
Lecture 7: Tricks + Word Embeddings

Alan Ri;er
(many slides from Greg Durrett)



Recall: Feedforward NNs

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

n features

f
(x
)

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

V

n features

f
(x
)

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

V

n features
d x n matrix

f
(x
)

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

V

n features
d x n matrix

f
(x
)

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

V

n features

d hidden units

d x n matrix

f
(x
)

z

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

V

n features

d hidden units

d x n matrix num_classes x d 
matrix

Wf
(x
)

z

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

V

n features

d hidden units

d x n matrix num_classes x d 
matrix

soGmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))



Recall: Feedforward NNs

V

n features

d hidden units

d x n matrix num_classes x d 
matrix

soGmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes 
probs



Recall: BackpropagaJon

V

d hidden units

soGmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z



Recall: BackpropagaJon

V

d hidden units

soGmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)



This Lecture
‣ Training

‣ Word representaJons

‣ word2vec/GloVe

‣ EvaluaJng word embeddings



Training Tips



Training Basics



Training Basics
‣ Basic formula: compute gradients on batch, use first-order opt. method



Training Basics
‣ Basic formula: compute gradients on batch, use first-order opt. method

‣ How to iniJalize? How to regularize? What opJmizer to use?



Training Basics
‣ Basic formula: compute gradients on batch, use first-order opt. method

‣ How to iniJalize? How to regularize? What opJmizer to use?

‣ This lecture: some pracJcal tricks. Take deep learning or opJmizaJon 
courses to understand this further



How does iniJalizaJon affect learning?

V

n features

d hidden units

d x n matrix m x d matrix

soGmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))



How does iniJalizaJon affect learning?

V

n features

d hidden units

d x n matrix m x d matrix

soGmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How do we iniJalize V and W? What consequences does this have?



How does iniJalizaJon affect learning?

V

n features

d hidden units

d x n matrix m x d matrix

soGmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))

‣ How do we iniJalize V and W? What consequences does this have?

‣ Nonconvex problem, so iniJalizaJon ma;ers!



‣ Nonlinear model…how does this affect things?

How does iniJalizaJon affect learning?



‣ Nonlinear model…how does this affect things?

How does iniJalizaJon affect learning?



‣ Nonlinear model…how does this affect things?

How does iniJalizaJon affect learning?



‣ Nonlinear model…how does this affect things?

‣ If cell acJvaJons are too large in absolute value, gradients are small

How does iniJalizaJon affect learning?



‣ Nonlinear model…how does this affect things?

‣ If cell acJvaJons are too large in absolute value, gradients are small

‣ ReLU: larger dynamic range (all posiJve numbers), but can produce 
big values, can break down if everything is too negaJve

How does iniJalizaJon affect learning?



IniJalizaJon



IniJalizaJon
1) Can’t use zeroes for parameters to produce hidden layers: all values in 
that hidden layer are always 0 and have gradients of 0, never change



IniJalizaJon
1) Can’t use zeroes for parameters to produce hidden layers: all values in 
that hidden layer are always 0 and have gradients of 0, never change

2) IniJalize too large and cells are saturated



IniJalizaJon
1) Can’t use zeroes for parameters to produce hidden layers: all values in 
that hidden layer are always 0 and have gradients of 0, never change

‣ Can do random uniform / normal iniJalizaJon with appropriate scale

2) IniJalize too large and cells are saturated



IniJalizaJon
1) Can’t use zeroes for parameters to produce hidden layers: all values in 
that hidden layer are always 0 and have gradients of 0, never change

‣ Can do random uniform / normal iniJalizaJon with appropriate scale

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Xavier iniJalizer:

2) IniJalize too large and cells are saturated



IniJalizaJon
1) Can’t use zeroes for parameters to produce hidden layers: all values in 
that hidden layer are always 0 and have gradients of 0, never change

‣ Can do random uniform / normal iniJalizaJon with appropriate scale

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Xavier iniJalizer:

‣ Want variance of inputs and gradients for each layer to be the same

2) IniJalize too large and cells are saturated



IniJalizaJon
1) Can’t use zeroes for parameters to produce hidden layers: all values in 
that hidden layer are always 0 and have gradients of 0, never change

‣ Can do random uniform / normal iniJalizaJon with appropriate scale

U

"
�
r

6

fan-in + fan-out
,+

r
6

fan-in + fan-out

#
‣ Xavier iniJalizer:

‣ Want variance of inputs and gradients for each layer to be the same

‣ Batch normalizaJon (Ioffe and Szegedy, 2015): periodically shiG+rescale 
each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

