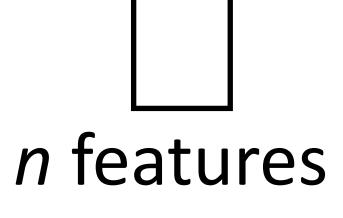
Lecture 7: Tricks + Word Embeddings

(many slides from Greg Durrett)

Alan Ritter

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

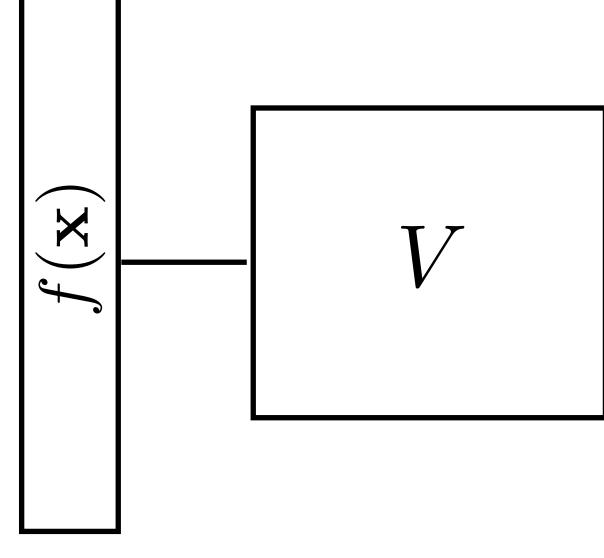
$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$



X

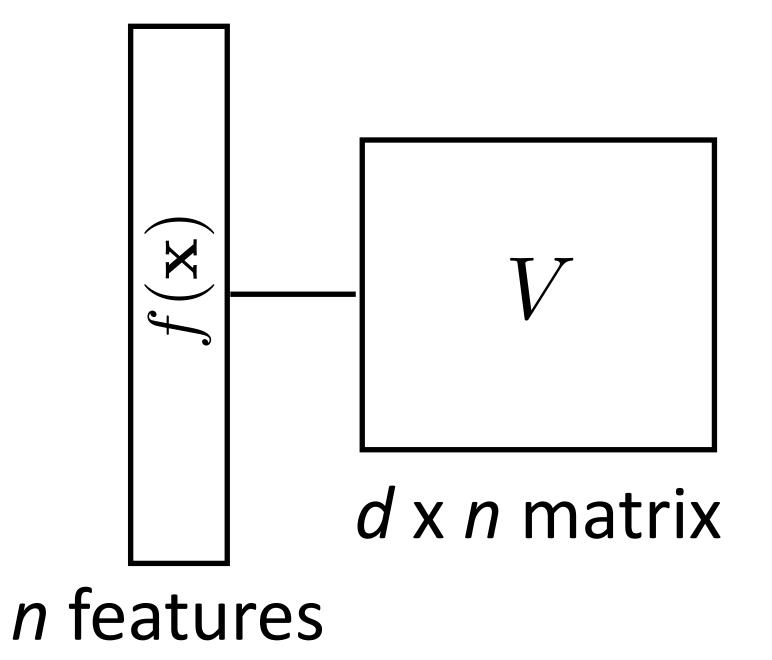
f f

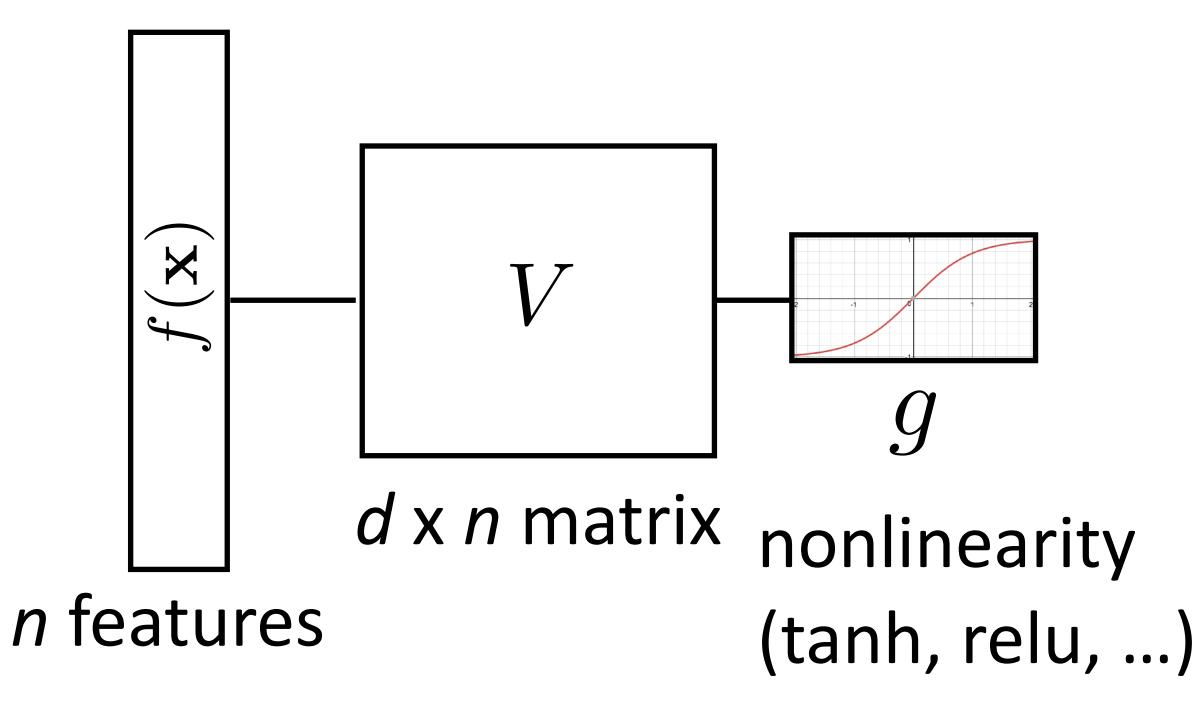
 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

