder	
Representa?ons	from	Transformers):	
pretraining	transformer	language	models	
similar	to	ELMo

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)
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Takeaways
‣ Attention is very helpful for seq2seq models

‣ Used for tasks including summarization and sentence ordering

‣ Explicitly copying input can be beneficial as well

‣ Transformers are strong models we’ll come back to later