2) IniJalize too large and cells are saturated



Dropout
‣ ProbabilisJcally zero out parts of the network during training to prevent 

overfidng, use whole network at test Jme

Srivastava et al. (2014)



Dropout
‣ ProbabilisJcally zero out parts of the network during training to prevent 

overfidng, use whole network at test Jme

Srivastava et al. (2014)

‣ Form of stochasJc 
regularizaJon 



Dropout
‣ ProbabilisJcally zero out parts of the network during training to prevent 

overfidng, use whole network at test Jme

Srivastava et al. (2014)

‣ Similar to benefits of 
ensembling: network 
needs to be robust to 
missing signals, so it 
has redundancy

‣ Form of stochasJc 
regularizaJon 



Dropout
‣ ProbabilisJcally zero out parts of the network during training to prevent 

overfidng, use whole network at test Jme

Srivastava et al. (2014)

‣ Similar to benefits of 
ensembling: network 
needs to be robust to 
missing signals, so it 
has redundancy

‣ Form of stochasJc 
regularizaJon 

‣ One line in Pytorch/Tensorflow



OpJmizer
‣ Adam (Kingma and Ba, ICLR 2015) is very widely used

‣ AdapJve step size like Adagrad, incorporates momentum



OpJmizer
‣ Adam (Kingma and Ba, ICLR 2015) is very widely used

‣ AdapJve step size like Adagrad, incorporates momentum



OpJmizer
‣ Wilson et al. NIPS 2017: adapJve methods can actually perform badly at 

test Jme (Adam is in pink, SGD in black)



OpJmizer
‣ Wilson et al. NIPS 2017: adapJve methods can actually perform badly at 

test Jme (Adam is in pink, SGD in black)
‣ Check dev set periodically, decrease learning rate if not making progress



Elements of Machine Learning
‣ Four elements of a machine learning method:



Elements of Machine Learning
‣ Four elements of a machine learning method:

‣ Model: feedforward, RNNs, CNNs can be defined in a uniform framework



Elements of Machine Learning
‣ Four elements of a machine learning method:

‣ Model: feedforward, RNNs, CNNs can be defined in a uniform framework

‣ ObjecJve: many loss funcJons look 
similar, just changes the last layer of the 
neural network



Elements of Machine Learning
‣ Four elements of a machine learning method:

‣ Model: feedforward, RNNs, CNNs can be defined in a uniform framework

‣ ObjecJve: many loss funcJons look 
similar, just changes the last layer of the 
neural network

‣ Inference: define the network, your 
library of choice takes care of it (mostly…)



Elements of Machine Learning
‣ Four elements of a machine learning method:

‣ Model: feedforward, RNNs, CNNs can be defined in a uniform framework

‣ ObjecJve: many loss funcJons look 
similar, just changes the last layer of the 
neural network

‣ Inference: define the network, your 
library of choice takes care of it (mostly…)

‣ Training: lots of choices for opJmizaJon/hyperparameters



Word RepresentaJons



Word RepresentaJons
‣ Neural networks work very well at conJnuous data, but words are discrete

slide credit: Dan Klein



Word RepresentaJons

‣ ConJnuous model <-> expects conJnuous semanJcs from input
‣ Neural networks work very well at conJnuous data, but words are discrete

slide credit: Dan Klein



Word RepresentaJons

‣ ConJnuous model <-> expects conJnuous semanJcs from input

‣ “You shall know a word by the company it keeps” Firth (1957)

‣ Neural networks work very well at conJnuous data, but words are discrete

slide credit: Dan Klein



Discrete Word RepresentaJons

Brown et al. (1992)



Discrete Word RepresentaJons
‣ Brown clusters: hierarchical agglomeraJve hard clustering (each word has 

one cluster, not some posterior distribuJon like in mixture models)

Brown et al. (1992)



Discrete Word RepresentaJons

0

‣ Brown clusters: hierarchical agglomeraJve hard clustering (each word has 
one cluster, not some posterior distribuJon like in mixture models)

1

Brown et al. (1992)



Discrete Word RepresentaJons

good
enjoyablegreat

0

‣ Brown clusters: hierarchical agglomeraJve hard clustering (each word has 
one cluster, not some posterior distribuJon like in mixture models)

is
go

1
1

1
0

0

Brown et al. (1992)