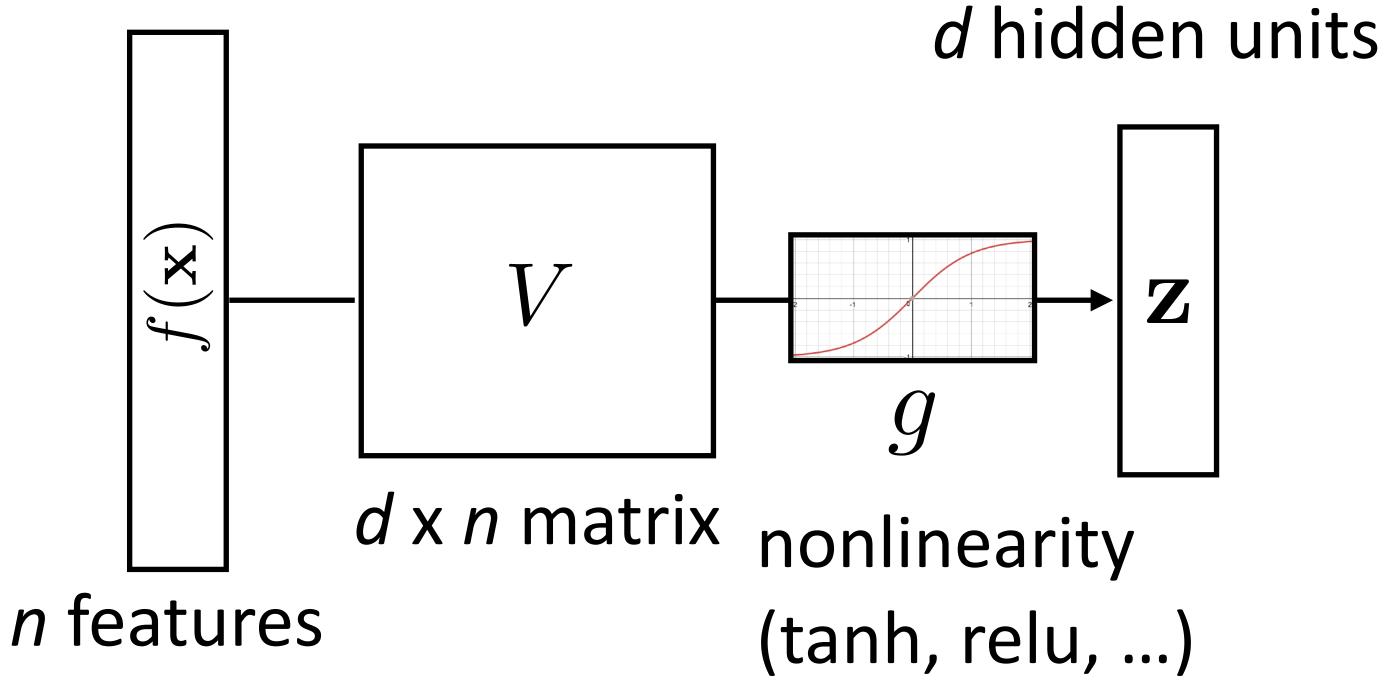


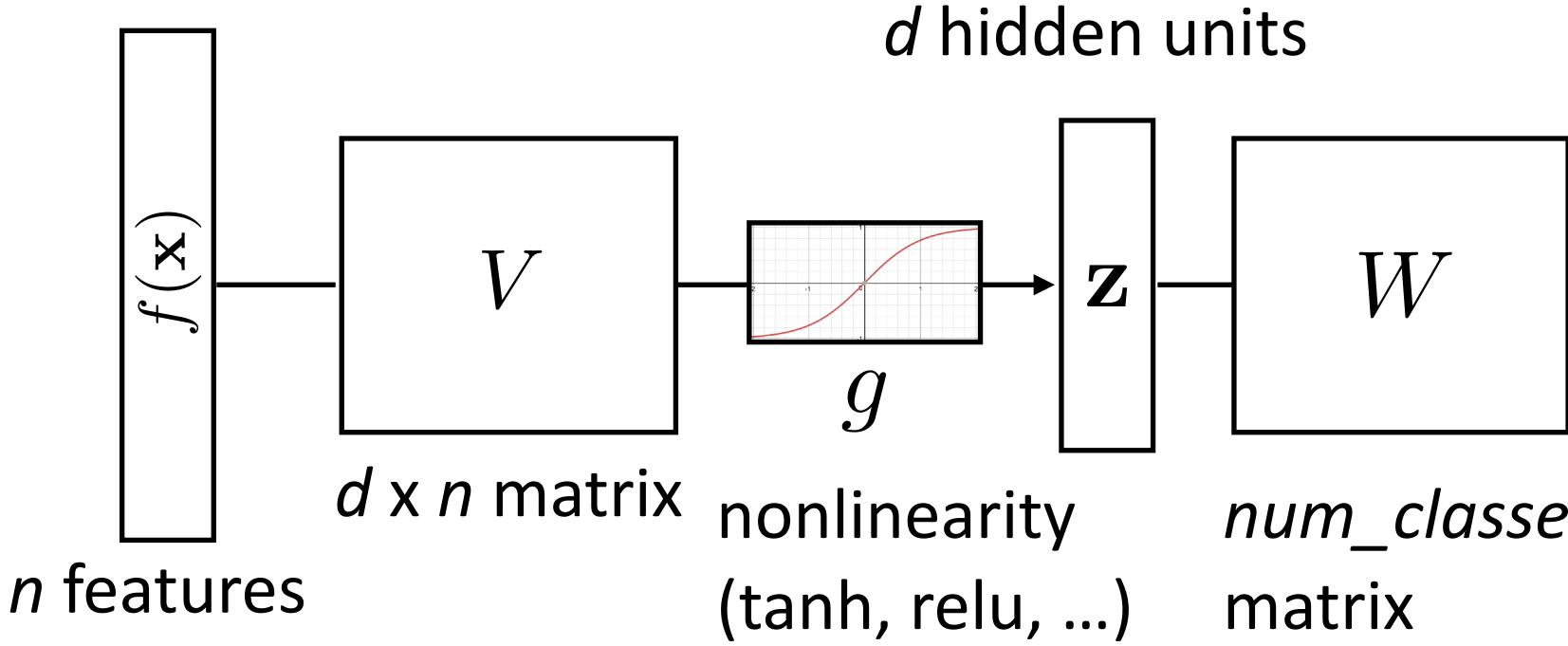
n features

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

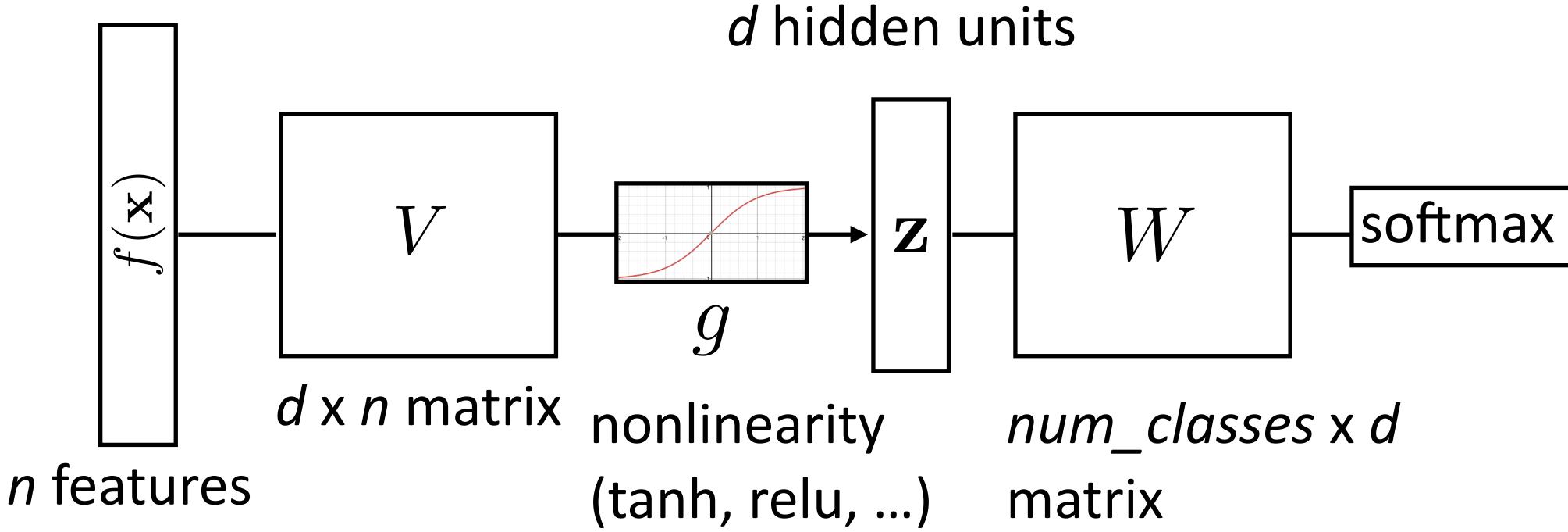


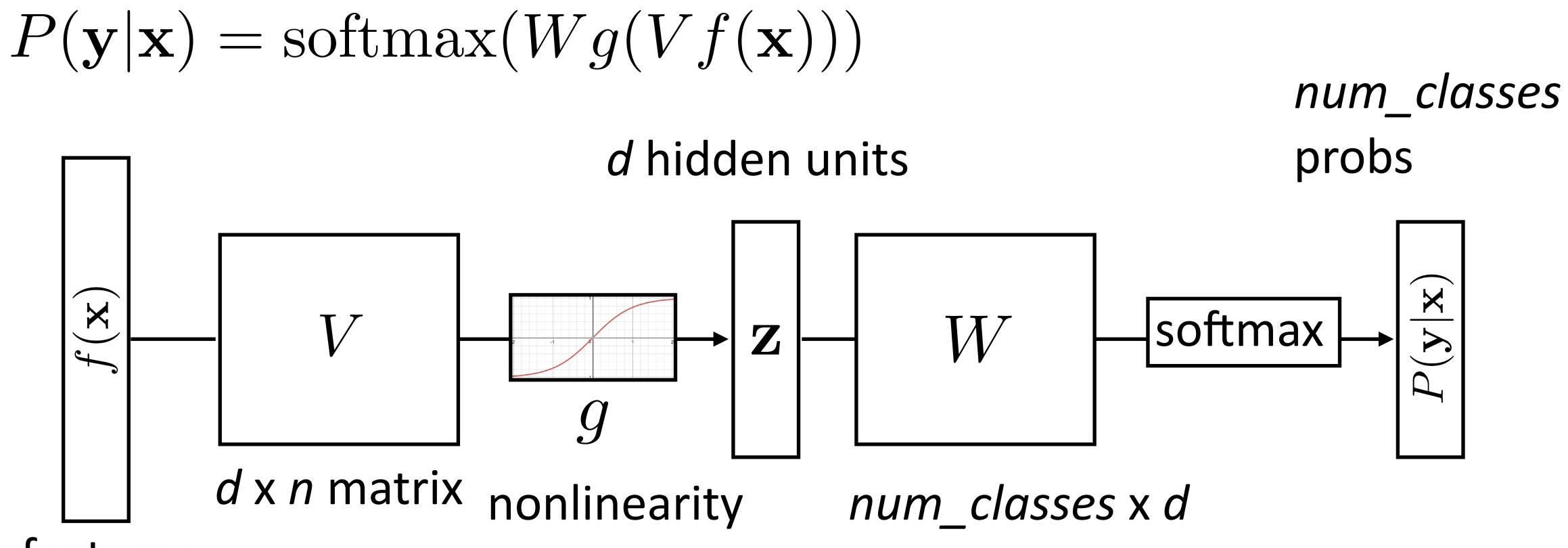


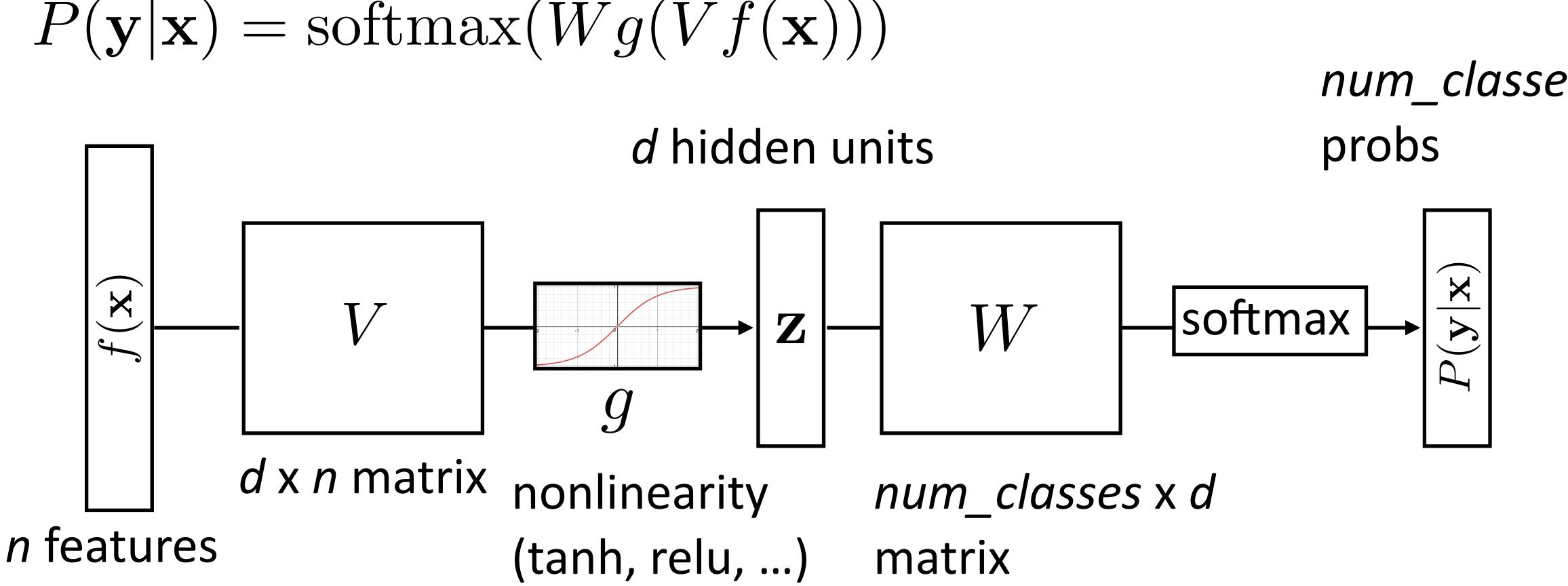




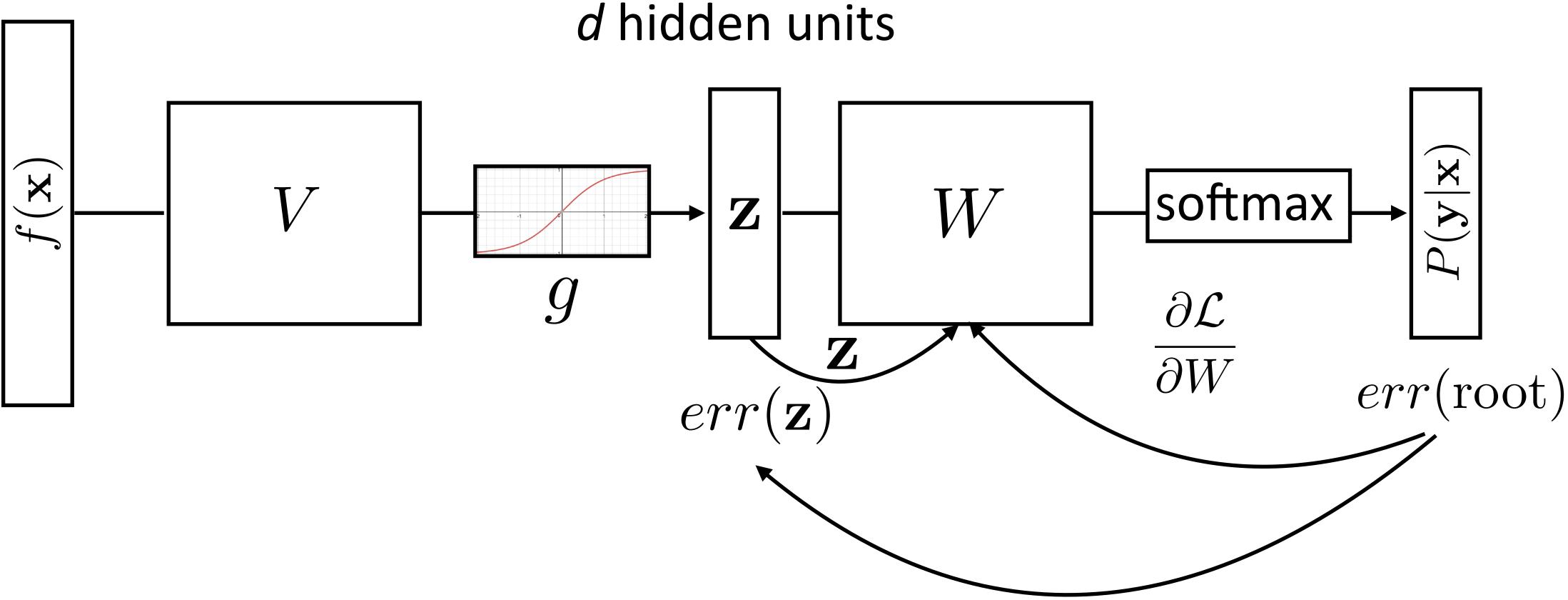
num_classes x d



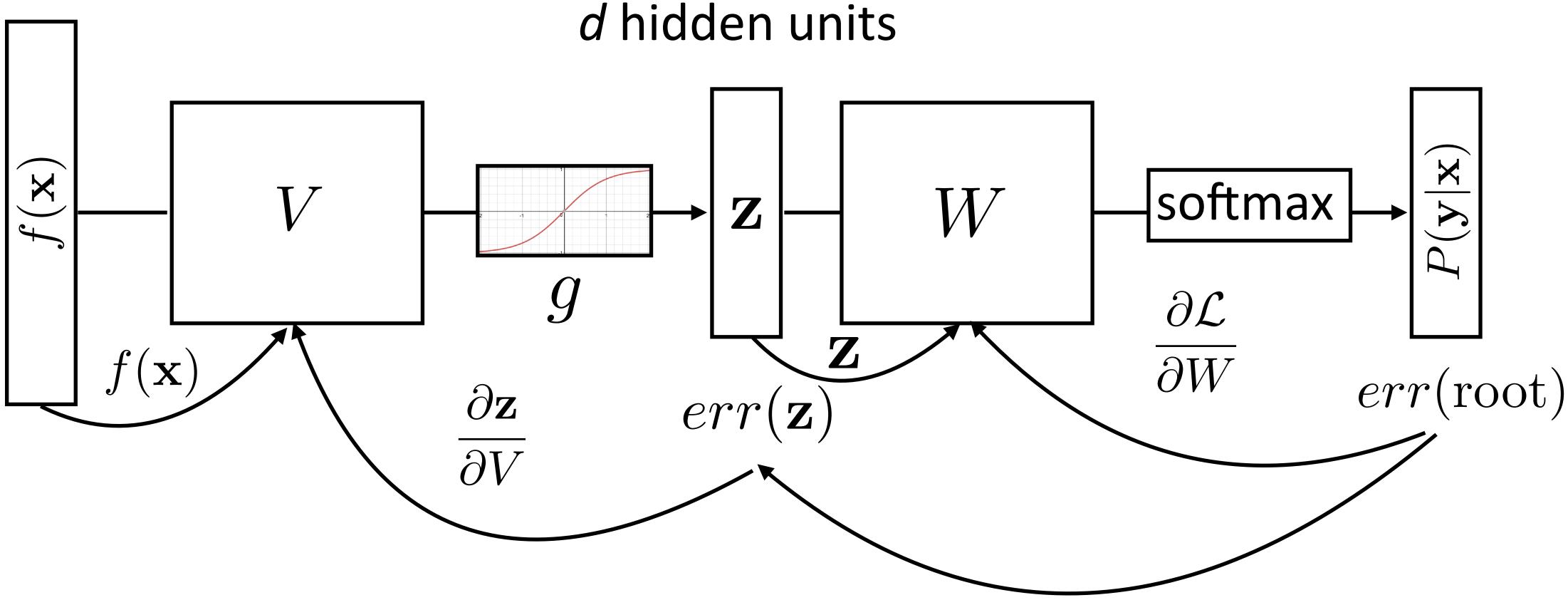




Recall: Backpropagation



Recall: Backpropagation



- Training
- Word representations
- word2vec/GloVe
- Evaluating word embeddings

This Lecture

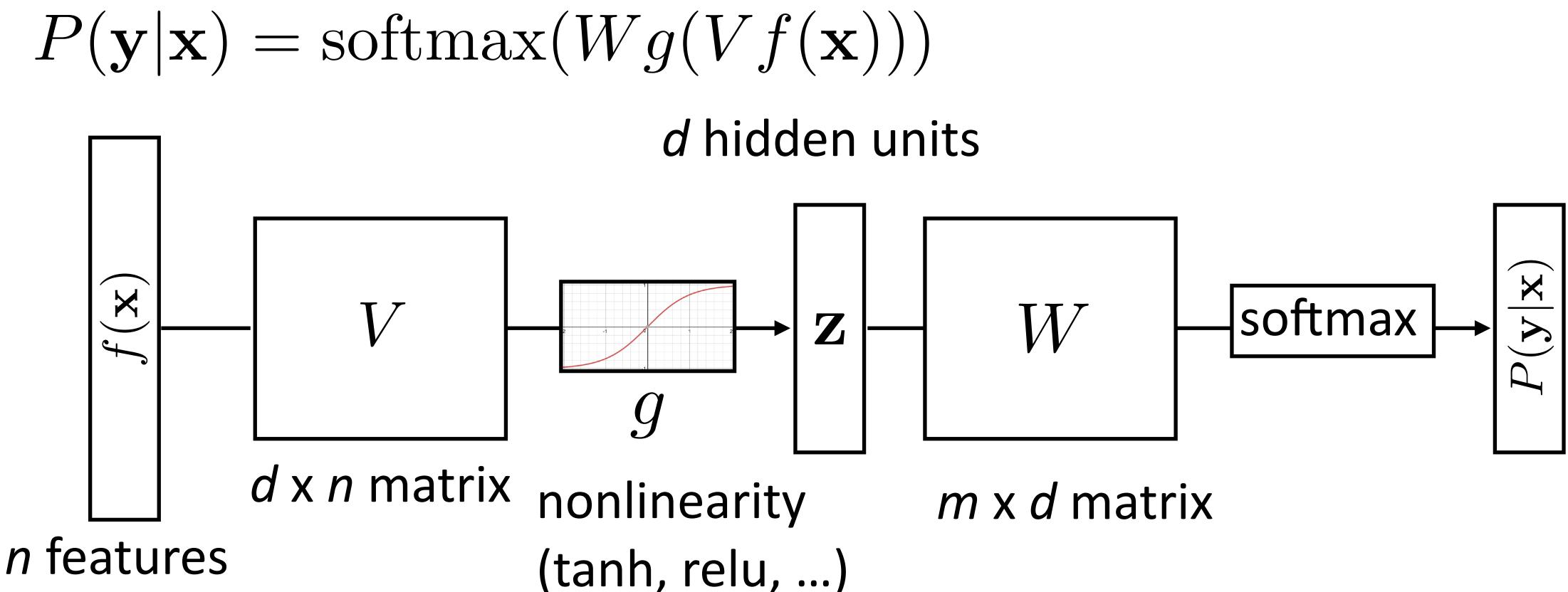
Training Tips

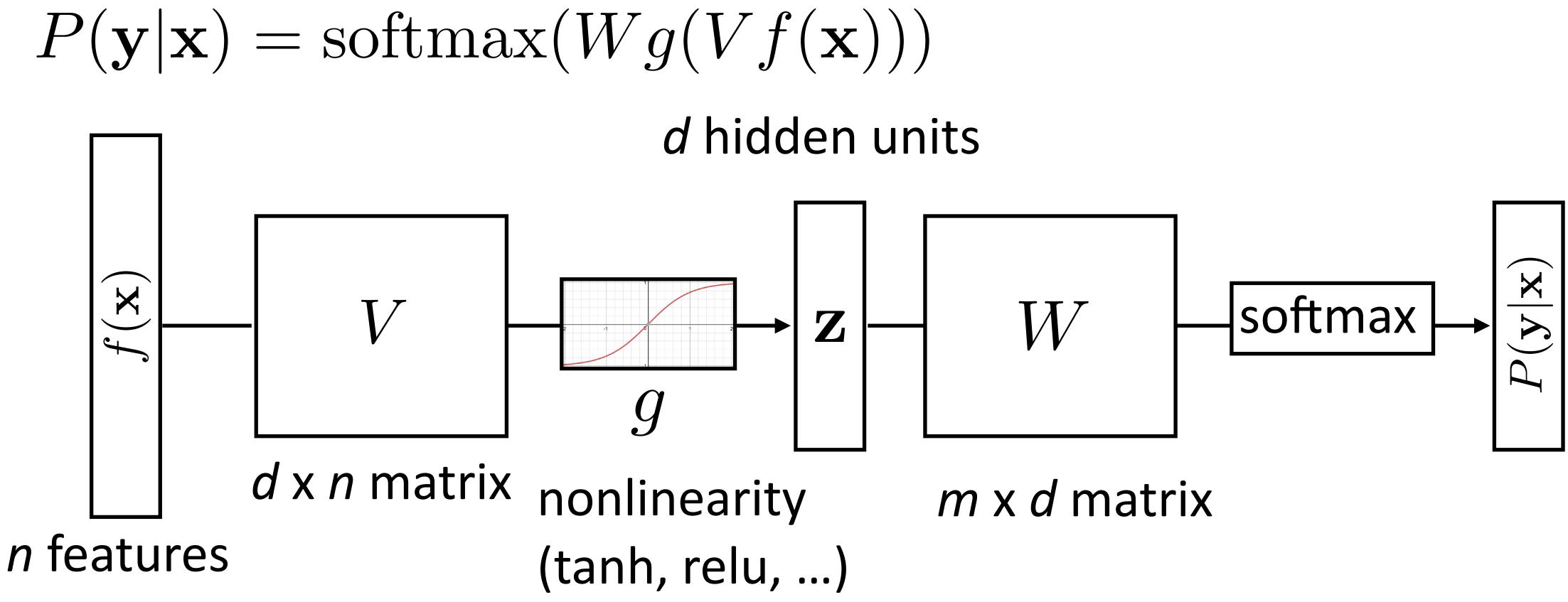
Basic formula: compute gradients on batch, use first-order opt. method

- How to initialize? How to regularize? What optimizer to use?

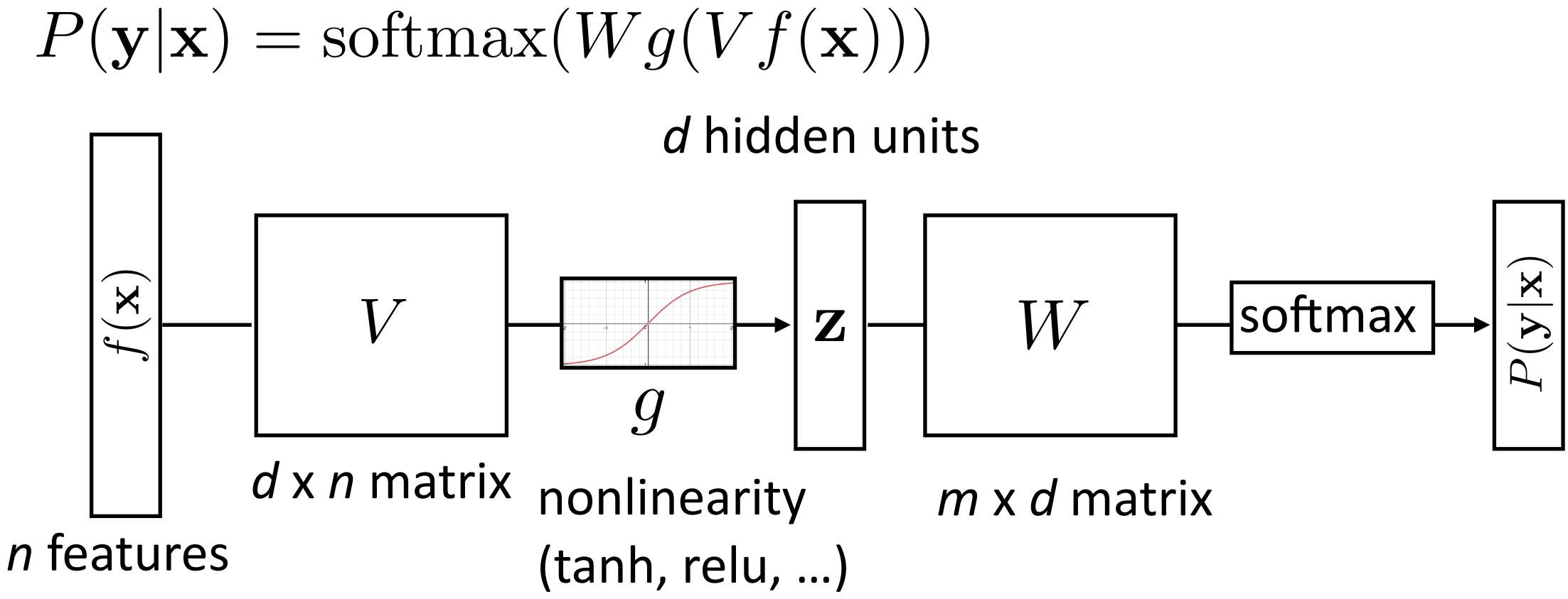
Basic formula: compute gradients on batch, use first-order opt. method

- Basic formula: compute gradients on batch, use first-order opt. method
- How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further





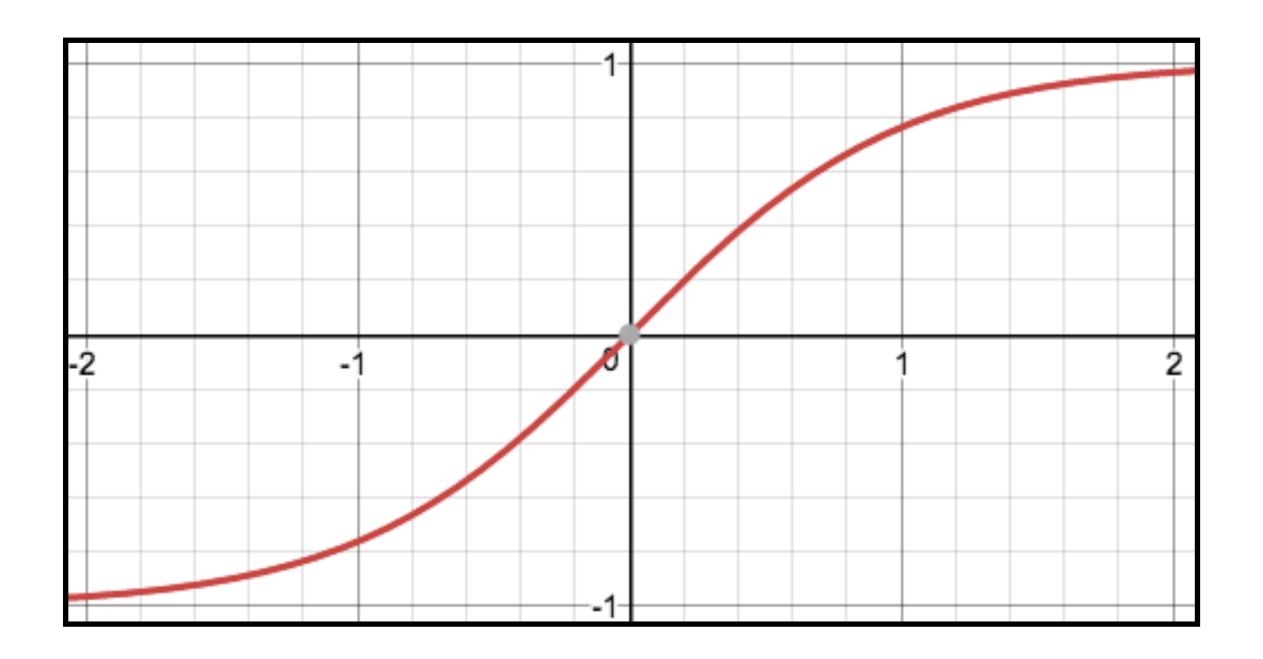
How do we initialize V and W? What consequences does this have?



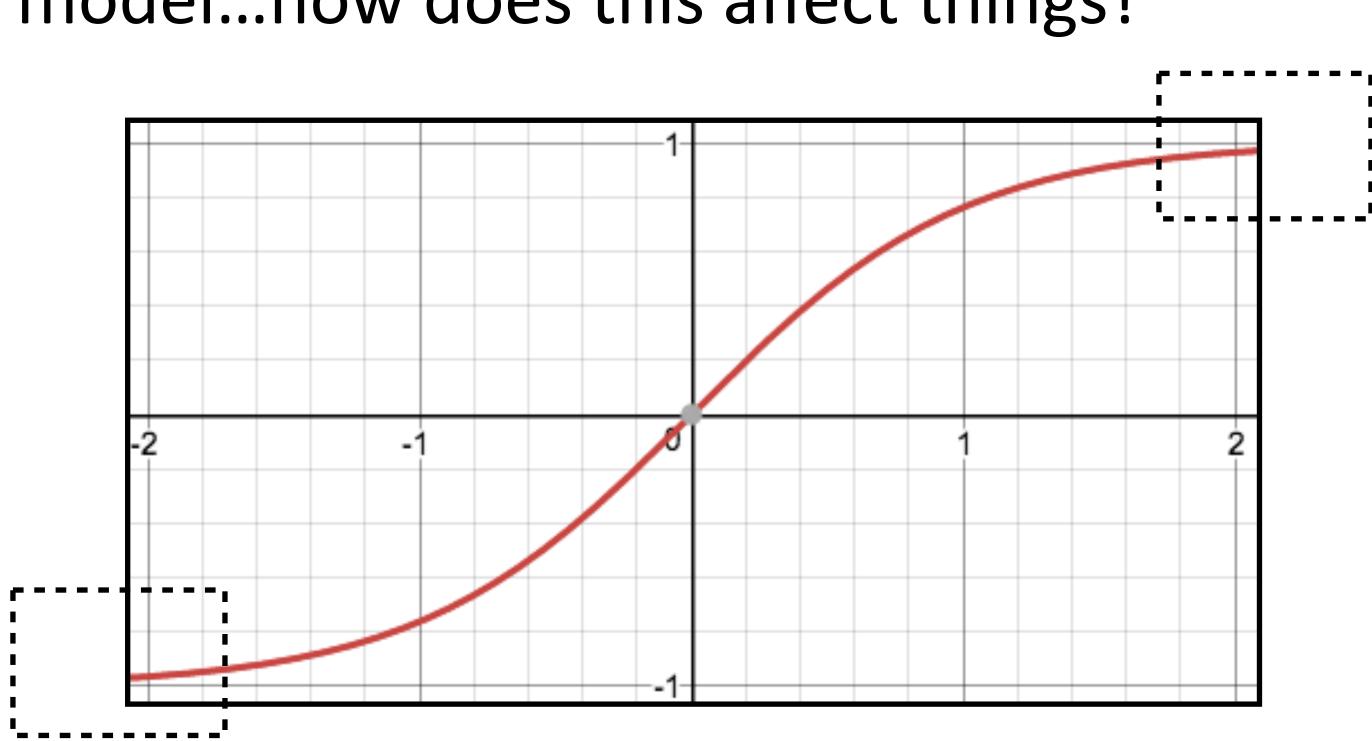
- How do we initialize V and W? What consequences does this have?
- Nonconvex problem, so initialization matters!

Nonlinear model...how does this affect things?

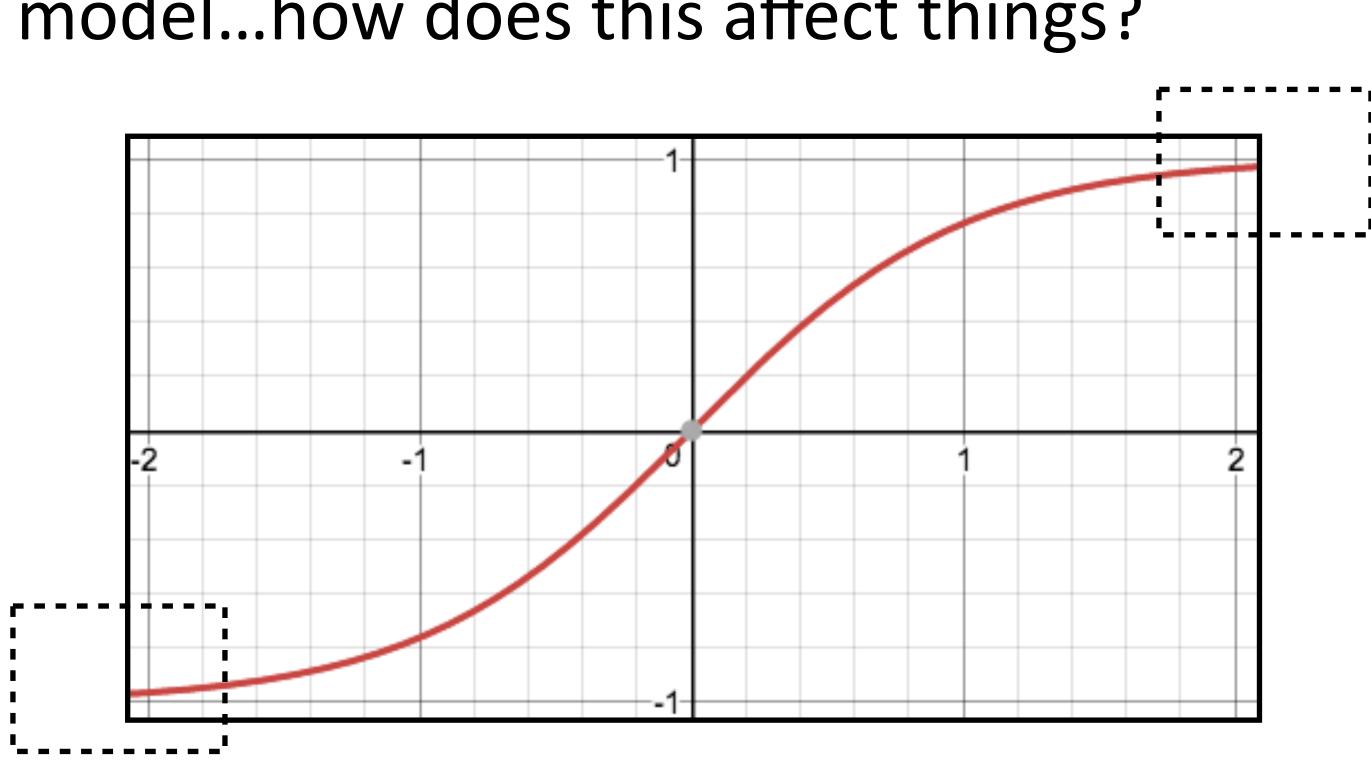
Nonlinear model...how does this affect things?



Nonlinear model...how does this affect things?

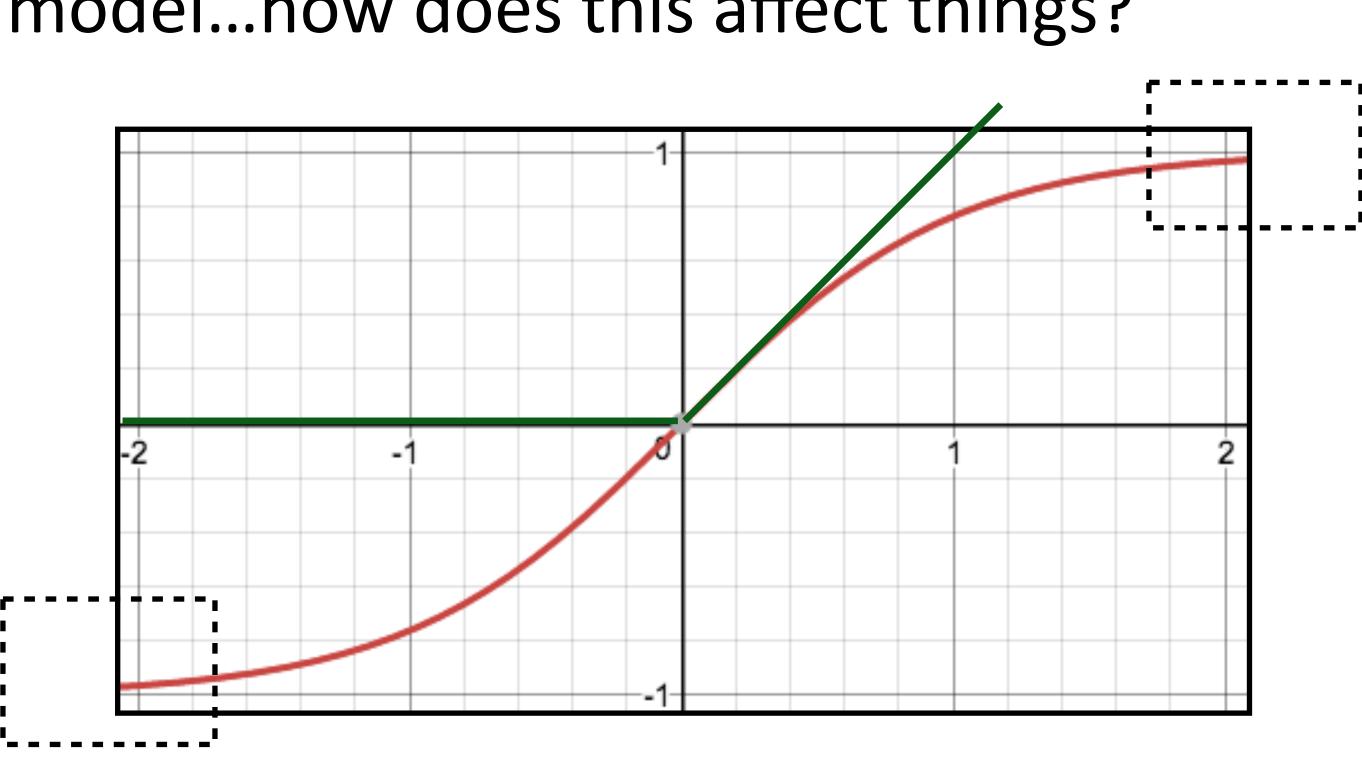


Nonlinear model...how does this affect things?



If cell activations are too large in absolute value, gradients are small

Nonlinear model...how does this affect things?