Discrete Word RepresentaJons

good
enjoyablegreat

0

fishcat

‣ Brown clusters: hierarchical agglomeraJve hard clustering (each word has 
one cluster, not some posterior distribuJon like in mixture models)

dog
…

is
go

0

0 1 1

1
1

1

1
0

0

Brown et al. (1992)



Discrete Word RepresentaJons

good
enjoyablegreat

0

fishcat

‣ Brown clusters: hierarchical agglomeraJve hard clustering (each word has 
one cluster, not some posterior distribuJon like in mixture models)

‣ Maximize

dog
…

is
go

0

0 1 1

1
1

1

1
0

0

P (wi|wi�1) = P (ci|ci�1)P (wi|ci)

Brown et al. (1992)



Discrete Word RepresentaJons

good
enjoyablegreat

0

fishcat

‣ Brown clusters: hierarchical agglomeraJve hard clustering (each word has 
one cluster, not some posterior distribuJon like in mixture models)

‣ Maximize

‣ Useful features for tasks like NER, not suitable for NNs

dog
…

is
go

0

0 1 1

1
1

1

1
0

0

P (wi|wi�1) = P (ci|ci�1)P (wi|ci)

Brown et al. (1992)



Discrete Word RepresentaJons

good
enjoyablegreat

0

fishcat

‣ Brown clusters: hierarchical agglomeraJve hard clustering (each word has 
one cluster, not some posterior distribuJon like in mixture models)

‣ Maximize

‣ Useful features for tasks like NER, not suitable for NNs

dog
…

is
go

0

0 1 1

1
1

1

1
0

0

P (wi|wi�1) = P (ci|ci�1)P (wi|ci)

Brown et al. (1992)

Sample Brown Clusters:
- https://raw.githubusercontent.com/aritter/5525_perceptron_tagger/master/60K_clusters.bits.txt

https://raw.githubusercontent.com/aritter/5525_perceptron_tagger/master/60K_clusters.bits.txt


Word Embeddings

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input em
b(interest)

em
b(rates)

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs



Word Embeddings

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input em
b(interest)

em
b(rates)

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

‣ What properJes should these vectors have?



Word Embeddings



good
enjoyable

bad

dog

great

is

Word Embeddings



good
enjoyable

bad

dog

great

is

‣ Want a vector space where similar words have similar embeddings

Word Embeddings



good
enjoyable

bad

dog

great

is

‣ Want a vector space where similar words have similar embeddings

the movie was great

the movie was good
~~

Word Embeddings



good
enjoyable

bad

dog

great

is

‣ Want a vector space where similar words have similar embeddings

the movie was great

the movie was good
~~

Word Embeddings

‣ Goal: come up with a way to 
produce these embeddings



word2vec/GloVe



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

Mikolov et al. (2013)



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

Mikolov et al. (2013)

d-dimensional 
word embeddings



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

size d

Mikolov et al. (2013)

d-dimensional 
word embeddings



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

size d

soGmaxMulJply 
by W

Mikolov et al. (2013)

d-dimensional 
word embeddings

size |V| x d



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

size d

soGmaxMulJply 
by W

Mikolov et al. (2013)

d-dimensional 
word embeddings

size |V| x d



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

size d

soGmaxMulJply 
by W

gold label = bit, 
no manual labeling 
required!

Mikolov et al. (2013)

d-dimensional 
word embeddings

size |V| x d



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

size d

soGmaxMulJply 
by W

gold label = bit, 
no manual labeling 
required!

Mikolov et al. (2013)

d-dimensional 
word embeddings

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

size |V| x d



ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

‣ Parameters: d x |V| (one d-length vector per voc word), 
                      |V| x d output parameters (W)

dog

the

+

size d

soGmaxMulJply 
by W

gold label = bit, 
no manual labeling 
required!