- big values, can break down if everything is too negative

If cell activations are too large in absolute value, gradients are small ReLU: larger dynamic range (all positive numbers), but can produce

that hidden layer are always 0 and have gradients of 0, never change

1) Can't use zeroes for parameters to produce hidden layers: all values in

that hidden layer are always 0 and have gradients of 0, never change 2) Initialize too large and cells are saturated

- 1) Can't use zeroes for parameters to produce hidden layers: all values in

that hidden layer are always 0 and have gradients of 0, never change 2) Initialize too large and cells are saturated

- 1) Can't use zeroes for parameters to produce hidden layers: all values in
- Can do random uniform / normal initialization with appropriate scale

that hidden layer are always 0 and have gradients of 0, never change 2) Initialize too large and cells are saturated

• Xavier initializer: $U = \sqrt{\frac{-\sqrt{-1}}{-1}}$

- 1) Can't use zeroes for parameters to produce hidden layers: all values in
- Can do random uniform / normal initialization with appropriate scale

$$\frac{6}{+ \text{ fan-out}}, +\sqrt{\frac{6}{\text{ fan-in} + \text{ fan-out}}}$$

that hidden layer are always 0 and have gradients of 0, never change 2) Initialize too large and cells are saturated

• Xavier initializer: $U = \sqrt{\frac{1}{\text{fan-in}}}$

- 1) Can't use zeroes for parameters to produce hidden layers: all values in
- Can do random uniform / normal initialization with appropriate scale

$$\frac{6}{+ \text{ fan-out}}, +\sqrt{\frac{6}{\text{ fan-in + fan-out}}}$$

Want variance of inputs and gradients for each layer to be the same

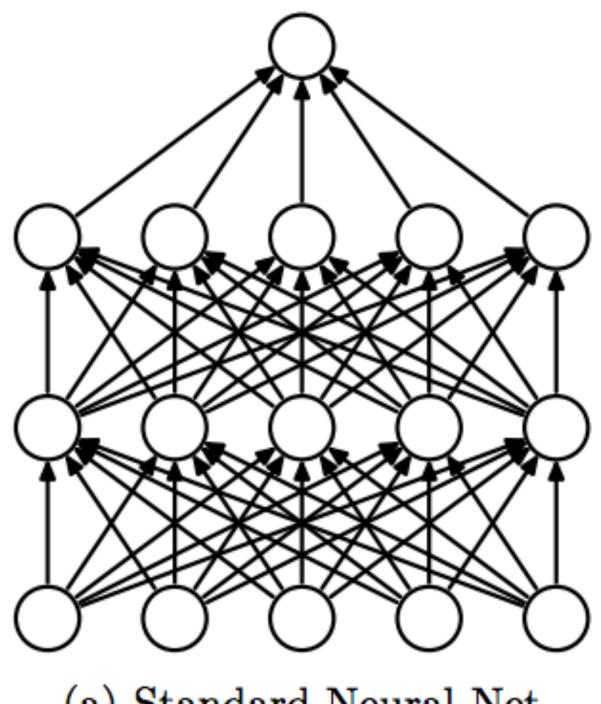
that hidden layer are always 0 and have gradients of 0, never change 2) Initialize too large and cells are saturated

- Can do random uniform / normal initialization with appropriate scale
- Xavier initializer: $U = \sqrt{\frac{1}{\text{fan-in}}}$
 - Want variance of inputs and gradients for each layer to be the same
- Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

- 1) Can't use zeroes for parameters to produce hidden layers: all values in

$$\frac{6}{+ \text{ fan-out}}, +\sqrt{\frac{6}{\text{ fan-in} + \text{ fan-out}}}$$

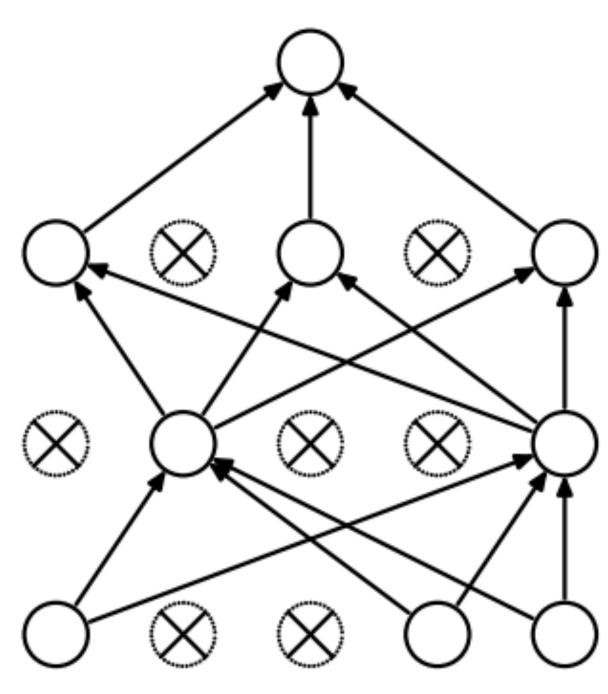
overfitting, use whole network at test time



Dropout

Probabilistically zero out parts of the network during training to prevent

(a) Standard Neural Net

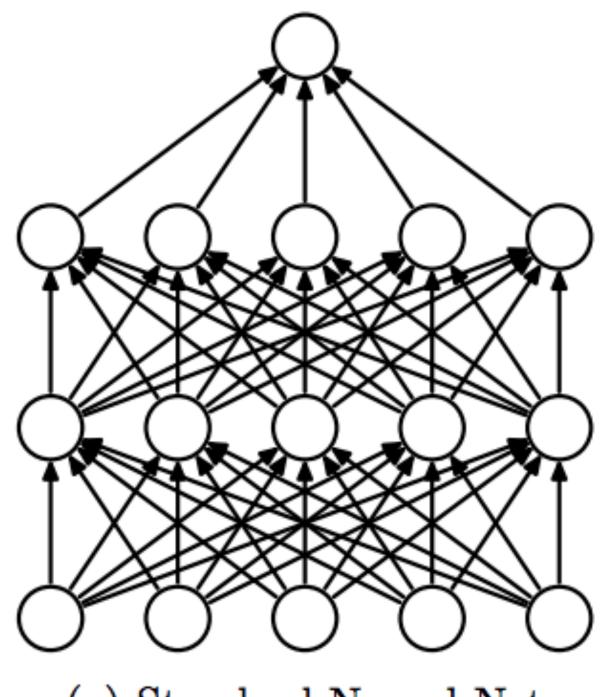


(b) After applying dropout.

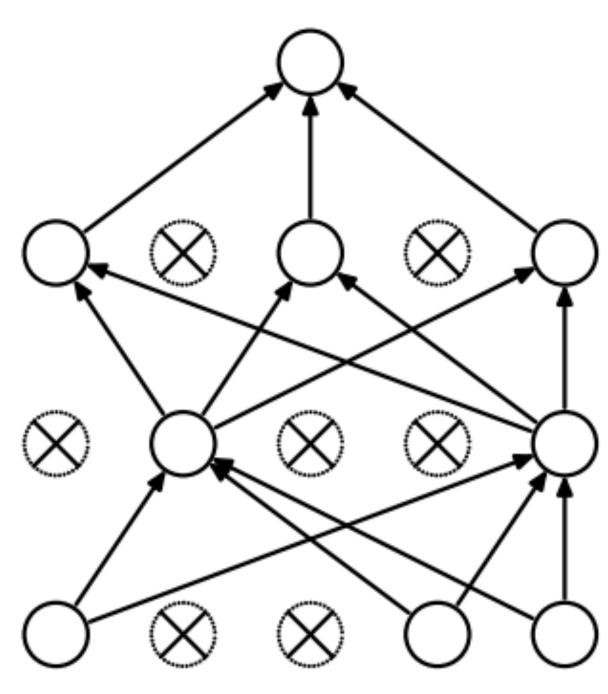
Srivastava et al. (2014)

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization



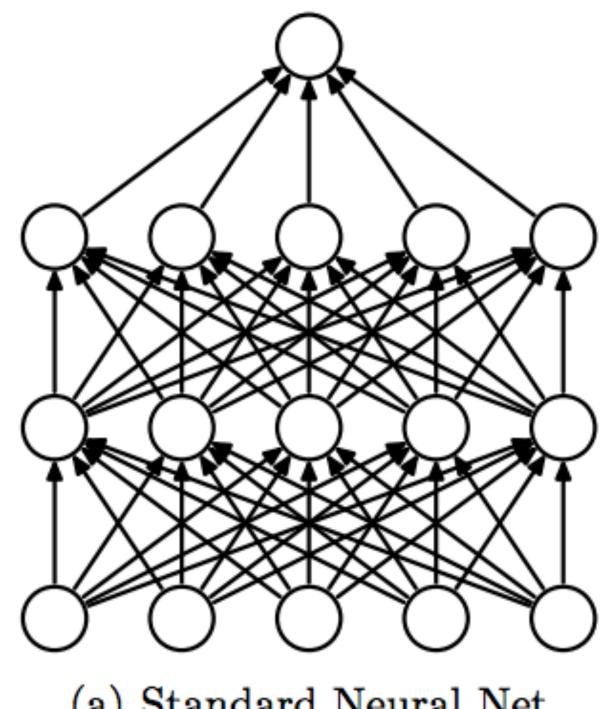
(a) Standard Neural Net



(b) After applying dropout.

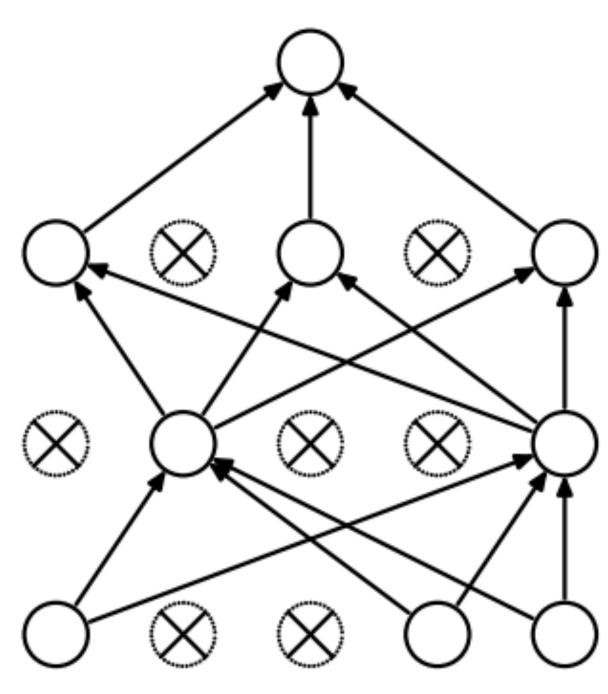
Srivastava et al. (2014)

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy



Dropout

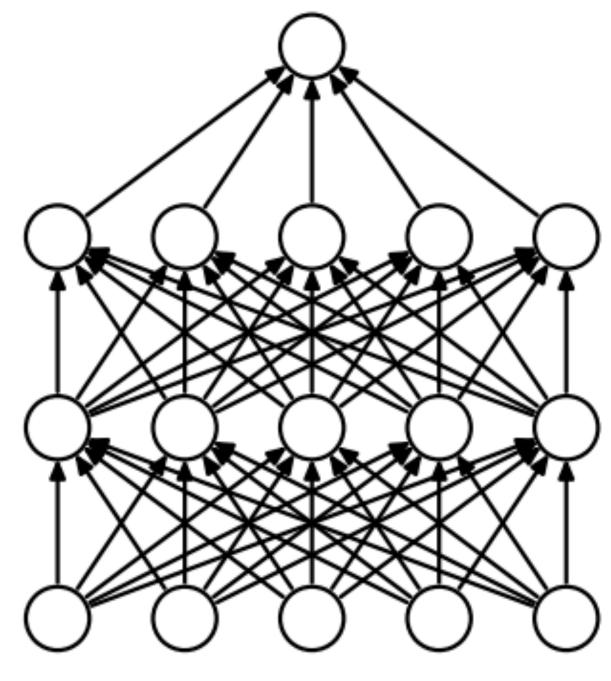
(a) Standard Neural Net



(b) After applying dropout.

Srivastava et al. (2014)

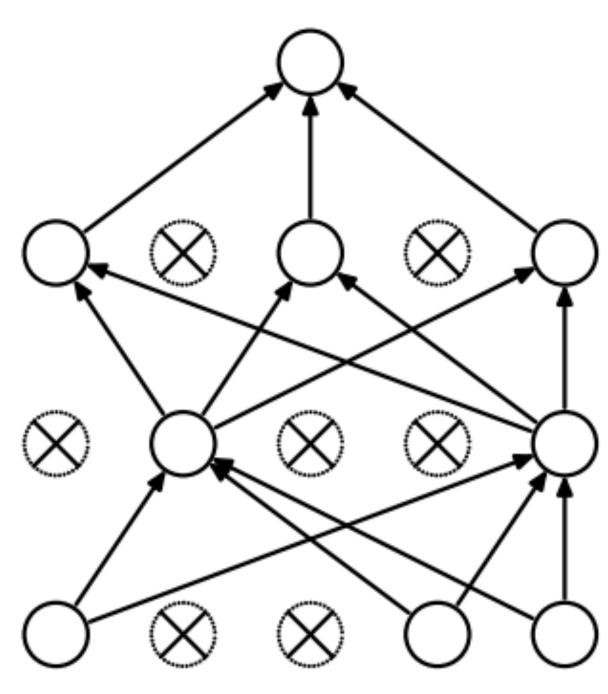
- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy



One line in Pytorch/Tensorflow

Dropout

(a) Standard Neural Net



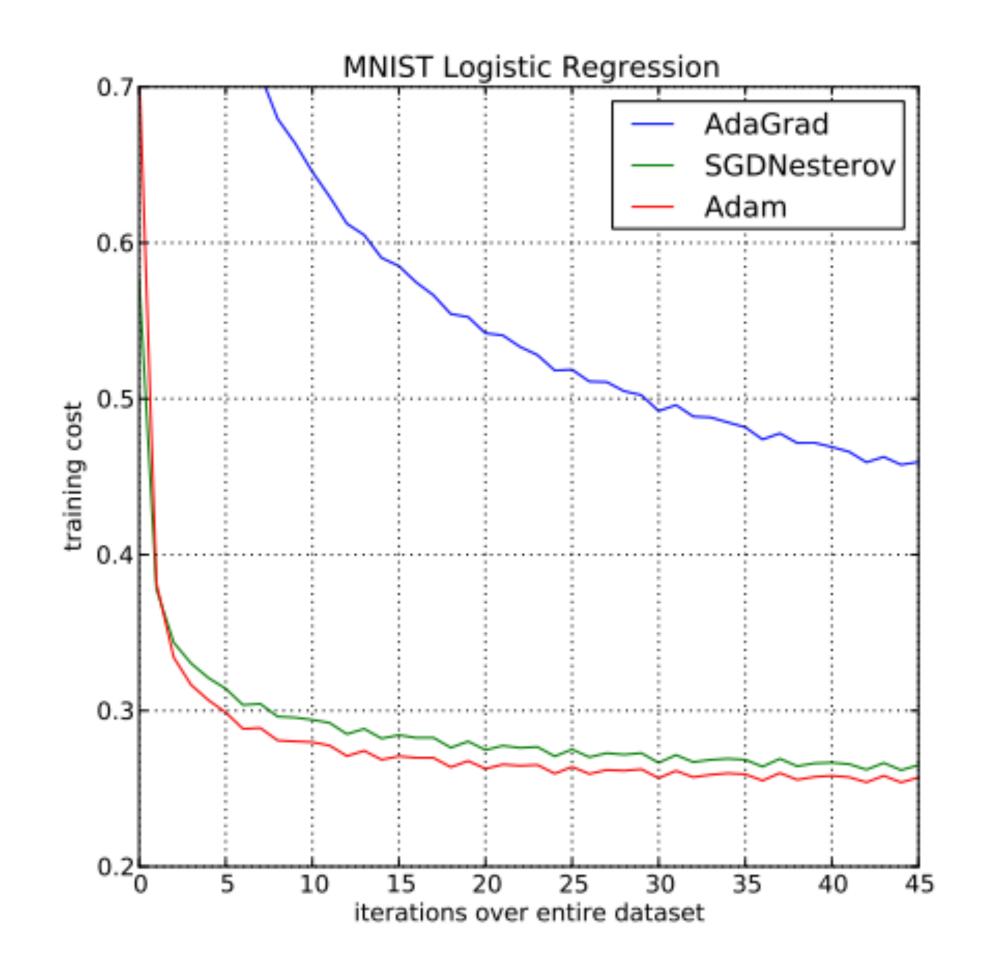
(b) After applying dropout.

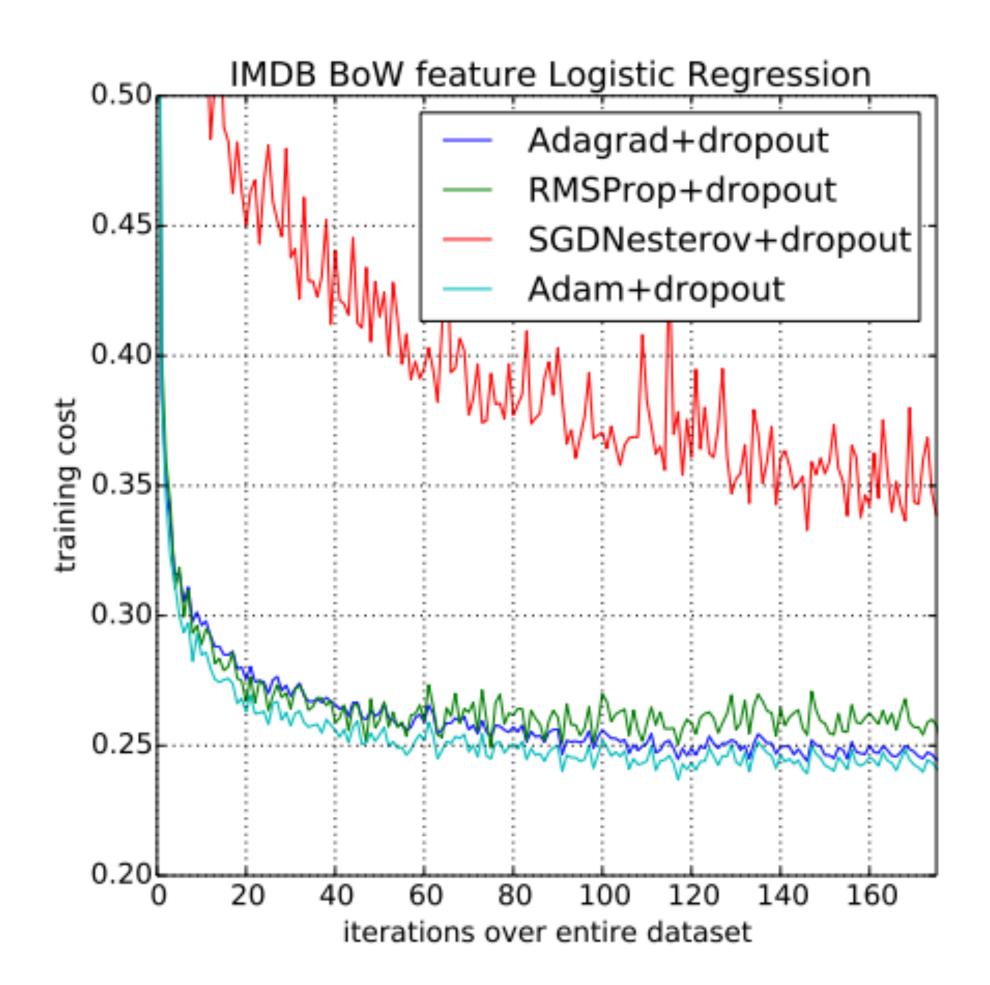
Srivastava et al. (2014)

- Adam (Kingma and Ba, ICLR 2015) is very widely used
- Adaptive step size like Adagrad, incorporates momentum

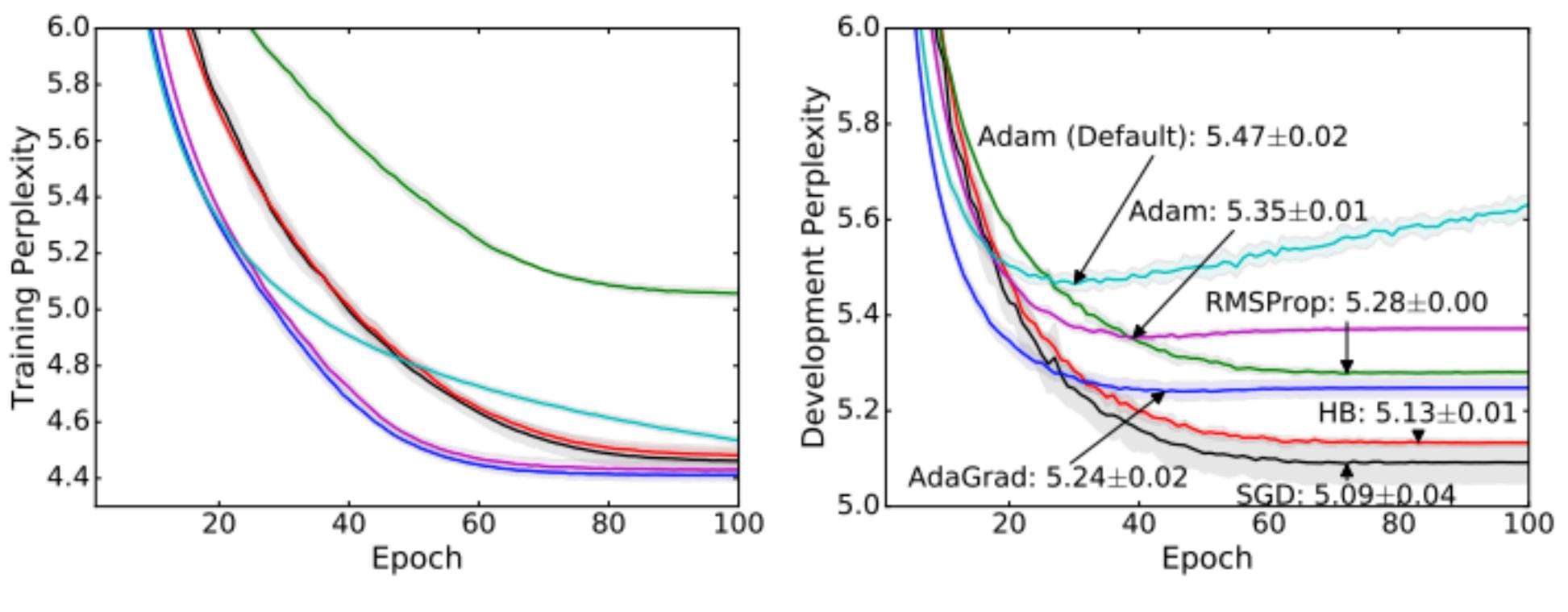
Adam (Kingma and Ba, ICLR 2015) is very widely used

Adaptive step size like Adagrad, incorporates momentum





test time (Adam is in pink, SGD in black)

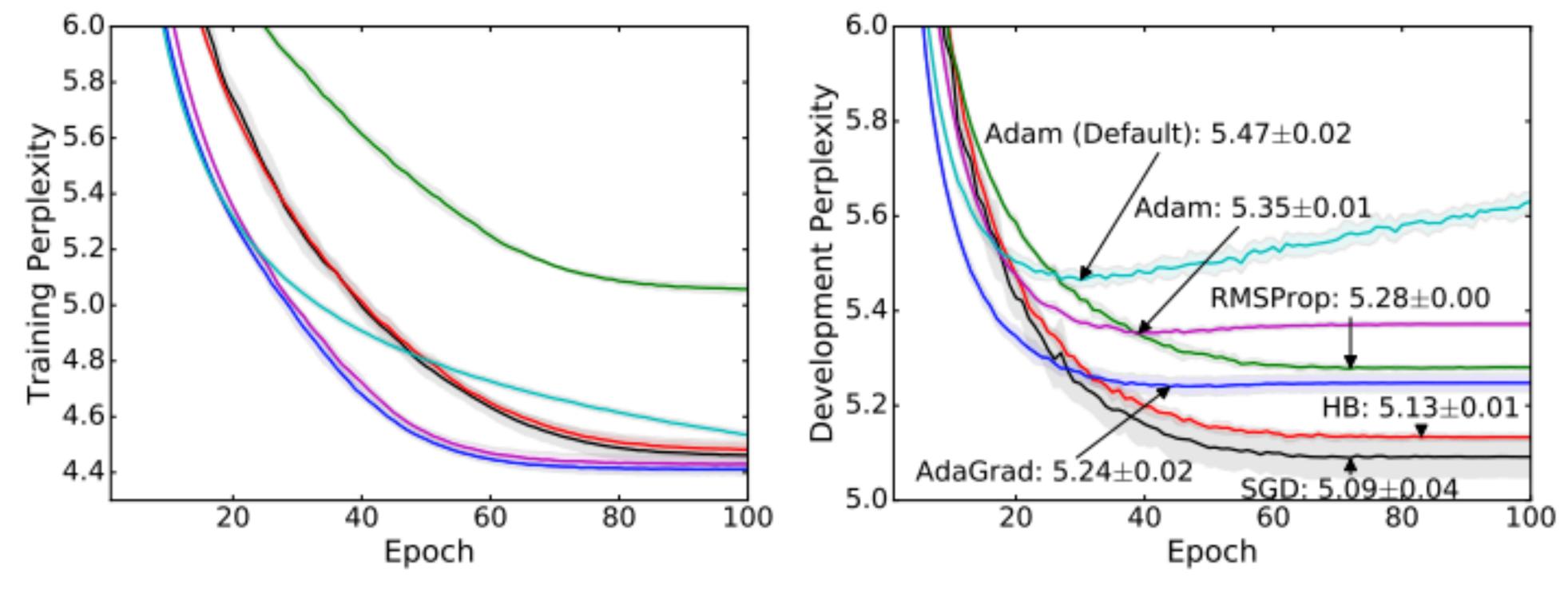


(e) Generative Parsing (Training Set)

Wilson et al. NIPS 2017: adaptive methods can actually perform badly at

(f) Generative Parsing (Development Set)