Mikolov et al. (2013)

d-dimensional 
word embeddings

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

size |V| x d



Skip-Gram
the dog bit the man‣ Predict one word of context from word

Mikolov et al. (2013)



Skip-Gram
the dog bit the man‣ Predict one word of context from word

bit

soGmaxMulJply 
by W

gold = dog

Mikolov et al. (2013)



Skip-Gram
the dog bit the man‣ Predict one word of context from word

bit

soGmaxMulJply 
by W

gold = dog

P (w0|w) = softmax(We(w))

Mikolov et al. (2013)



Skip-Gram
the dog bit the man‣ Predict one word of context from word

bit

soGmaxMulJply 
by W

gold = dog

‣ Another training example: bit -> the

P (w0|w) = softmax(We(w))

Mikolov et al. (2013)



Skip-Gram
the dog bit the man‣ Predict one word of context from word

bit

soGmaxMulJply 
by W

gold = dog

‣ Parameters: d x |V| vectors, |V| x d output parameters (W) (also 
usable as vectors!)

‣ Another training example: bit -> the

P (w0|w) = softmax(We(w))

Mikolov et al. (2013)



Hierarchical SoGmax
P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

the
a

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

…

…

the
a

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

…

…

the
a

‣ Huffman encode 
vocabulary, use binary 
classifiers to decide 
which branch to take

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

…

…

the
a

‣ Huffman encode 
vocabulary, use binary 
classifiers to decide 
which branch to take

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))

‣ log(|V|) binary decisions



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

‣ Hierarchical soGmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d]

…

…

the
a

‣ Huffman encode 
vocabulary, use binary 
classifiers to decide 
which branch to take

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))

‣ log(|V|) binary decisions



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

‣ Hierarchical soGmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d] log(|V|) dot products of size d,

…

…

the
a

‣ Huffman encode 
vocabulary, use binary 
classifiers to decide 
which branch to take

Mikolov et al. (2013)

P (w0|w) = softmax(We(w))

‣ log(|V|) binary decisions



Hierarchical SoGmax

‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

‣ Hierarchical soGmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d] log(|V|) dot products of size d,

…

…

the
a

‣ Huffman encode 
vocabulary, use binary 
classifiers to decide 
which branch to take

|V| x d parameters Mikolov et al. (2013)

P (w0|w) = softmax(We(w))

‣ log(|V|) binary decisions



Skip-Gram with NegaJve Sampling

Mikolov et al. (2013)



Skip-Gram with NegaJve Sampling

Mikolov et al. (2013)

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon



Skip-Gram with NegaJve Sampling

Mikolov et al. (2013)

(bit, the) => +1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon



Skip-Gram with NegaJve Sampling

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon



Skip-Gram with NegaJve Sampling

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon



Skip-Gram with NegaJve Sampling

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon

P (y = 1|w, c) = ew·c

ew·c + 1



Skip-Gram with NegaJve Sampling

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon

words in similar 
contexts select for 
similar c vectors

P (y = 1|w, c) = ew·c

ew·c + 1



Skip-Gram with NegaJve Sampling

‣ d x |V| vectors, d x |V| context vectors (same # of params as before)

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon

words in similar 
contexts select for 
similar c vectors

P (y = 1|w, c) = ew·c

ew·c + 1



Skip-Gram with NegaJve Sampling

‣ d x |V| vectors, d x |V| context vectors (same # of params as before)

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon

words in similar 
contexts select for 
similar c vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ ObjecJve = logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)



Skip-Gram with NegaJve Sampling

‣ d x |V| vectors, d x |V| context vectors (same # of params as before)

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon

words in similar 
contexts select for 
similar c vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ ObjecJve = logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)

sampled



ConnecJons with Matrix FactorizaJon

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two 
types of vectors



ConnecJons with Matrix FactorizaJon

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two 
types of vectors

word pair 
counts

|V|

|V|



ConnecJons with Matrix FactorizaJon

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two 
types of vectors

word pair 
counts

|V|

|V| |V|

d

word 
vecs



ConnecJons with Matrix FactorizaJon

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two 
types of vectors

word pair 
counts

|V|

|V| |V|

d

d

|V|

context vecs
word 
vecs



ConnecJons with Matrix FactorizaJon

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two 
types of vectors

word pair 
counts

|V|

|V| |V|

d

d

|V|

context vecs
word 
vecs

‣ Looks almost like a matrix factorizaJon…can we interpret it this way?



Skip-Gram as Matrix FactorizaJon

Levy et al. (2014)

|V|

|V|



Skip-Gram as Matrix FactorizaJon

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

num negaJve samples



Skip-Gram as Matrix FactorizaJon

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

num negaJve samples



Skip-Gram as Matrix FactorizaJon

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

num negaJve samples

Skip-gram objecJve exactly corresponds to factoring this matrix:



Skip-Gram as Matrix FactorizaJon

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

‣ If we sample negaJve examples from the uniform distribuJon over words

num negaJve samples

Skip-gram objecJve exactly corresponds to factoring this matrix:



Skip-Gram as Matrix FactorizaJon

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

‣ If we sample negaJve examples from the uniform distribuJon over words

num negaJve samples

‣ …and it’s a weighted factorizaJon problem (weighted by word freq)

Skip-gram objecJve exactly corresponds to factoring this matrix:



GloVe (Global Vectors)

Pennington et al. (2014)

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix word pair 

counts

|V|

|V|



GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Loss         = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix word pair 

counts

|V|

|V|



GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Loss         = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix

‣ Constant in the dataset size (just need counts), quadraJc in voc size

word pair 
counts

|V|

|V|



GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Loss         = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix

‣ Constant in the dataset size (just need counts), quadraJc in voc size

‣ By far the most common (uncontextualized) word vectors used today 
(20,000+ citaJons)

word pair 
counts

|V|

|V|



Preview: Context-dependent Embeddings

Peters et al. (2018)

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls



Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous 
words in the sentence, use its internal representaJons as word vectors

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls



Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous 
words in the sentence, use its internal representaJons as word vectors

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls



Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous 
words in the sentence, use its internal representaJons as word vectors

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls



Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous 
words in the sentence, use its internal representaJons as word vectors

‣ Context-sensiCve word embeddings: depend on rest of the sentence

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls



Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous 
words in the sentence, use its internal representaJons as word vectors

‣ Context-sensiCve word embeddings: depend on rest of the sentence

‣ Huge improvements across nearly all NLP tasks over GloVe

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls



EvaluaJon



EvaluaJng Word Embeddings
‣ What properJes of language should word embeddings capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was



EvaluaJng Word Embeddings
‣ What properJes of language should word embeddings capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was

‣ Similarity: similar words are close to 
each other



EvaluaJng Word Embeddings
‣ What properJes of language should word embeddings capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was

‣ Similarity: similar words are close to 
each other

‣ Analogy:



EvaluaJng Word Embeddings
‣ What properJes of language should word embeddings capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was

‣ Similarity: similar words are close to 
each other

‣ Analogy:

good is to best as smart is to ???



EvaluaJng Word Embeddings
‣ What properJes of language should word embeddings capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was

‣ Similarity: similar words are close to 
each other

‣ Analogy:

Paris is to France as Tokyo is to ???

good is to best as smart is to ???



Similarity

Levy et al. (2015)

‣ SVD = singular value decomposiJon on PMI matrix



Similarity

Levy et al. (2015)

‣ SVD = singular value decomposiJon on PMI matrix

‣ GloVe does not appear to be the best when experiments are carefully 
controlled, but it depends on hyperparameters + these disJncJons don’t 
ma;er in pracJce



Hypernymy DetecJon

‣ Hypernyms: detecJve is a person, dog is a animal

Chang et al. (2017)



Hypernymy DetecJon

‣ Hypernyms: detecJve is a person, dog is a animal

‣ Do word vectors encode these relaJonships?

Chang et al. (2017)



Hypernymy DetecJon

‣ Hypernyms: detecJve is a person, dog is a animal

‣ Do word vectors encode these relaJonships?

Chang et al. (2017)



Hypernymy DetecJon

‣ Hypernyms: detecJve is a person, dog is a animal

‣ word2vec (SGNS) works barely be;er than random guessing here

‣ Do word vectors encode these relaJonships?

Chang et al. (2017)



Analogies

queen
king



Analogies

queen
king

woman
man



Analogies

queen
king

woman
man

(king - man) + woman = queen



Analogies

queen
king

woman
man

(king - man) + woman = queen



Analogies

queen
king

woman
man

(king - man) + woman = queen



Analogies

queen
king

woman
man

(king - man) + woman = queen

king + (woman - man) = queen



Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

king + (woman - man) = queen



Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

king + (woman - man) = queen



Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

‣ woman - man captures the difference in 
the contexts that these occur in

king + (woman - man) = queen



Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

‣ woman - man captures the difference in 
the contexts that these occur in

king + (woman - man) = queen

‣ Dominant change: more “he” with man 
and “she” with woman — similar to 
difference between king and queen



Analogies

Levy et al. (2015)



Analogies

Levy et al. (2015)

‣ These methods can perform well on analogies on two different 
datasets using two different methods 