- Wilson et al. NIPS 2017: adaptive methods can actually perform badly at test time (Adam is in pink, SGD in black)
- Check dev set periodically, decrease learning rate if not making progress



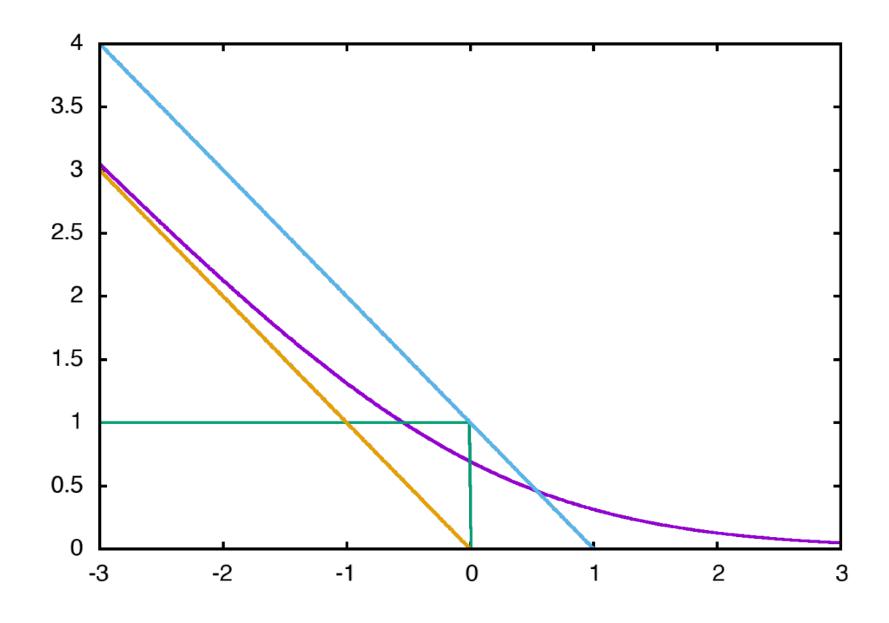
(e) Generative Parsing (Training Set)

(f) Generative Parsing (Development Set)

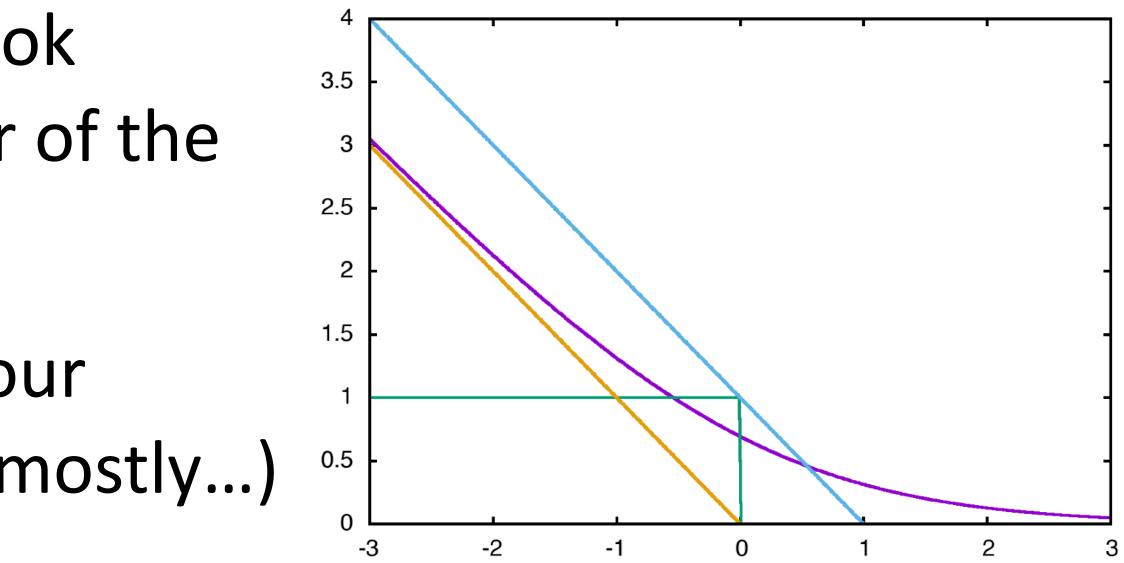
Four elements of a machine learning method:

- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework

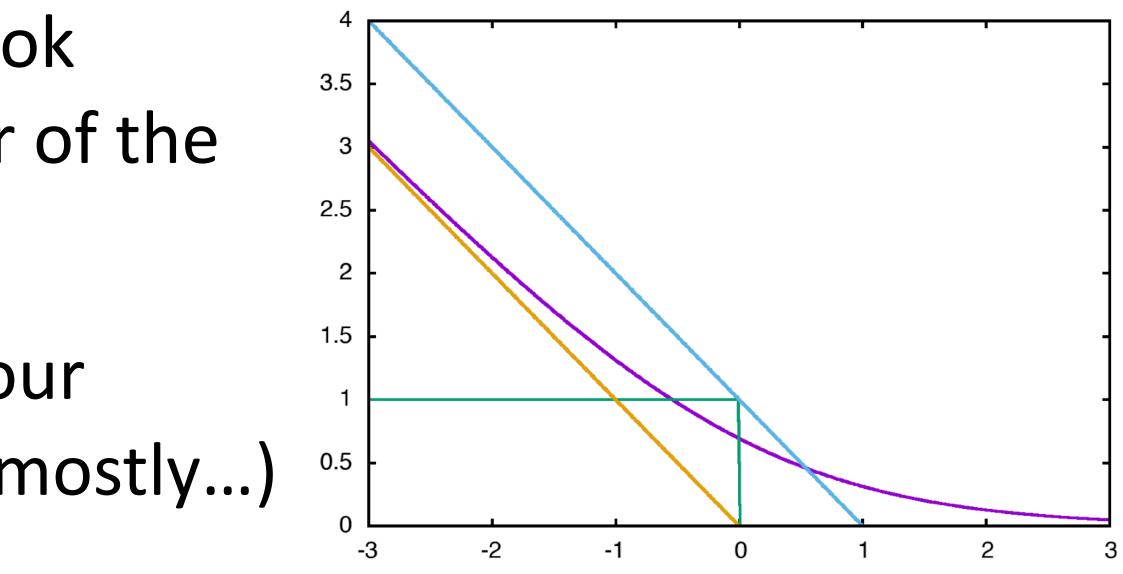
- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network



- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network
- Inference: define the network, your library of choice takes care of it (mostly...)



- Four elements of a machine learning method:
- Model: feedforward, RNNs, CNNs can be defined in a uniform framework
- Objective: many loss functions look similar, just changes the last layer of the neural network
- Inference: define the network, your library of choice takes care of it (mostly...)
- Training: lots of choices for optimization/hyperparameters



Neural networks work very well at continuous data, but words are discrete

slide credit: Dan Klein

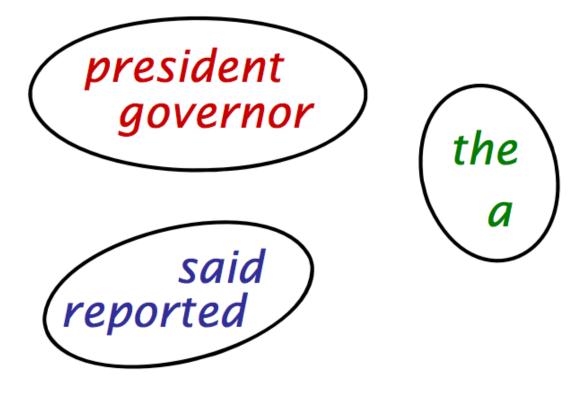
- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input

slide credit: Dan Klein

- Neural networks work very well at continuous data, but words are discrete
- Continuous model <-> expects continuous semantics from input
- "You shall know a word by the company it keeps" Firth (1957)

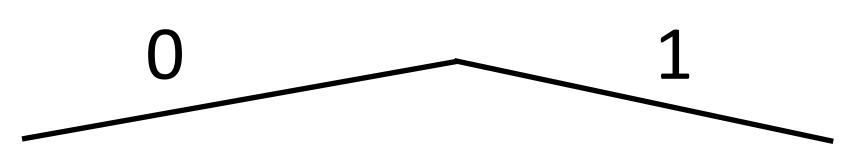
theore	sident said that t
nrooidont	the of
president	the of
president	the said
governor	the of
governor	the appointed
said	sources
said	president that
reported	sources ♦

the downturn was over •

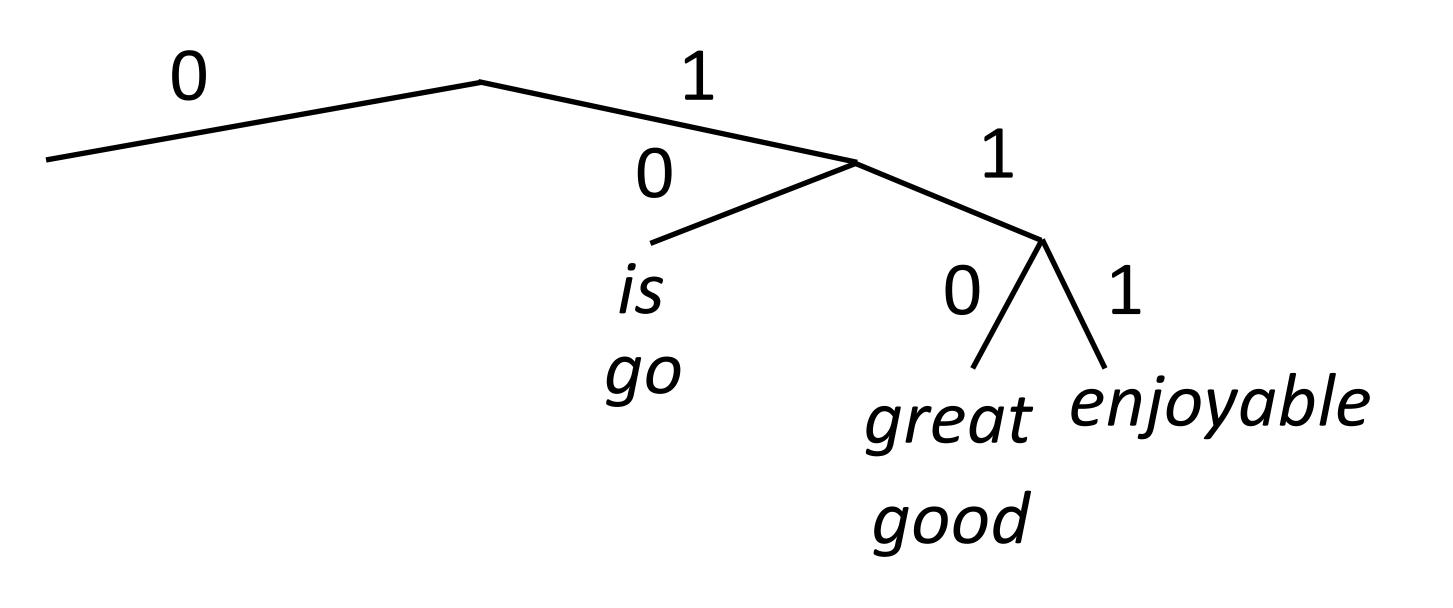


[Finch and Chater 92, Shuetze 93, many others]

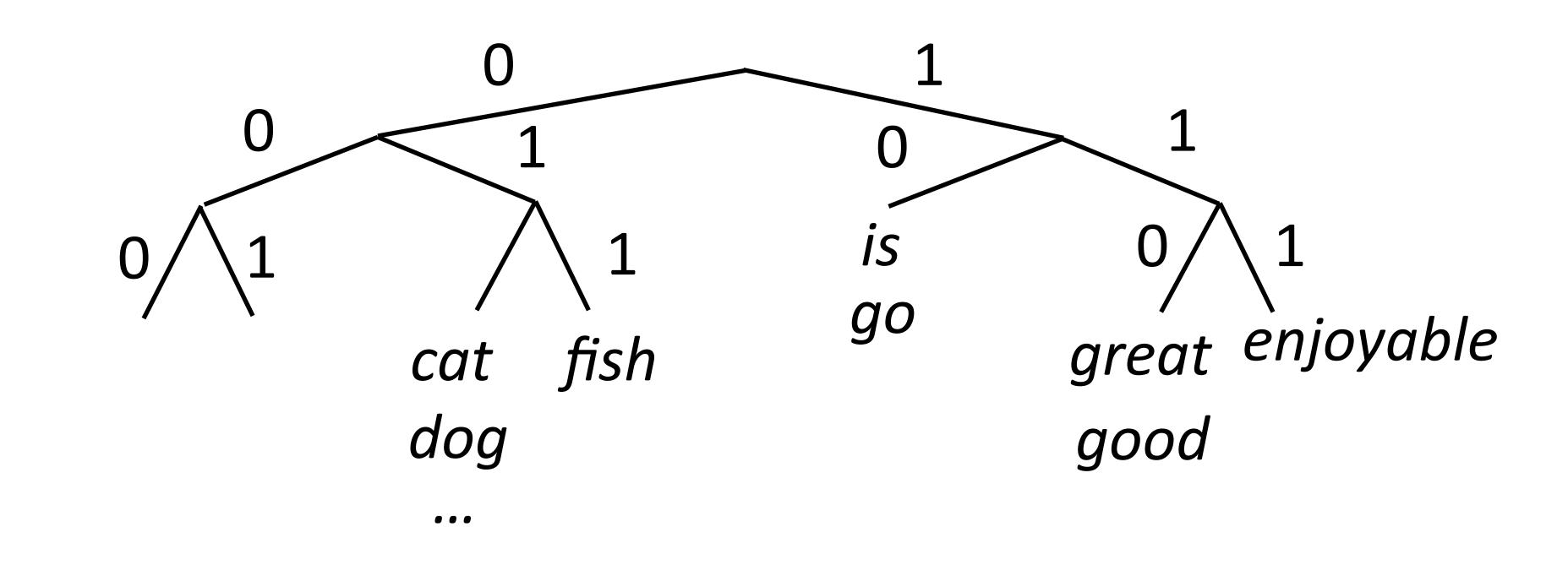
Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)



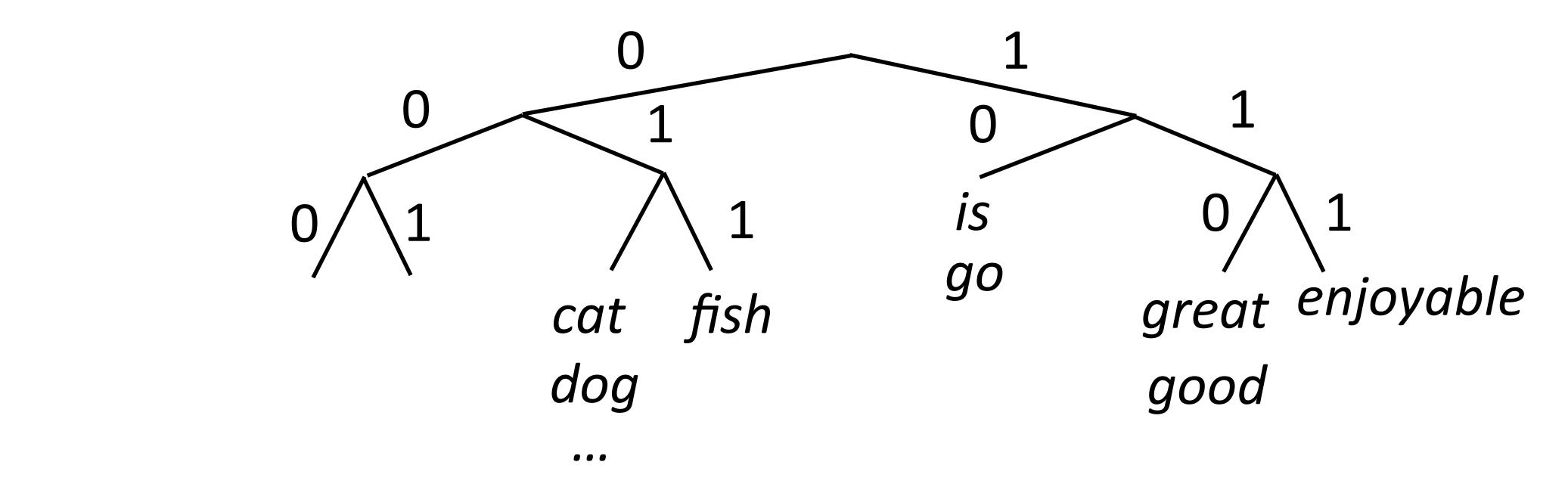
Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)



Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)



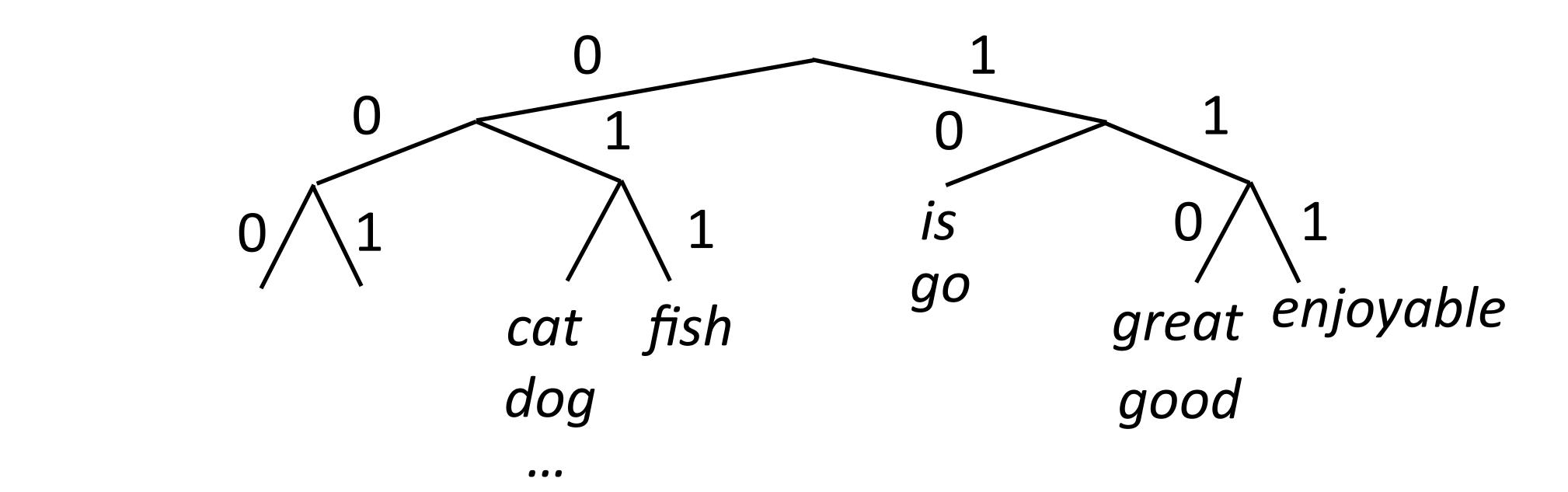
Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)



Maximize $P(w_i|w_{i-1}) = P(c_i|c_{i-1})$

Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

$$_{-1})P(w_i|c_i)$$



- Maximize $P(w_i|w_{i-1}) = P(c_i|c_{i-1})$
- Useful features for tasks like NER, not suitable for NNs

Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)

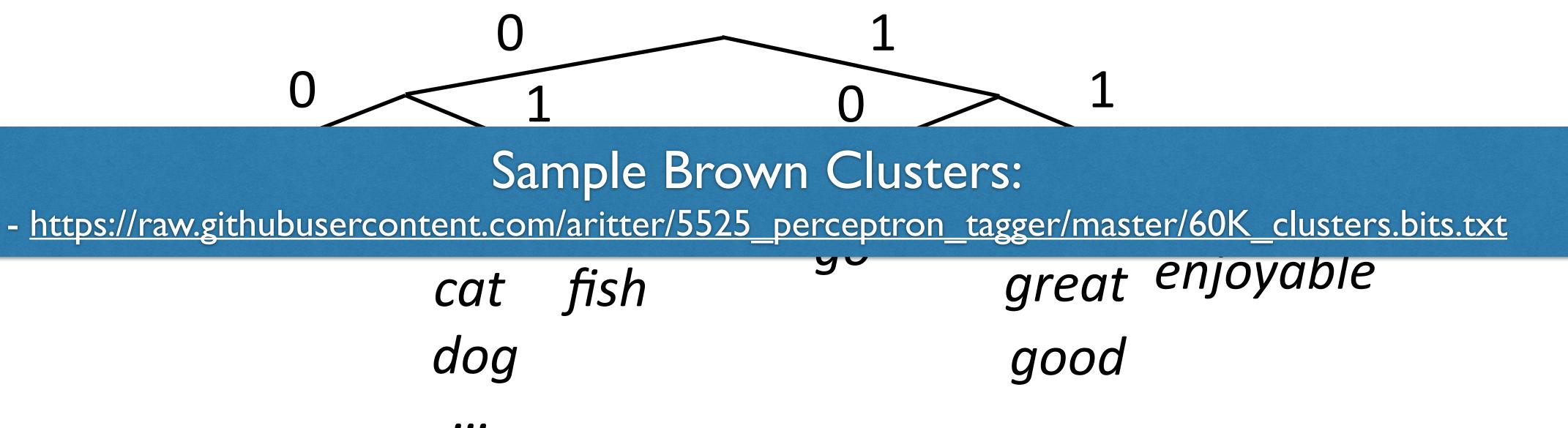
$$_{-1})P(w_i|c_i)$$

fish cat dog

()

- Maximize $P(w_i|w_{i-1}) = P(c_i|c_i)$
- Useful features for tasks like NER, not suitable for NNs

Brown clusters: hierarchical agglomerative hard clustering (each word has one cluster, not some posterior distribution like in mixture models)



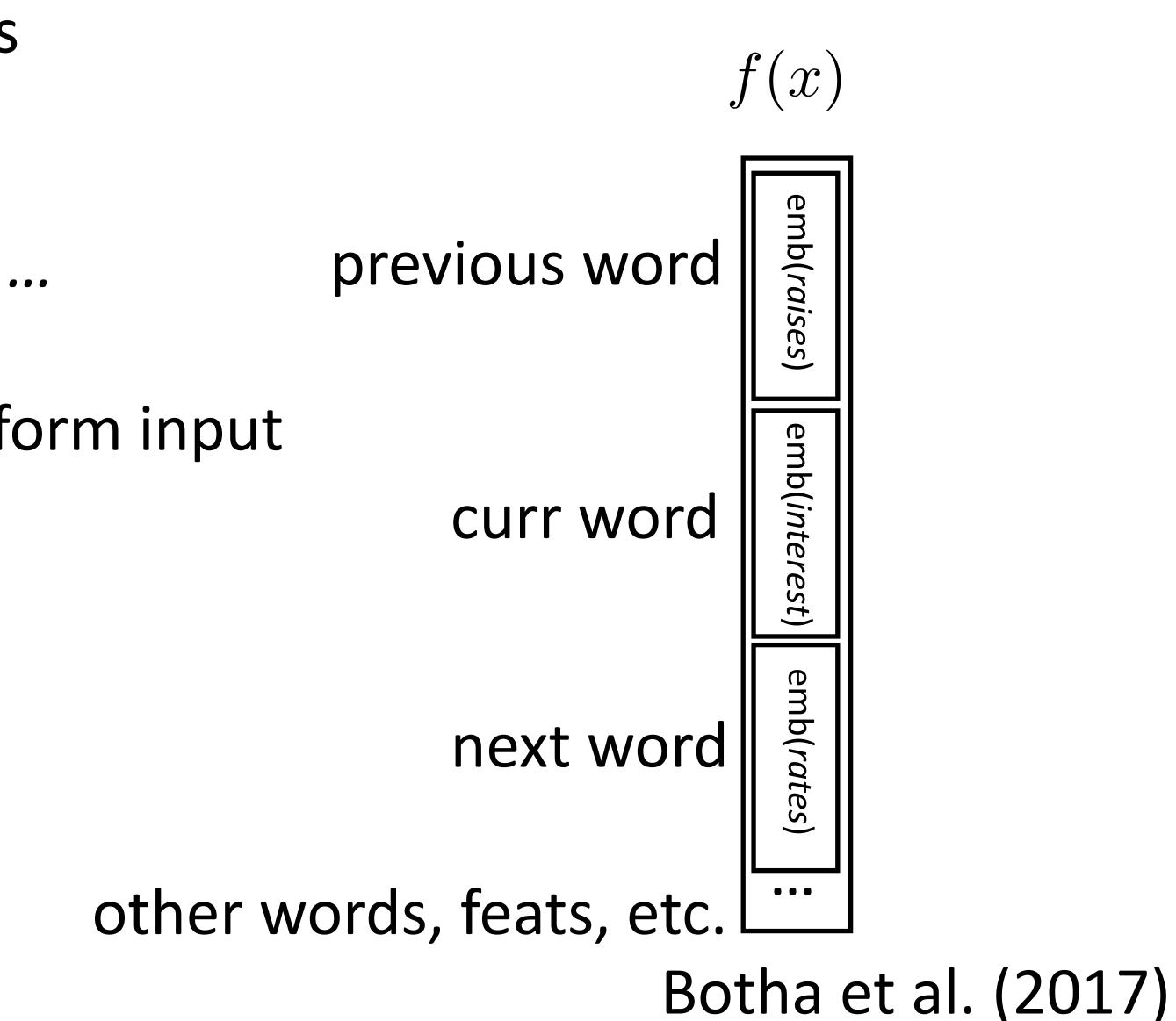
$$_{-1})P(w_i|c_i)$$

Part-of-speech tagging with FFNNs

<u>?</u>?