Analogies

Levy et al. (2015)

‣ These methods can perform well on analogies on two different 
datasets using two different methods 

cos(b, a2 � a1 + b1)Maximizing for b: Add = Mul = cos(b2, a2) cos(b2, b1)
cos(b2, a1) + ✏



Using SemanJc Knowledge

Faruqui et al. (2015)



Using SemanJc Knowledge

Faruqui et al. (2015)

‣ Structure derived from a resource like WordNet



Using SemanJc Knowledge

Faruqui et al. (2015)

‣ Structure derived from a resource like WordNet

Original vector for false

Adapted vector for false



Using SemanJc Knowledge

Faruqui et al. (2015)

‣ Structure derived from a resource like WordNet

Original vector for false

Adapted vector for false

‣ Doesn’t help most problems



Using Word Embeddings



Using Word Embeddings
‣ Approach 1: learn embeddings as parameters from your data

‣ OGen works pre;y well



Using Word Embeddings
‣ Approach 1: learn embeddings as parameters from your data

‣ Approach 2: iniJalize using GloVe/ELMo, keep fixed

‣ Faster because no need to update these parameters

‣ OGen works pre;y well



Using Word Embeddings
‣ Approach 1: learn embeddings as parameters from your data

‣ Approach 2: iniJalize using GloVe/ELMo, keep fixed

‣ Approach 3: iniJalize using GloVe, fine-tune
‣ Faster because no need to update these parameters

‣ Works best for some tasks, but not used for ELMo

‣ OGen works pre;y well



ComposiJonal SemanJcs



ComposiJonal SemanJcs
‣ What if we want embedding representaJons for whole sentences?



ComposiJonal SemanJcs
‣ What if we want embedding representaJons for whole sentences?

‣ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized 
to a sentence level (more later)



ComposiJonal SemanJcs
‣ What if we want embedding representaJons for whole sentences?

‣ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized 
to a sentence level (more later)

‣ Is there a way we can compose vectors to make sentence 
representaJons? Summing?



ComposiJonal SemanJcs
‣ What if we want embedding representaJons for whole sentences?

‣ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized 
to a sentence level (more later)

‣ Is there a way we can compose vectors to make sentence 
representaJons? Summing?

‣ Will return to this in a few weeks



Takeaways



Takeaways
‣ Lots to tune with neural networks



Takeaways
‣ Lots to tune with neural networks

‣ Training: opJmizer, iniJalizer, regularizaJon (dropout), …



Takeaways
‣ Lots to tune with neural networks

‣ Training: opJmizer, iniJalizer, regularizaJon (dropout), …

‣ Hyperparameters: dimensionality of word embeddings, layers, …



Takeaways
‣ Lots to tune with neural networks

‣ Word vectors: learning word -> context mappings has given way to 
matrix factorizaJon approaches (constant in dataset size)

‣ Training: opJmizer, iniJalizer, regularizaJon (dropout), …

‣ Hyperparameters: dimensionality of word embeddings, layers, …



Takeaways
‣ Lots to tune with neural networks

‣ Word vectors: learning word -> context mappings has given way to 
matrix factorizaJon approaches (constant in dataset size)

‣ Training: opJmizer, iniJalizer, regularizaJon (dropout), …

‣ Hyperparameters: dimensionality of word embeddings, layers, …

‣ Lots of pretrained embeddings work well in pracJce, they capture some 
desirable properJes



Takeaways
‣ Lots to tune with neural networks

‣ Word vectors: learning word -> context mappings has given way to 
matrix factorizaJon approaches (constant in dataset size)

‣ Training: opJmizer, iniJalizer, regularizaJon (dropout), …

‣ Hyperparameters: dimensionality of word embeddings, layers, …

‣ Lots of pretrained embeddings work well in pracJce, they capture some 
desirable properJes

‣ Even be;er: context-sensiJve word embeddings (ELMo)



Takeaways
‣ Lots to tune with neural networks

‣ Word vectors: learning word -> context mappings has given way to 
matrix factorizaJon approaches (constant in dataset size)

‣ Training: opJmizer, iniJalizer, regularizaJon (dropout), …

‣ Hyperparameters: dimensionality of word embeddings, layers, …

‣ Next Jme: RNNs and CNNs

‣ Lots of pretrained embeddings work well in pracJce, they capture some 
desirable properJes

‣ Even be;er: context-sensiJve word embeddings (ELMo)