Fed raises interest rates in order to ...

Word embeddings for each word form input

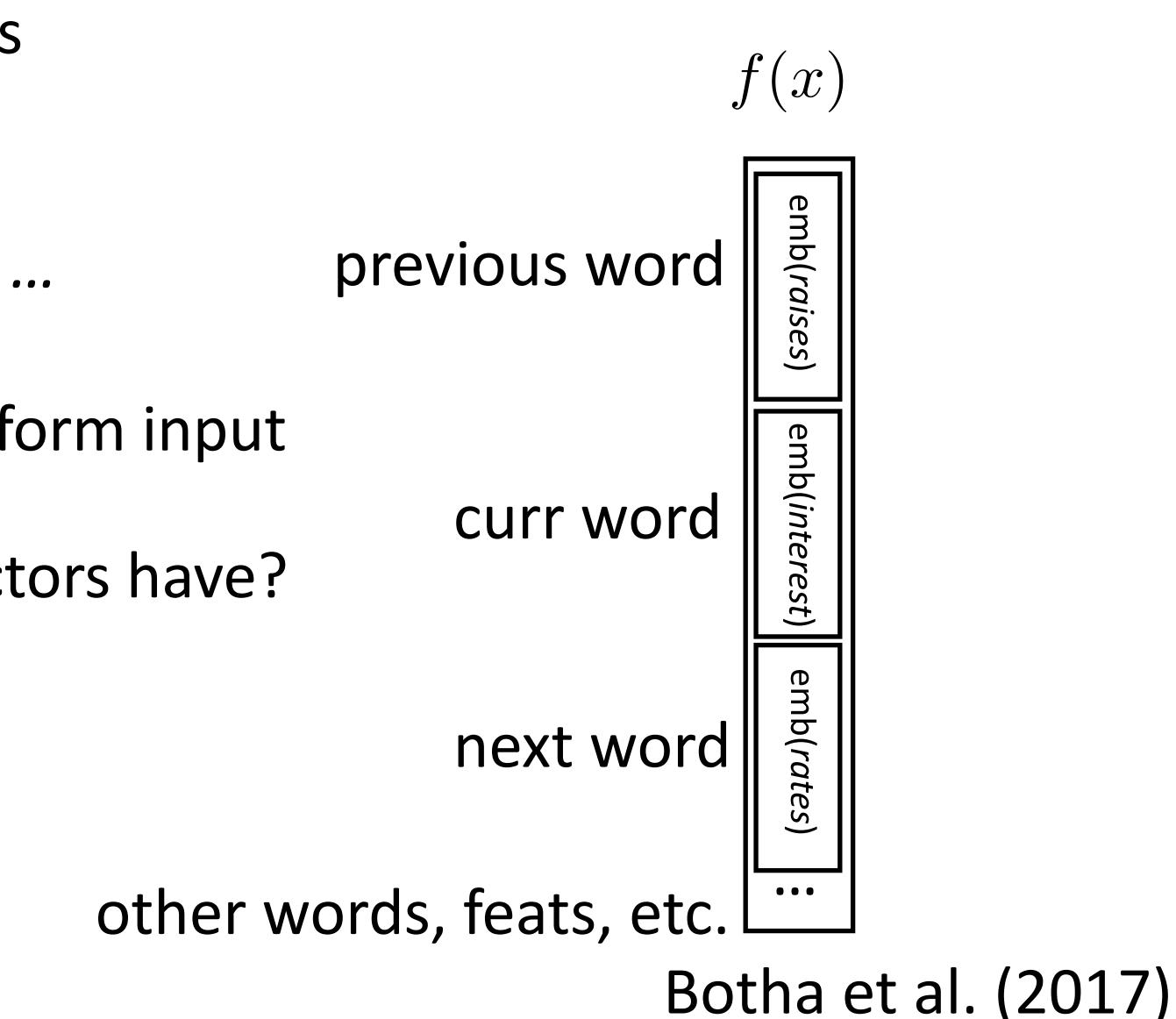


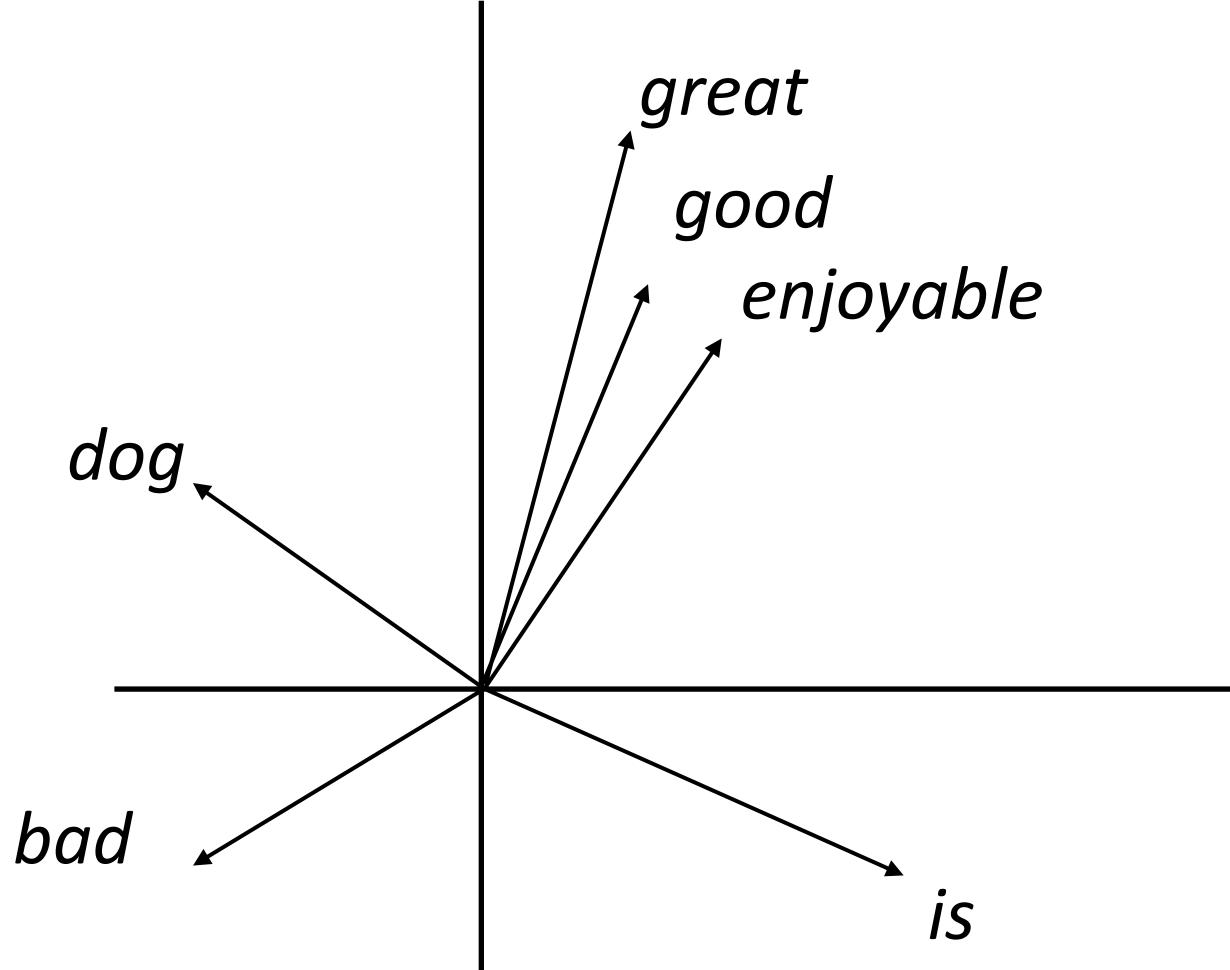
Part-of-speech tagging with FFNNs <u>?</u>?

Fed raises interest rates in order to ...

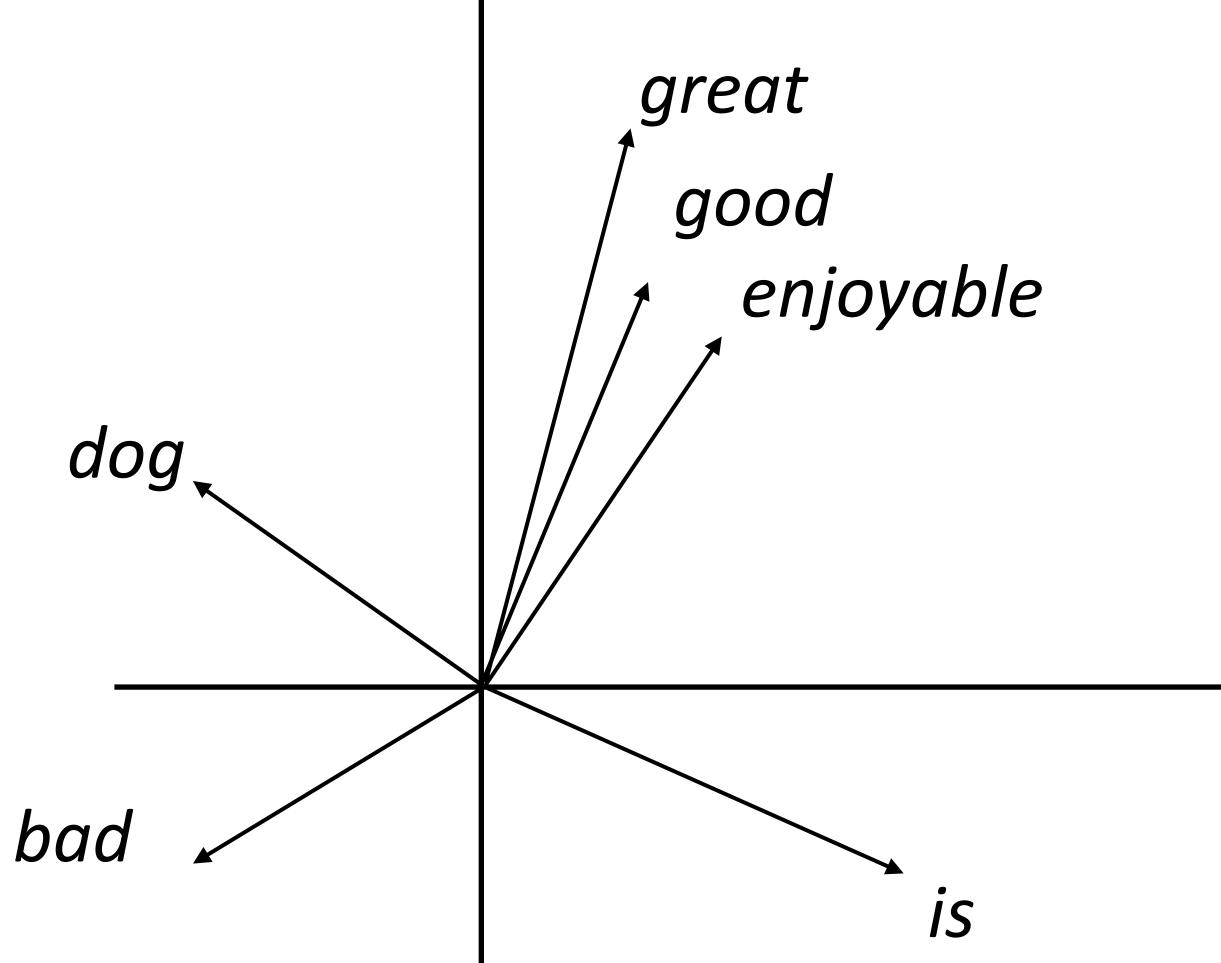
Word embeddings for each word form input

What properties should these vectors have?





Want a vector space where similar words have similar embeddings

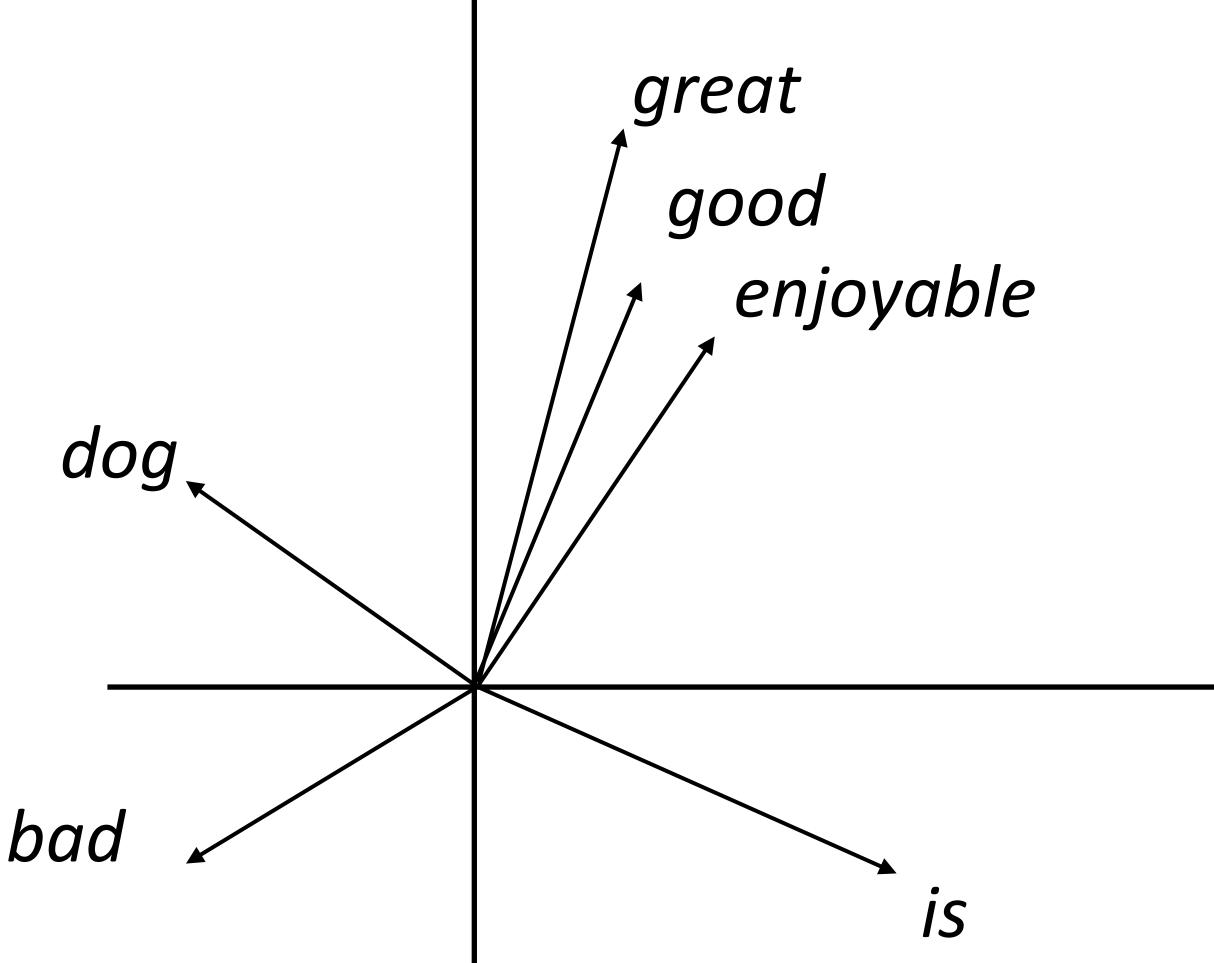


the movie was great

 \approx

the movie was good

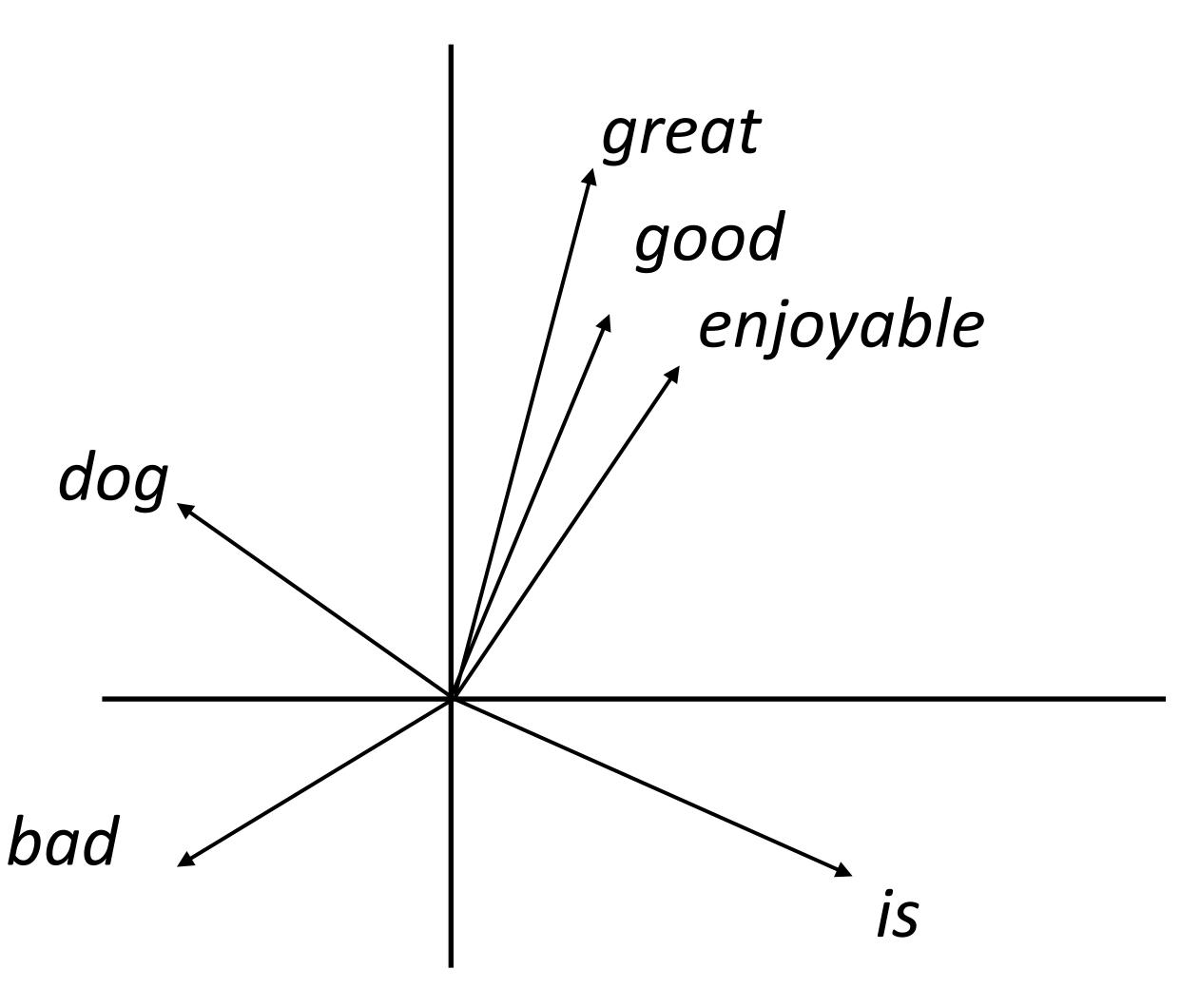
Want a vector space where similar words have similar embeddings



Want a vector space where similar words have similar embeddings

the movie was great ≈ the movie was good

Goal: come up with a way to produce these embeddings



word2vec/GloVe

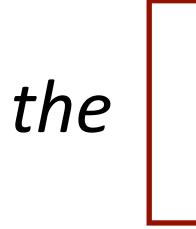
Predict word from context

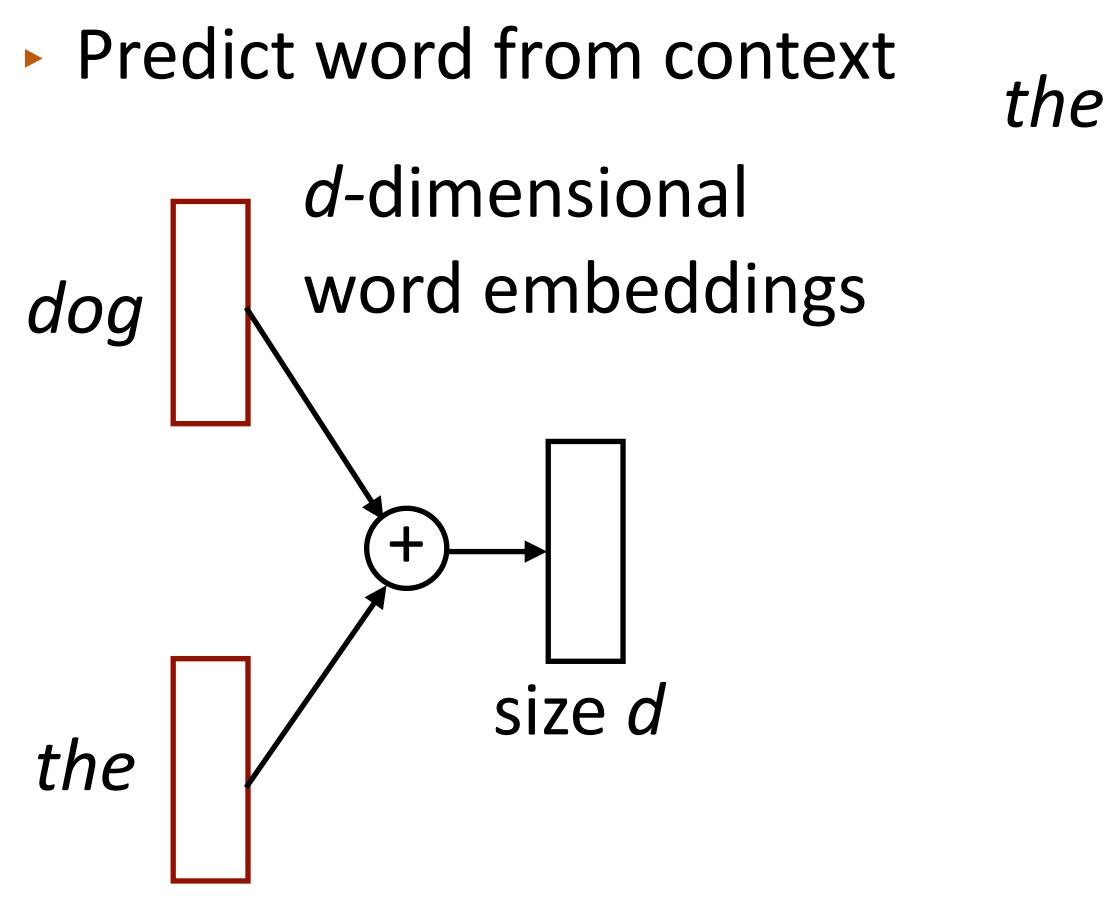
the dog bit the man

Predict word from context

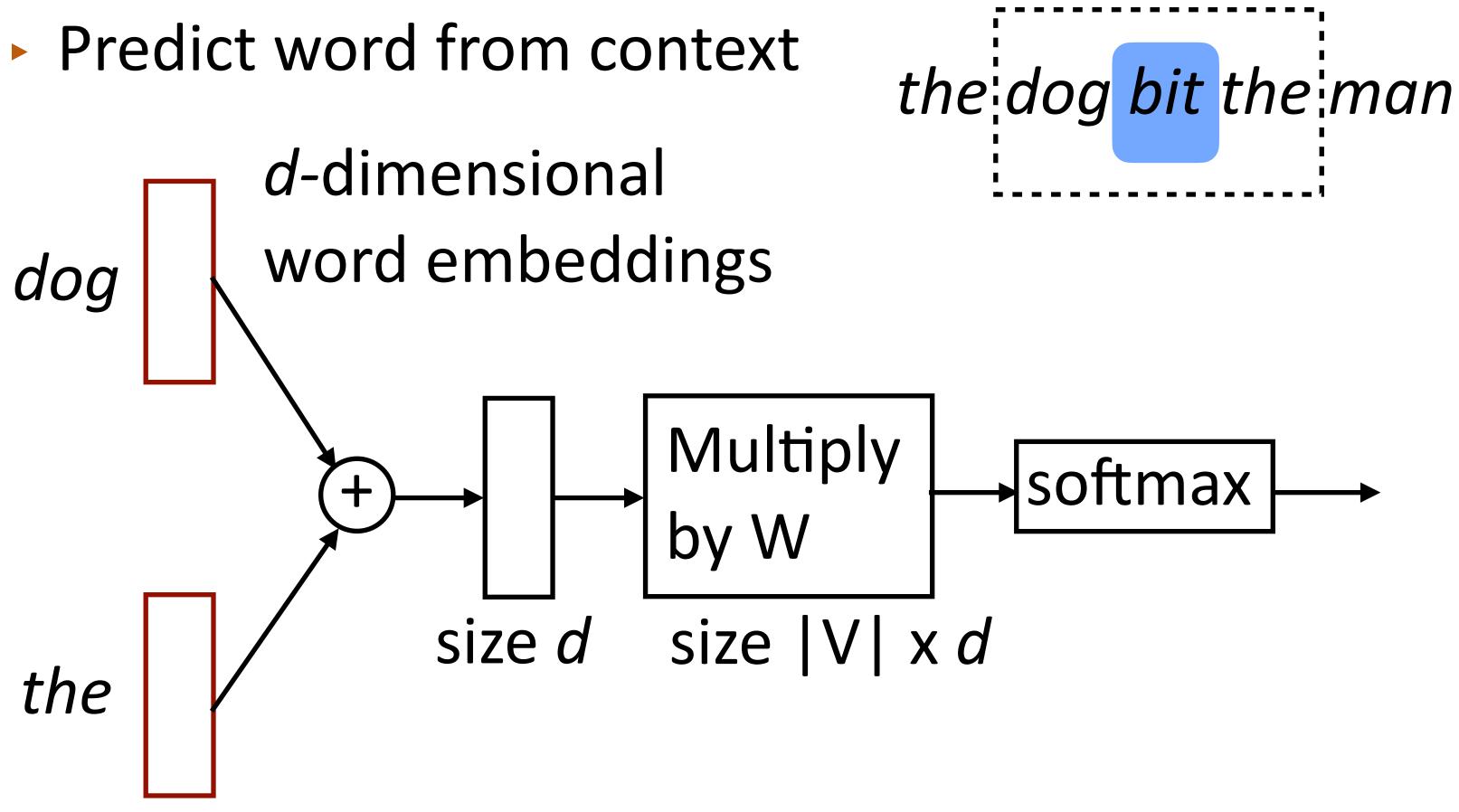
the dog bit the man

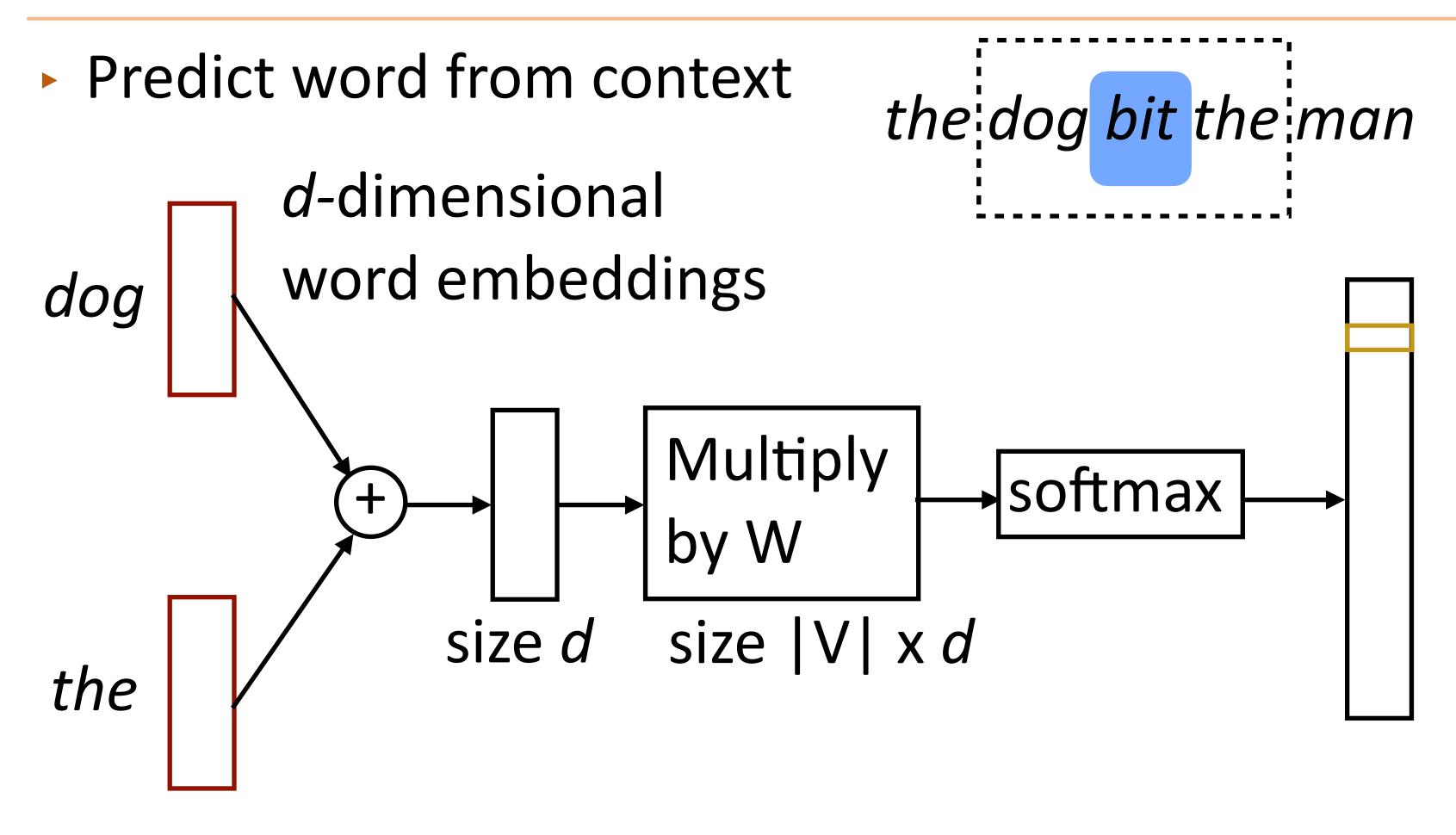
d-dimensional dog word embeddings

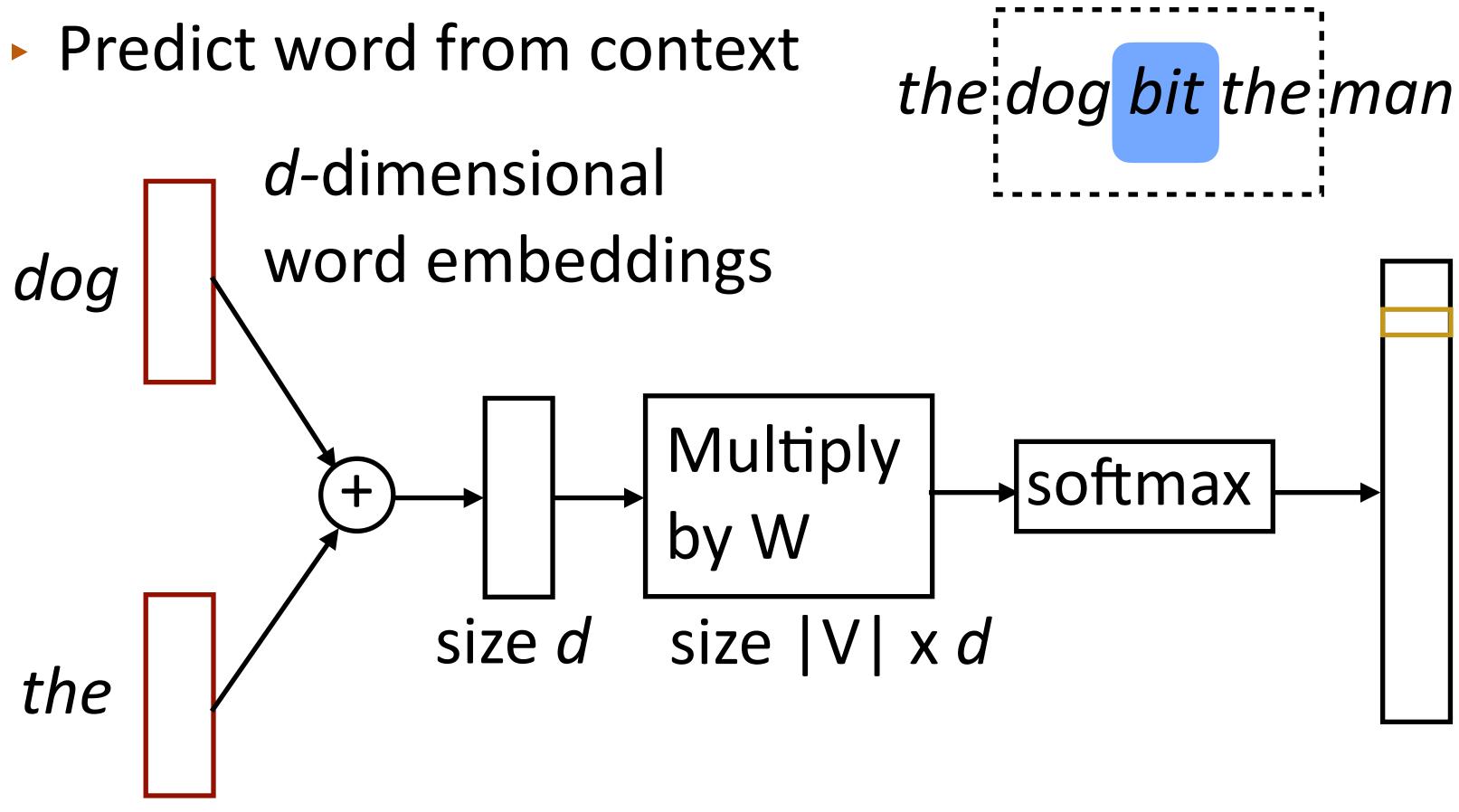




the dog bit the man

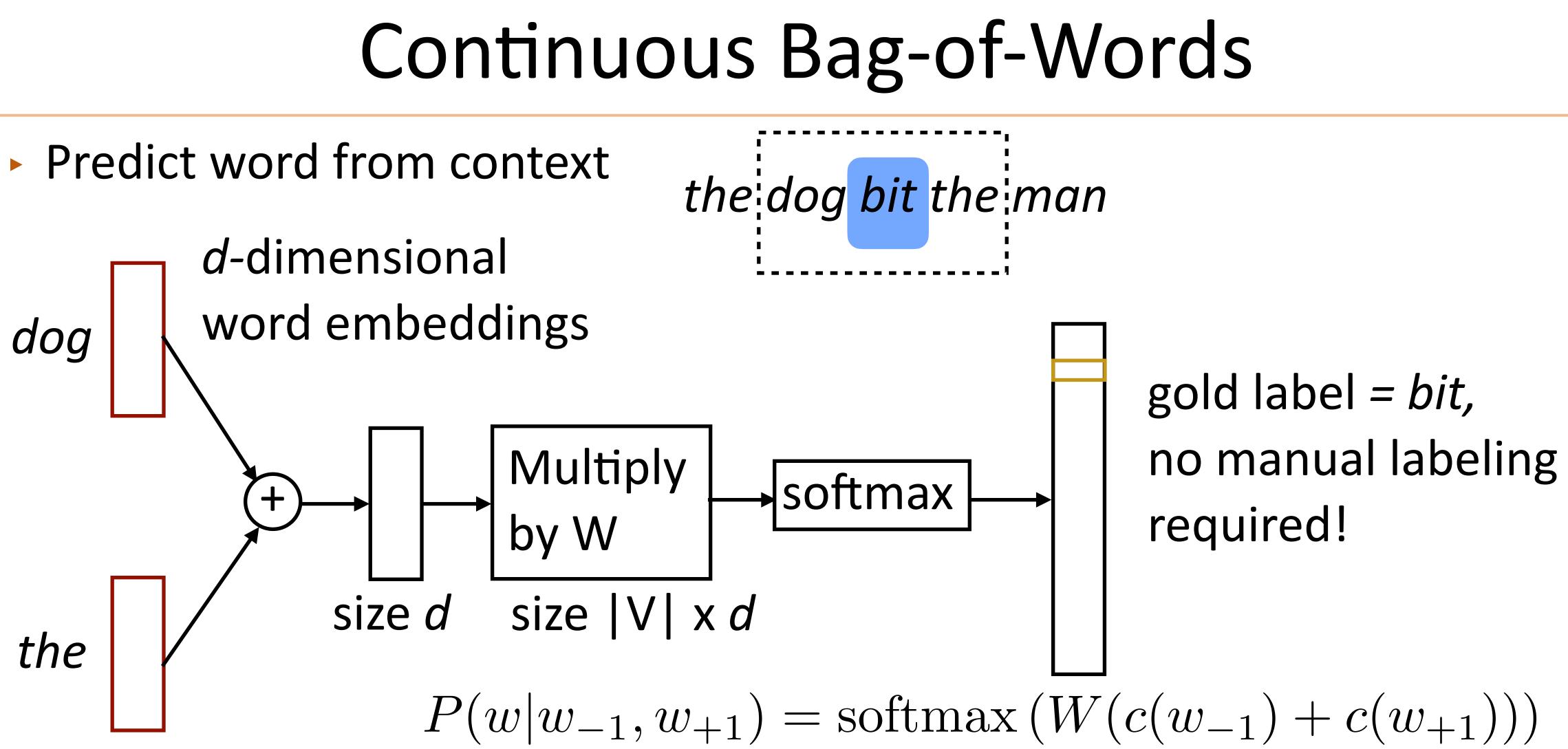


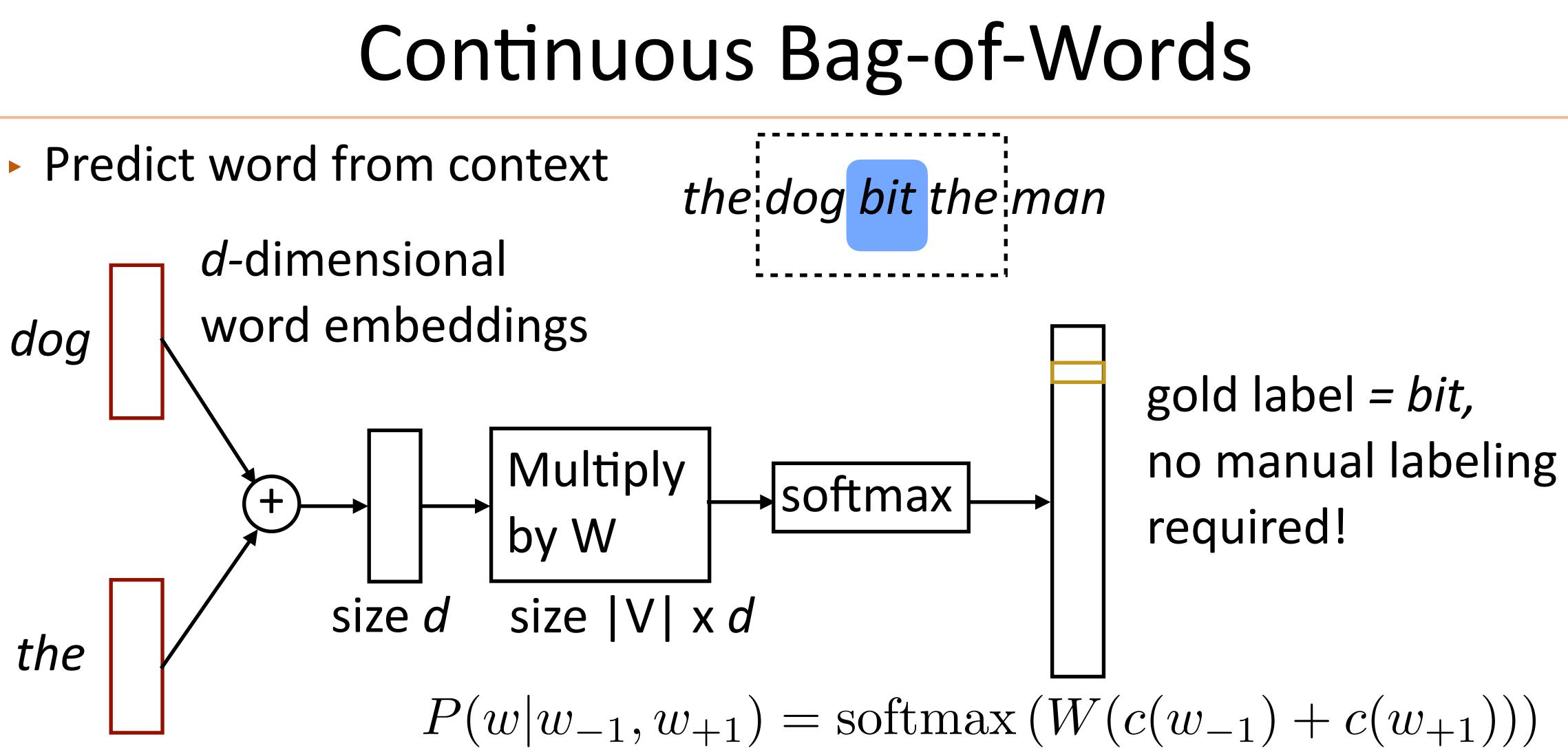




Continuous Bag-of-Words

gold label = bit, no manual labeling required!

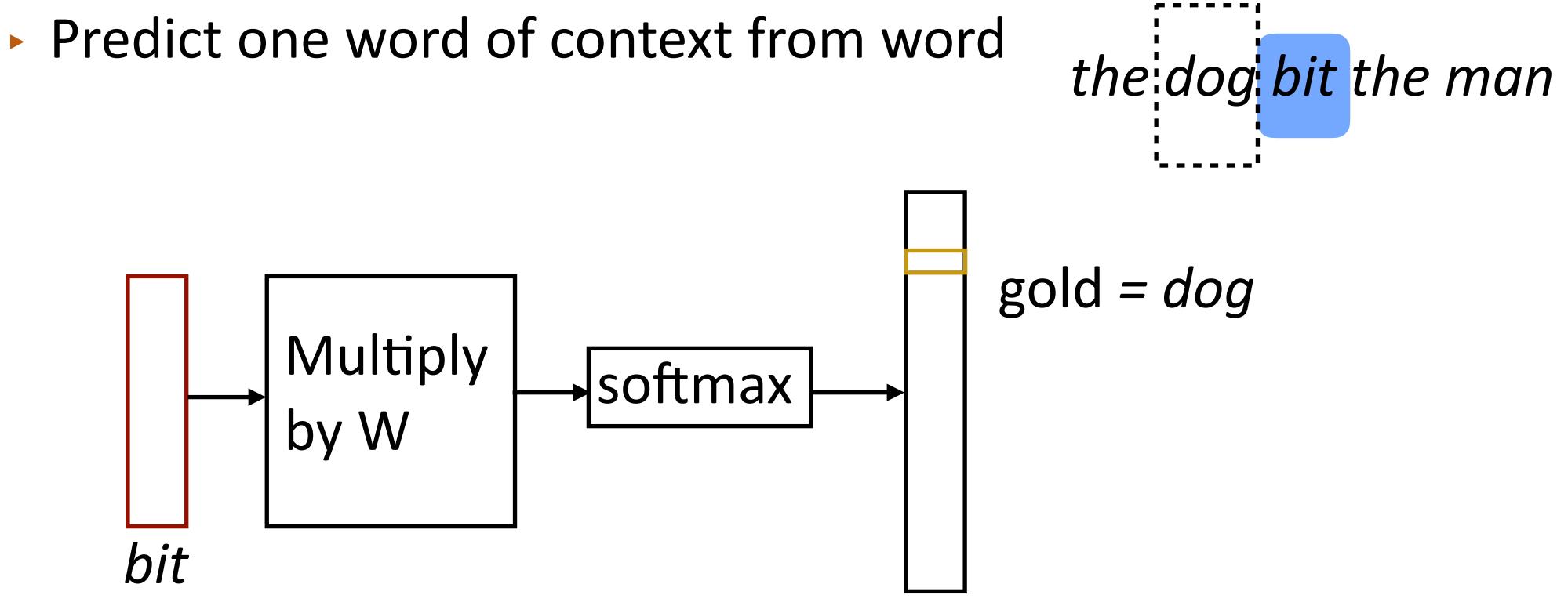




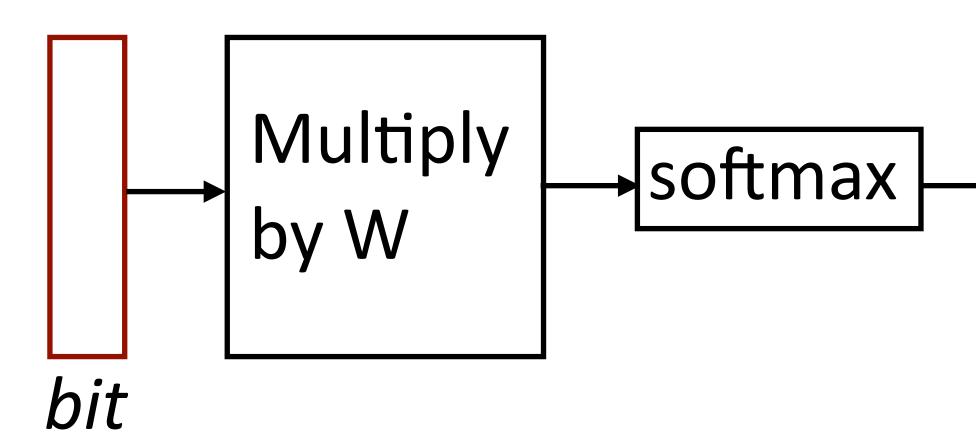
Parameters: d x |V| (one d-length vector per voc word), |V| x d output parameters (W) Mikolov et al. (2013)

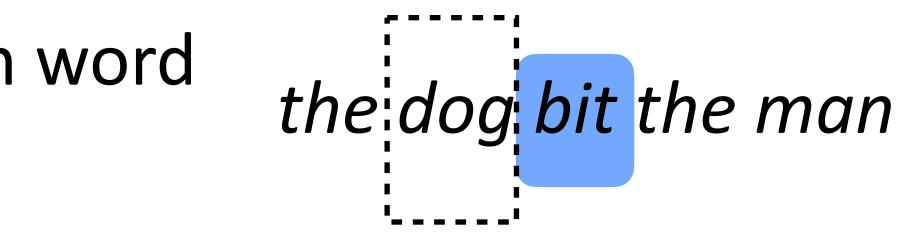
Predict one word of context from word

the dog bit the man



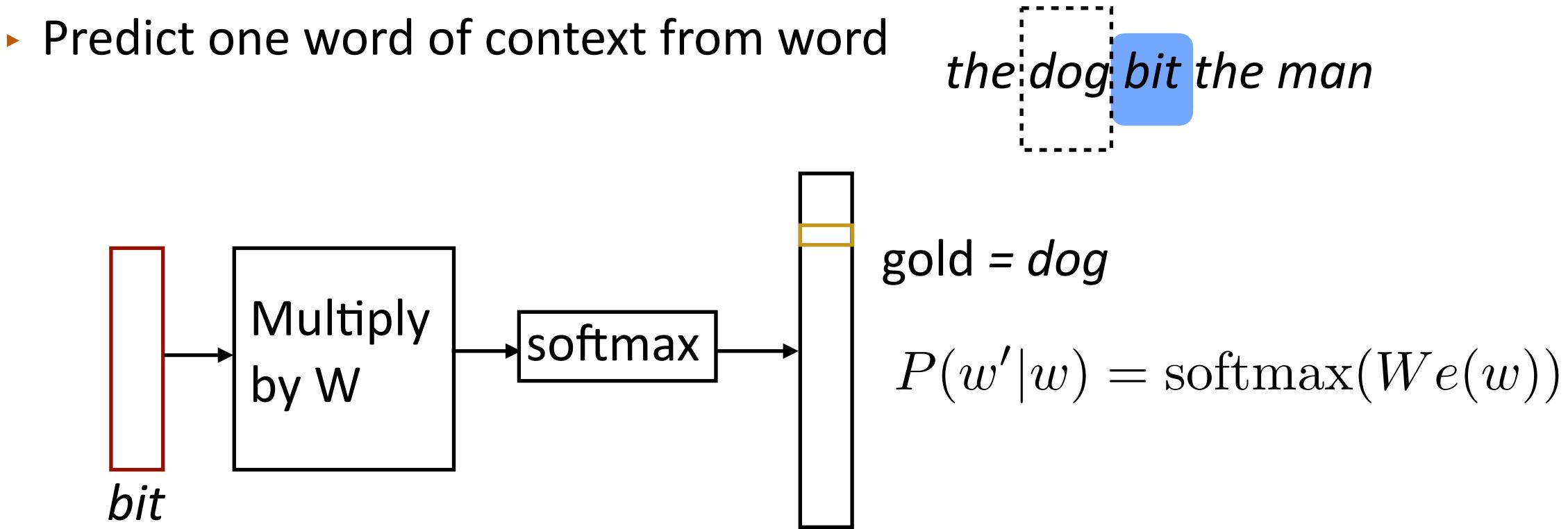
Predict one word of context from word



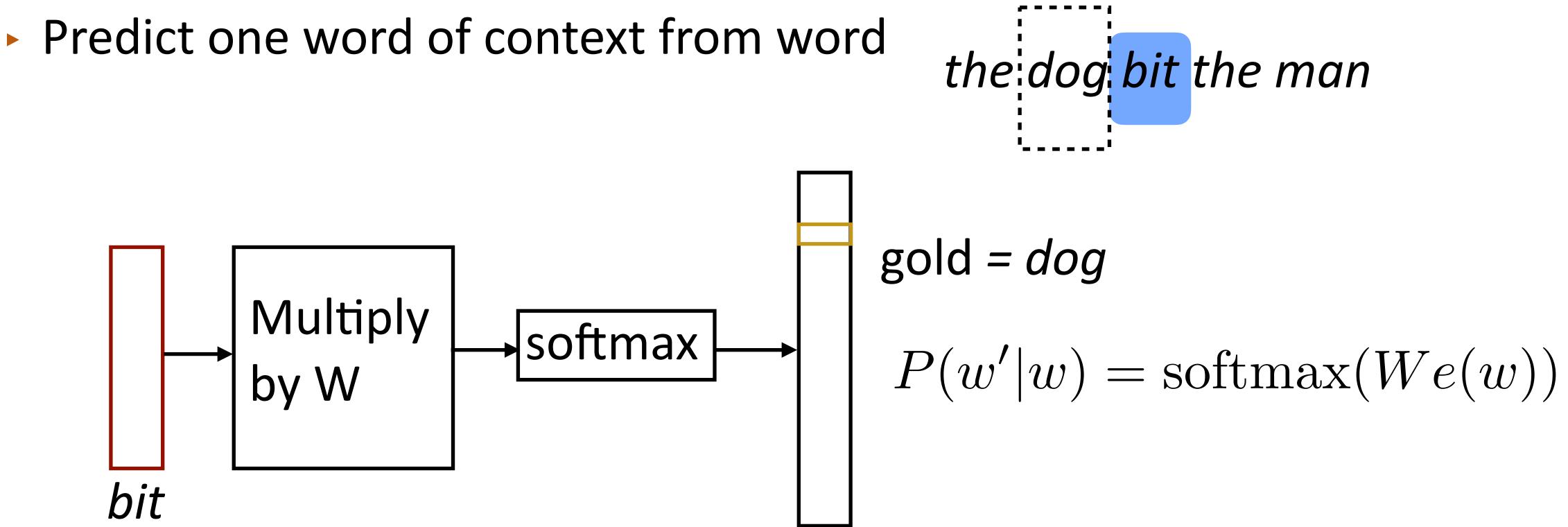


gold = dog

 $P(w'|w) = \operatorname{softmax}(We(w))$



Another training example: bit -> the



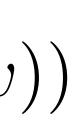
- Another training example: bit -> the
- Parameters: d x |V| vectors, |V| x d output parameters (W) (also usable as vectors!)

$P(w|w_{-1}, w_{+1}) = \operatorname{softmax} (W(c(w_{-1}) + c(w_{+1}))) \qquad P(w'|w) = \operatorname{softmax} (We(w))$

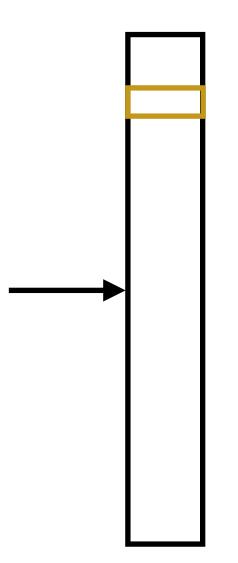


$P(w|w_{-1}, w_{+1}) = \operatorname{softmax} (W(c(w_{-1}) + c(w_{+1}))) \qquad P(w'|w) = \operatorname{softmax} (We(w))$

Matmul + softmax over |V| is very slow to compute for CBOW and SG

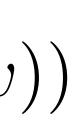


$P(w|w_{-1}, w_{+1}) = \operatorname{softmax} \left(W(c(w_{-1}) + c(w_{+1})) \right) \quad P(w'|w) = \operatorname{softmax} \left(We(w) \right)$

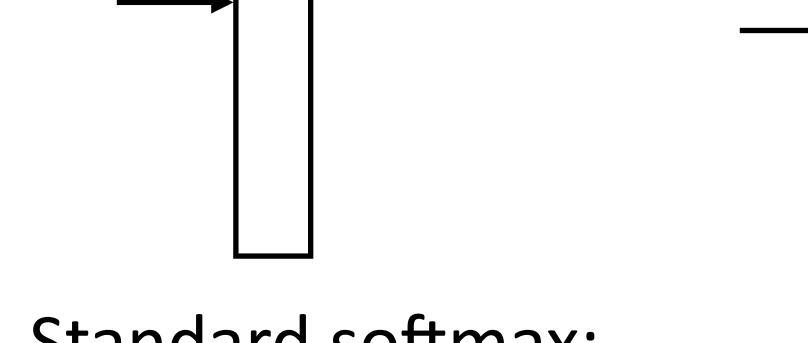


Standard softmax: $[|V| \times d]$

Matmul + softmax over |V| is very slow to compute for CBOW and SG

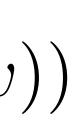


$P(w|w_{-1}, w_{+1}) = \operatorname{softmax} (W(c(w_{-1}) + c(w_{+1}))) \quad P(w'|w) = \operatorname{softmax} (We(w))$

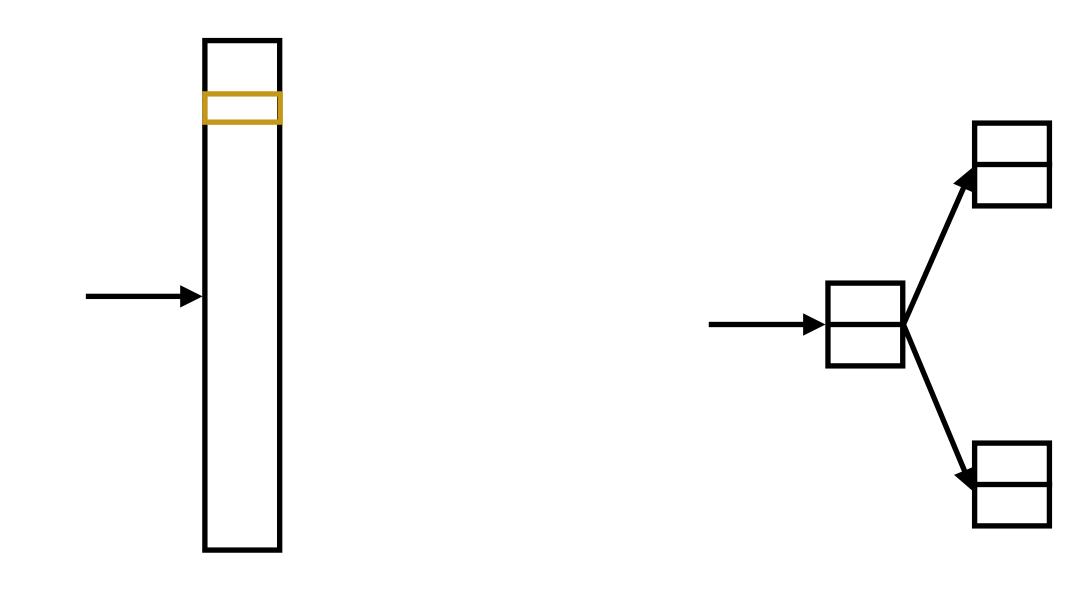


Standard softmax: $[|V| \times d]$

Matmul + softmax over |V| is very slow to compute for CBOW and SG

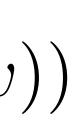


$P(w|w_{-1}, w_{+1}) = \operatorname{softmax} (W(c(w_{-1}) + c(w_{+1}))) \qquad P(w'|w) = \operatorname{softmax} (We(w))$

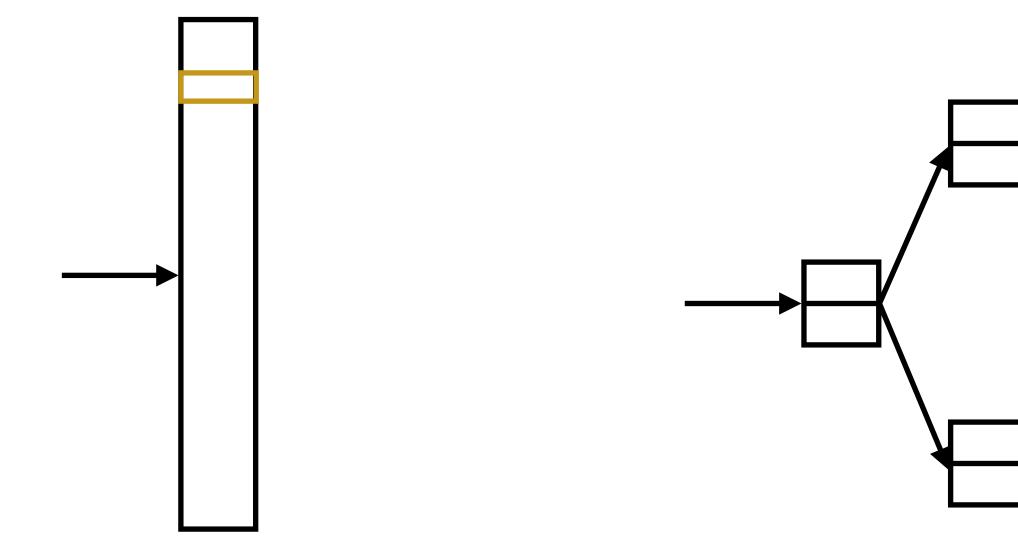


Standard softmax: $[|V| \times d]$

Matmul + softmax over |V| is very slow to compute for CBOW and SG



Matmul + softmax over |V| is very slow to compute for CBOW and SG



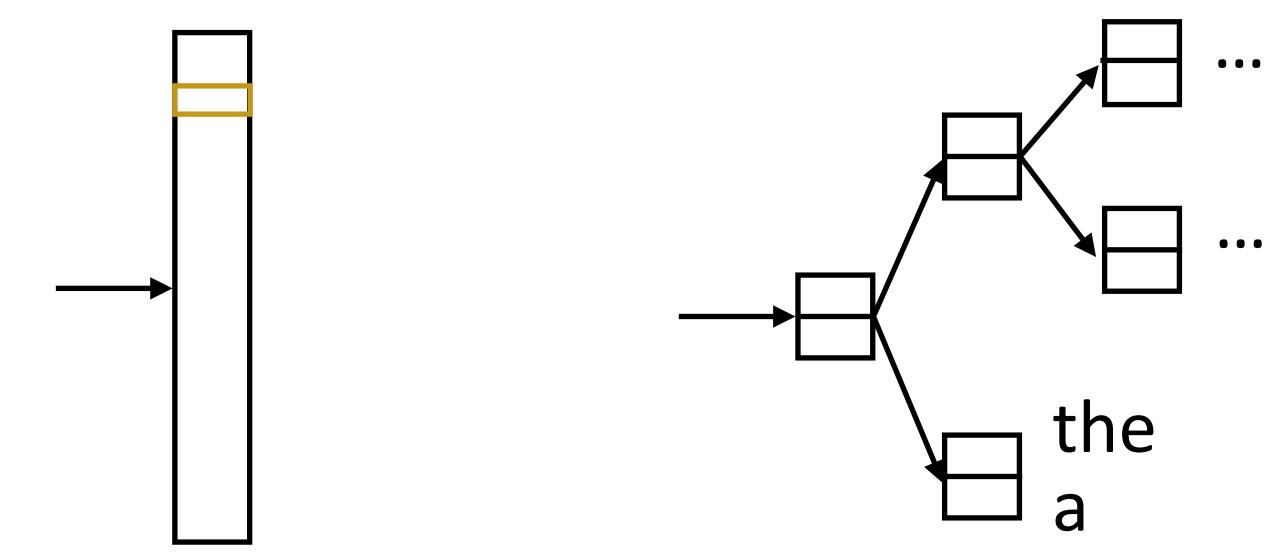
Standard softmax: $[|V| \times d]$

 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} (W(c(w_{-1}) + c(w_{+1}))) \quad P(w'|w) = \operatorname{softmax} (We(w))$

the

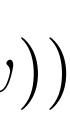


Matmul + softmax over |V| is very slow to compute for CBOW and SG

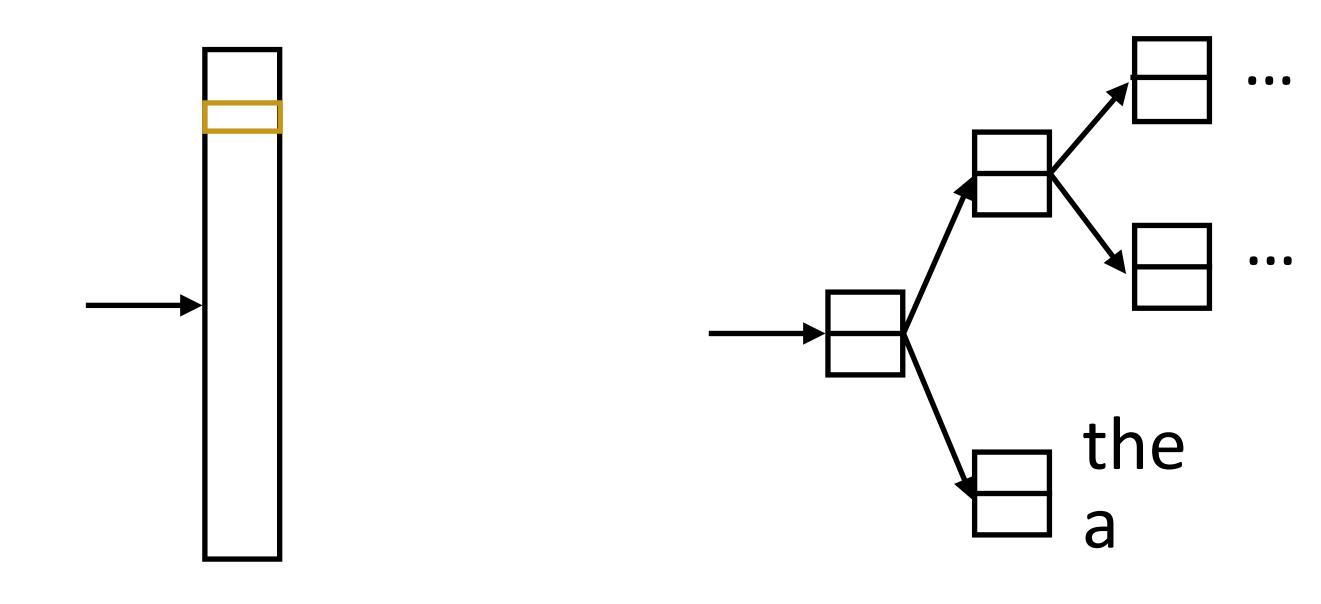


Standard softmax: $[|V| \times d]$

 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} \left(W(c(w_{-1}) + c(w_{+1})) \right) \quad P(w'|w) = \operatorname{softmax} \left(We(w) \right)$



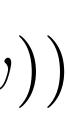
Matmul + softmax over |V| is very slow to compute for CBOW and SG



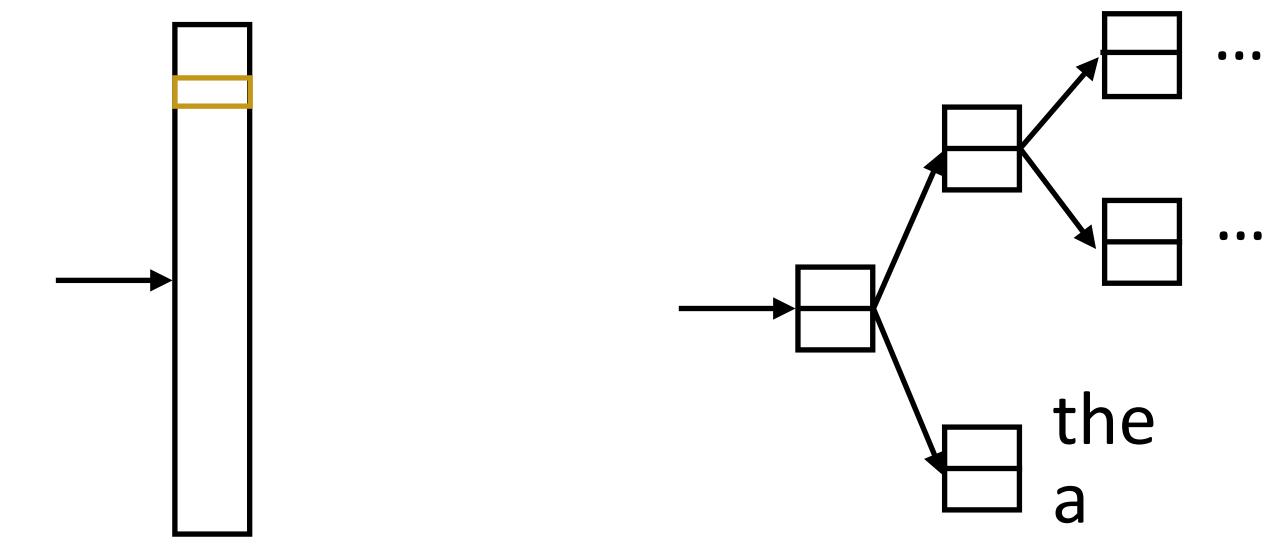
Standard softmax: $[|V| \times d]$

 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} (W(c(w_{-1}) + c(w_{+1}))) \qquad P(w'|w) = \operatorname{softmax} (We(w))$

Huffman encode vocabulary, use binary classifiers to decide which branch to take

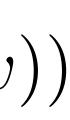


 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} \left(W(c(w_{-1}) + c(w_{+1})) \right) \quad P(w'|w) = \operatorname{softmax} \left(We(w) \right)$ Matmul + softmax over |V| is very slow to compute for CBOW and SG

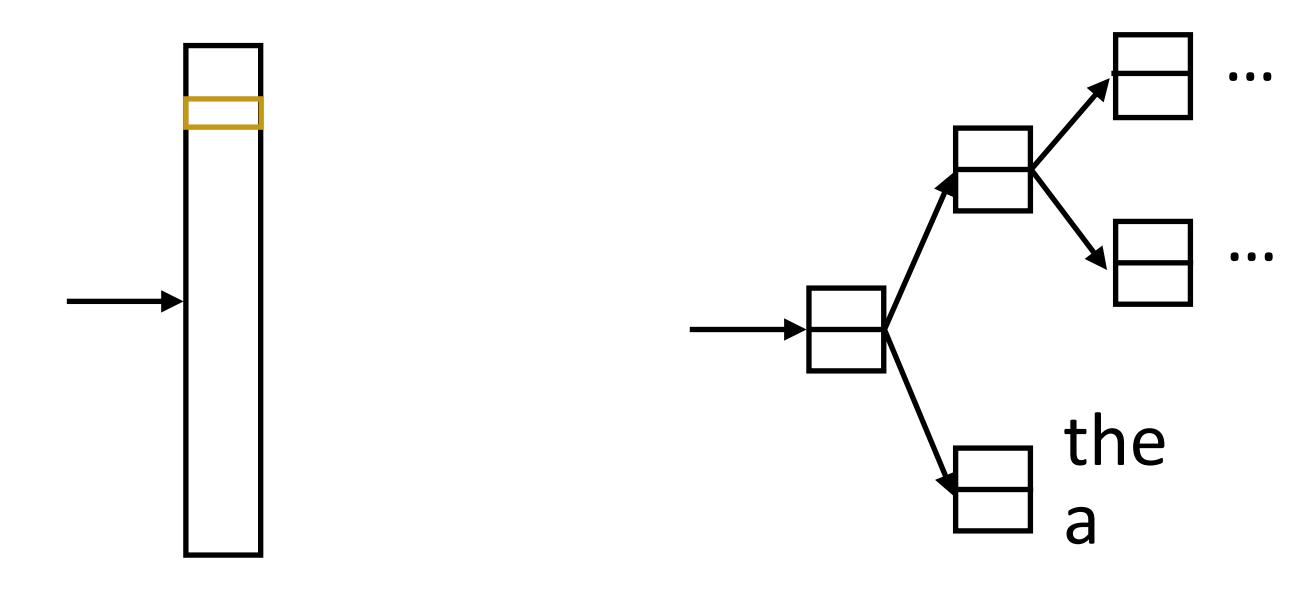


Standard softmax: $[|V| \times d]$

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- log(|V|) binary decisions

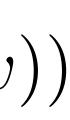


 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} \left(W(c(w_{-1}) + c(w_{+1})) \right) \quad P(w'|w) = \operatorname{softmax} \left(We(w) \right)$ Matmul + softmax over |V| is very slow to compute for CBOW and SG

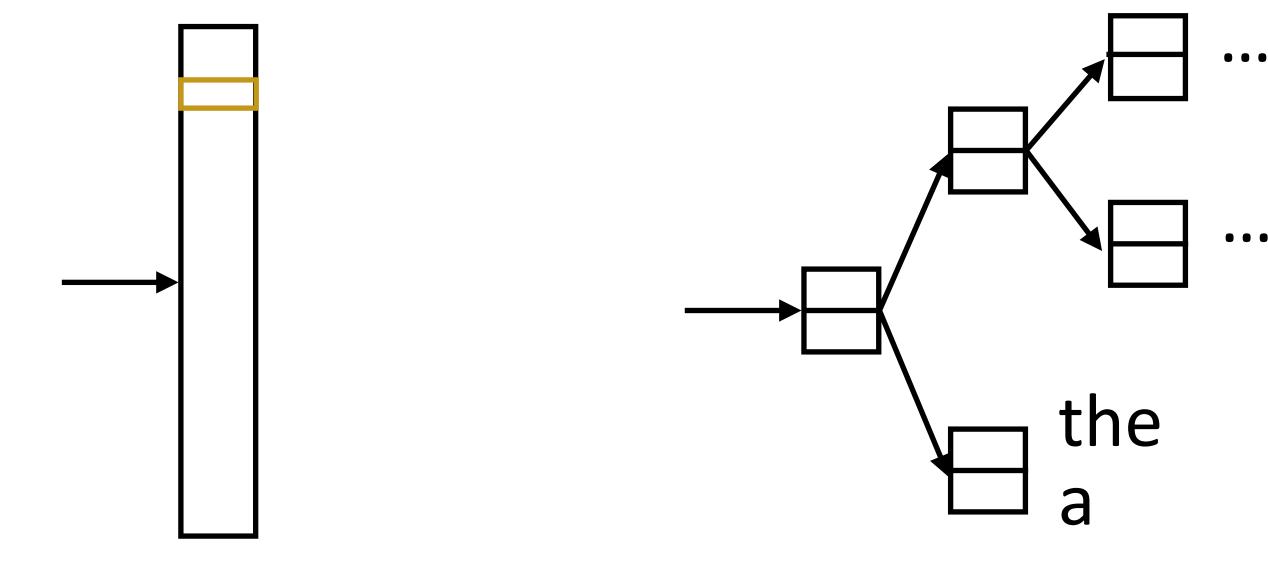


Standard softmax: Hierarchical softmax: $[|V| \times d]$

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- log(|V|) binary decisions

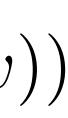


 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} \left(W(c(w_{-1}) + c(w_{+1})) \right) \quad P(w'|w) = \operatorname{softmax} \left(We(w) \right)$ Matmul + softmax over |V| is very slow to compute for CBOW and SG

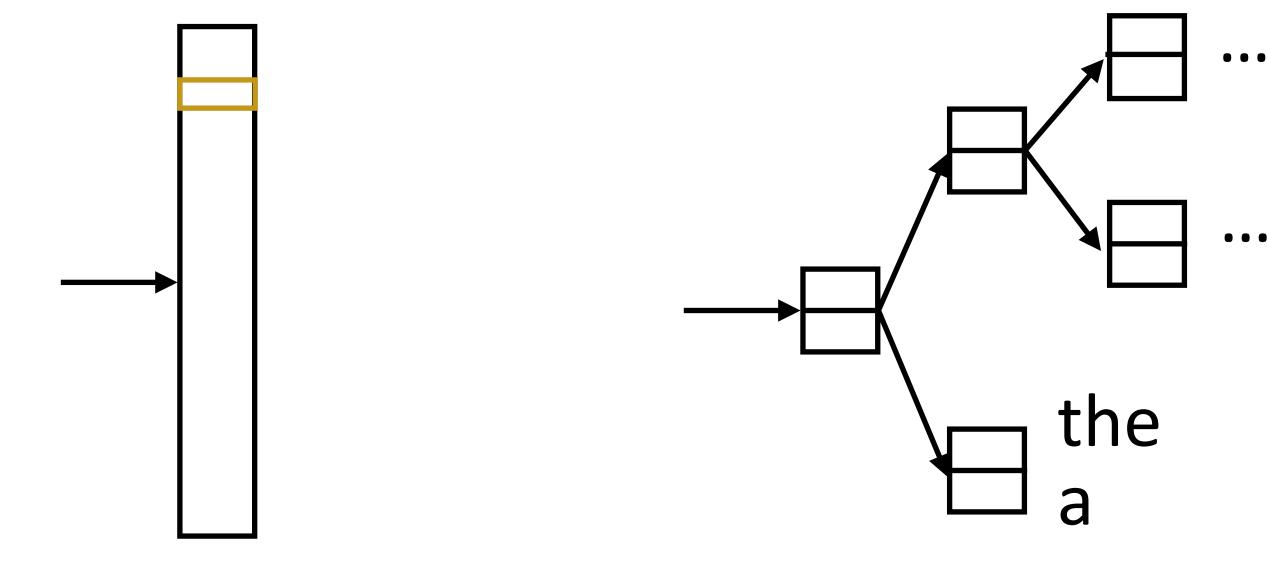


Standard softmax: Hierarchical softmax: $[|V| \times d]$ log(|V|) dot products of size d,

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- log(|V|) binary decisions

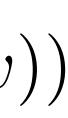


 $P(w|w_{-1}, w_{+1}) = \operatorname{softmax} \left(W(c(w_{-1}) + c(w_{+1})) \right) \quad P(w'|w) = \operatorname{softmax} \left(We(w) \right)$ Matmul + softmax over |V| is very slow to compute for CBOW and SG



Standard softmax: $[|V| \times d]$

- Huffman encode vocabulary, use binary classifiers to decide which branch to take
- log(|V|) binary decisions
- Hierarchical softmax:
- log(|V|) dot products of size d,
- |V| x d parameters



Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

(bit, the) => +1

Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

(*bit, the*) => +1 (*bit, cat*) => -1

Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

(*bit, the*) => +1 (*bit, cat*) => -1 (bit, a) => -1(*bit, fish*) => -1

Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

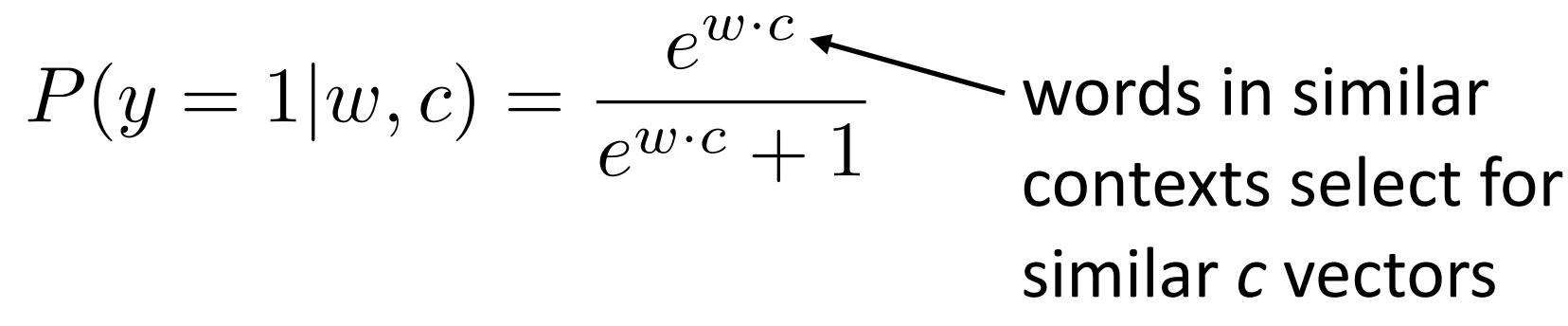
(bit, the) => +1(*bit, cat*) => -1 P(y = 1 |(bit, a) => -1(*bit, fish*) => -1

Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution

$$w, c) = \frac{e^{w \cdot c}}{e^{w \cdot c} + 1}$$

(*bit, the*) => +1 (*bit, cat*) => -1 (bit, a) => -1(bit, fish) => -1

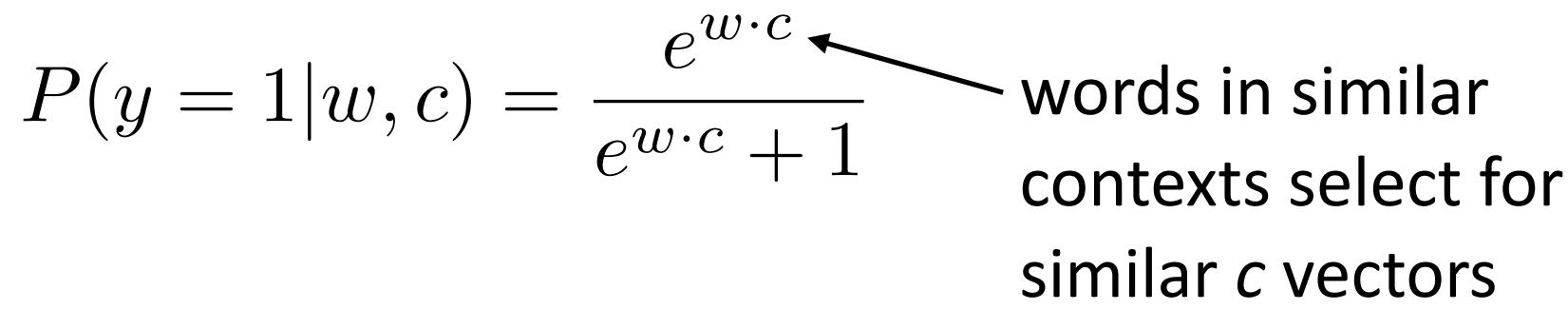
Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution



(*bit, the*) => +1 (*bit, cat*) => -1 (bit, a) => -1(bit, fish) => -1

• $d \ge |V|$ vectors, $d \ge |V|$ context vectors (same # of params as before)

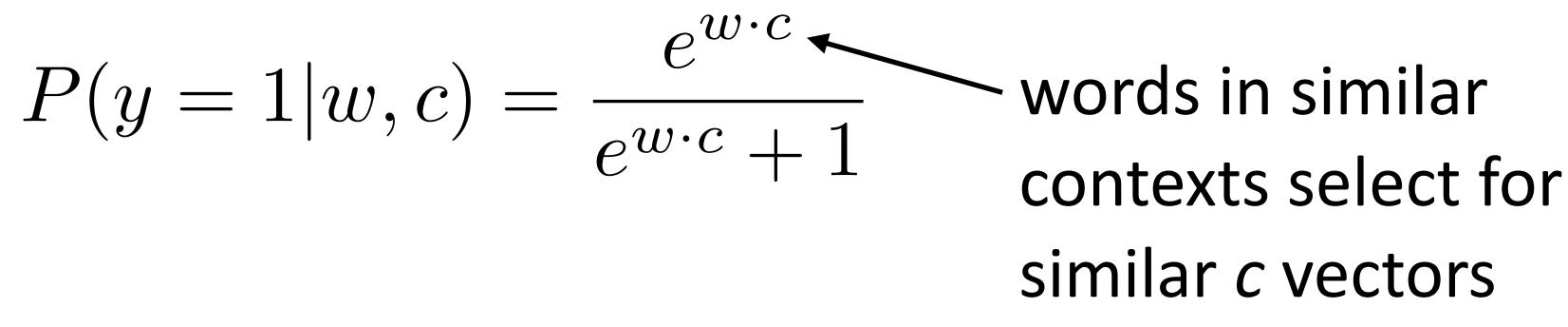
Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution



(*bit, the*) => +1 (*bit, cat*) => -1 (bit, a) => -1(bit, fish) => -1

- Objective = $\log P(y = 1 | w, c)$ –

Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution



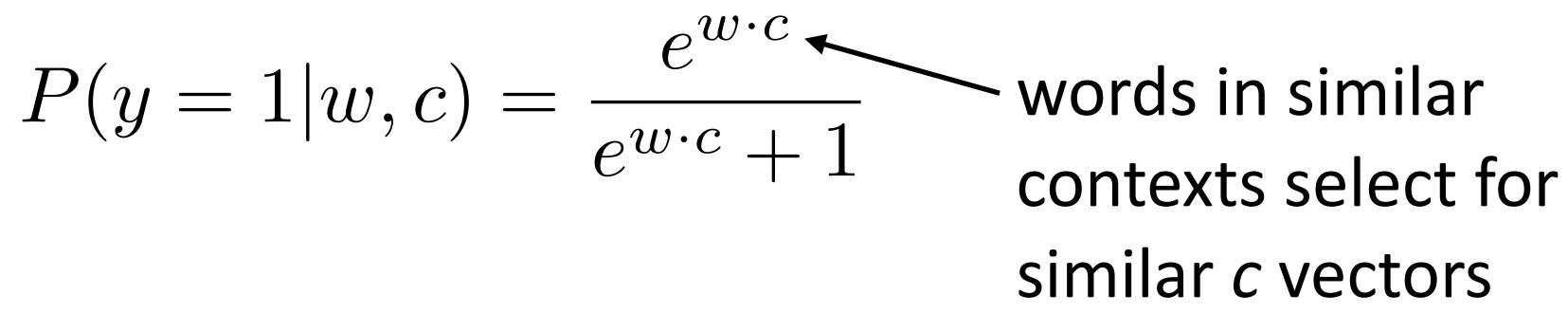
• $d \ge |V|$ vectors, $d \ge |V|$ context vectors (same # of params as before)

$$-\frac{1}{k}\sum_{i=1}^{n}\log P(y=0|w_i,c)$$

Mikolov et al. (2013)

(*bit, the*) => +1 (*bit, cat*) => -1 (bit, a) => -1(*bit, fish*) => -1

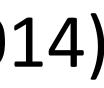
Take (word, context) pairs and classify them as "real" or not. Create random negative examples by sampling from unigram distribution



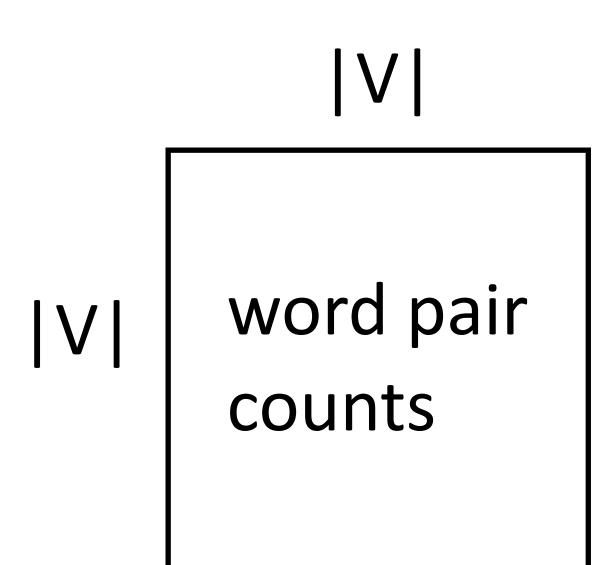
d x |V| vectors, d x |V| context vectors (same # of params as before) • Objective = $\log P(y = 1 | w, c) - \frac{1}{k} \sum_{i=1}^{n} \log P(y = 0 | w_i, c)$ Mikolov et al. (2013)

types of vectors

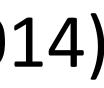
Skip-gram model looks at word-word co-occurrences and produces two



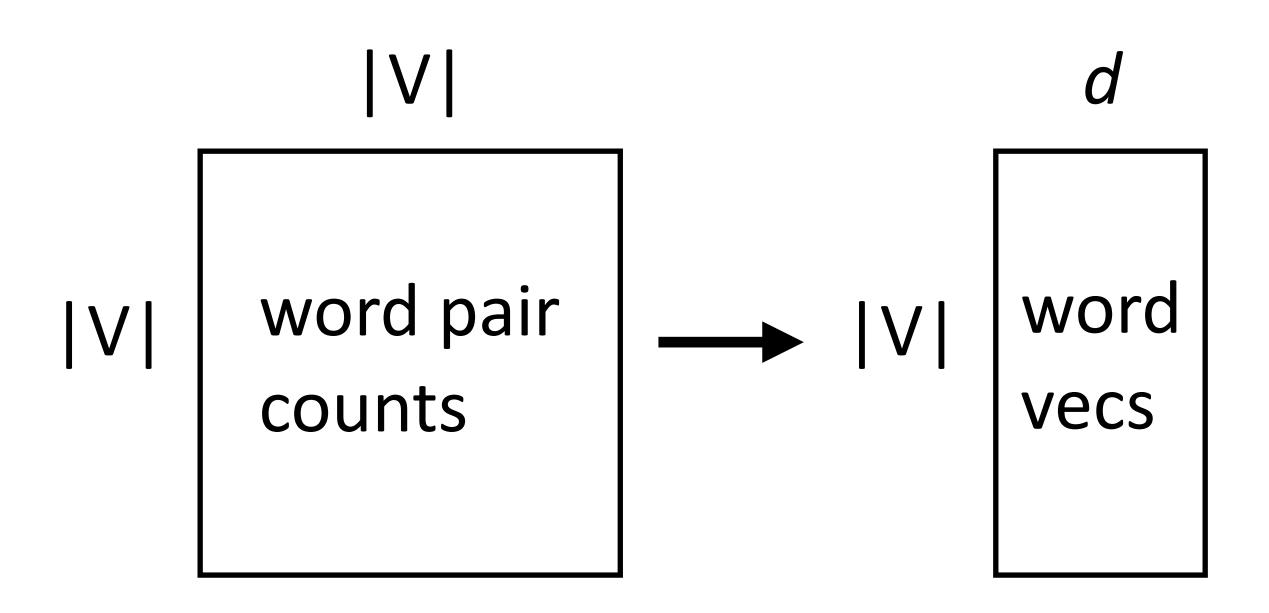
types of vectors



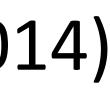
Skip-gram model looks at word-word co-occurrences and produces two



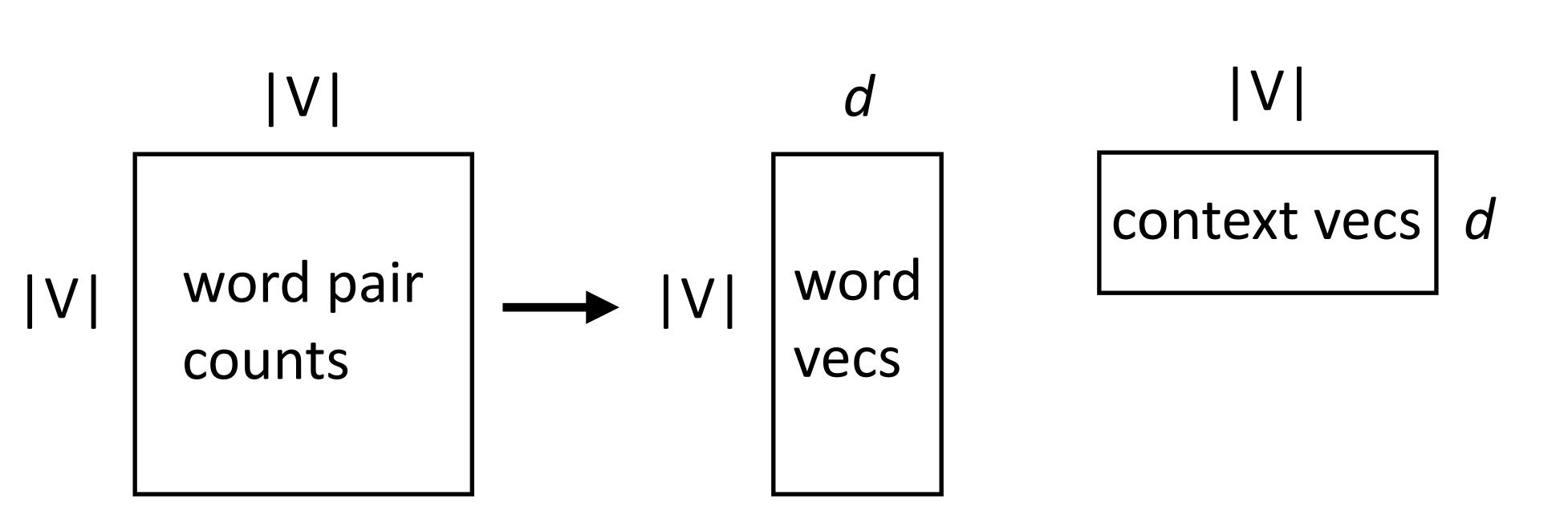
types of vectors



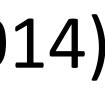
Skip-gram model looks at word-word co-occurrences and produces two



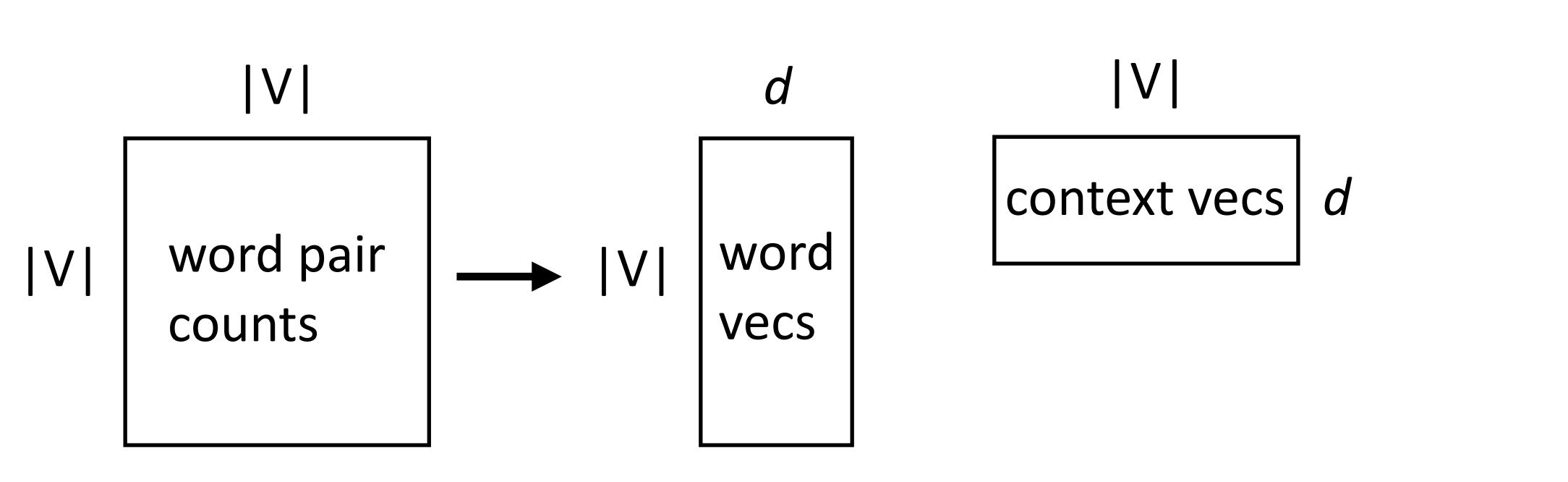
types of vectors



Skip-gram model looks at word-word co-occurrences and produces two

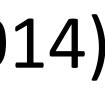


types of vectors

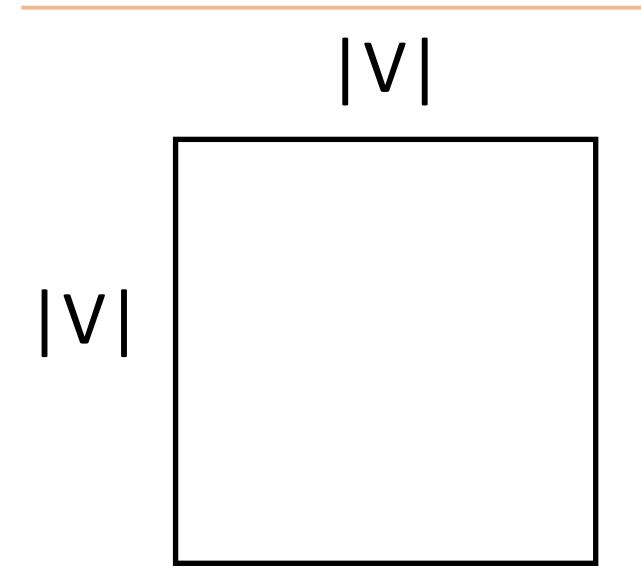


Skip-gram model looks at word-word co-occurrences and produces two

Looks almost like a matrix factorization...can we interpret it this way?

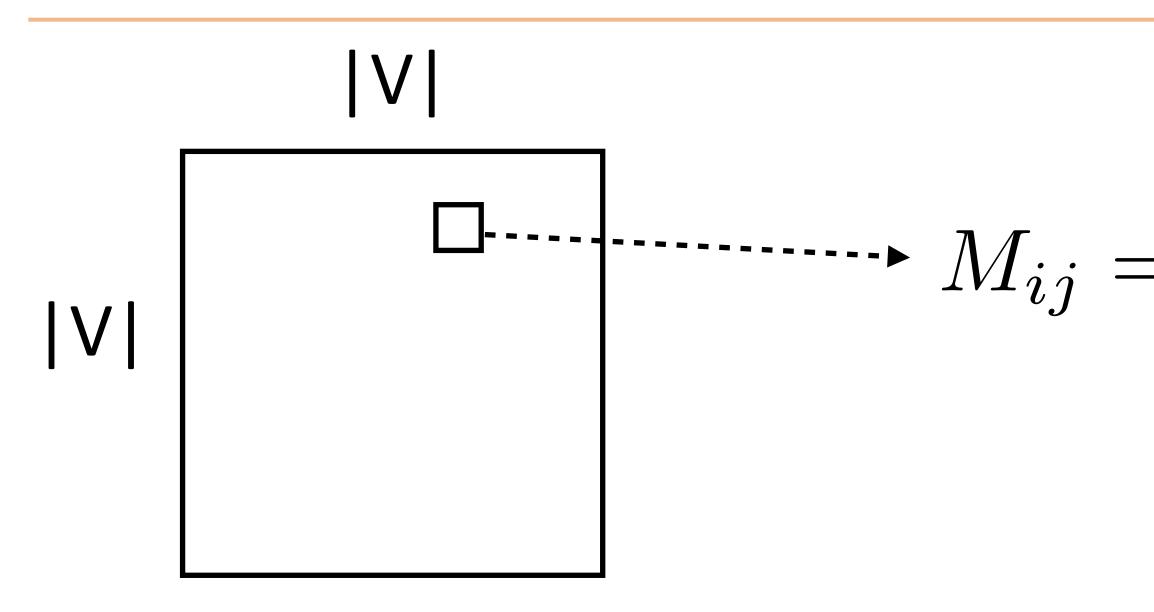


Skip-Gram as Matrix Factorization



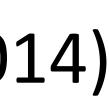


Skip-Gram as Matrix Factorization

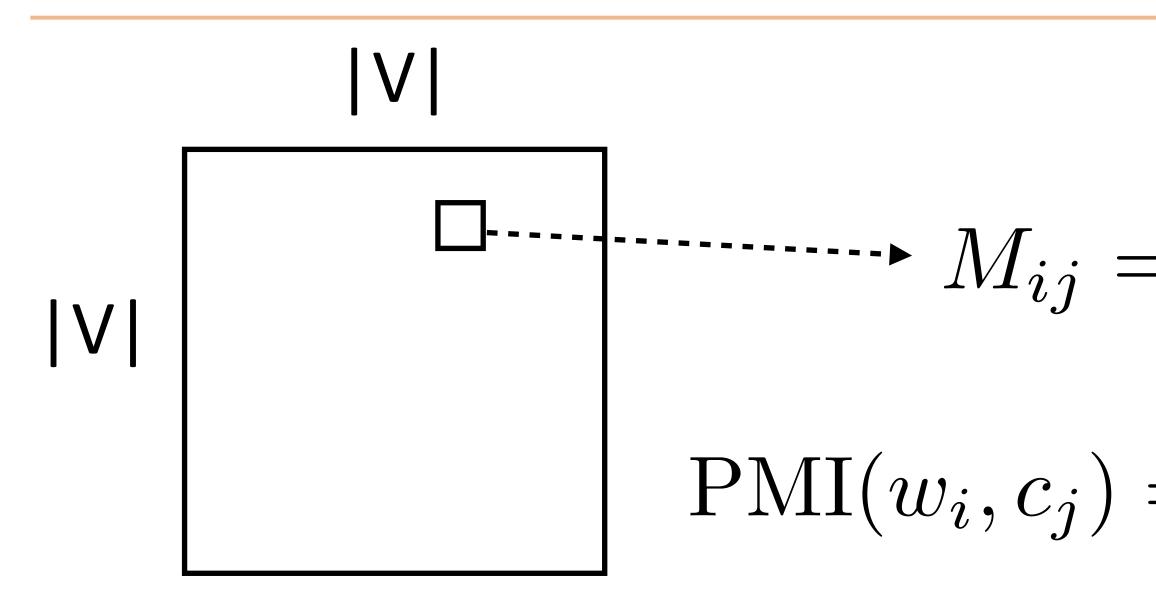


num negative samples

$\longrightarrow M_{ij} = PMI(w_i, c_j) - \log k$



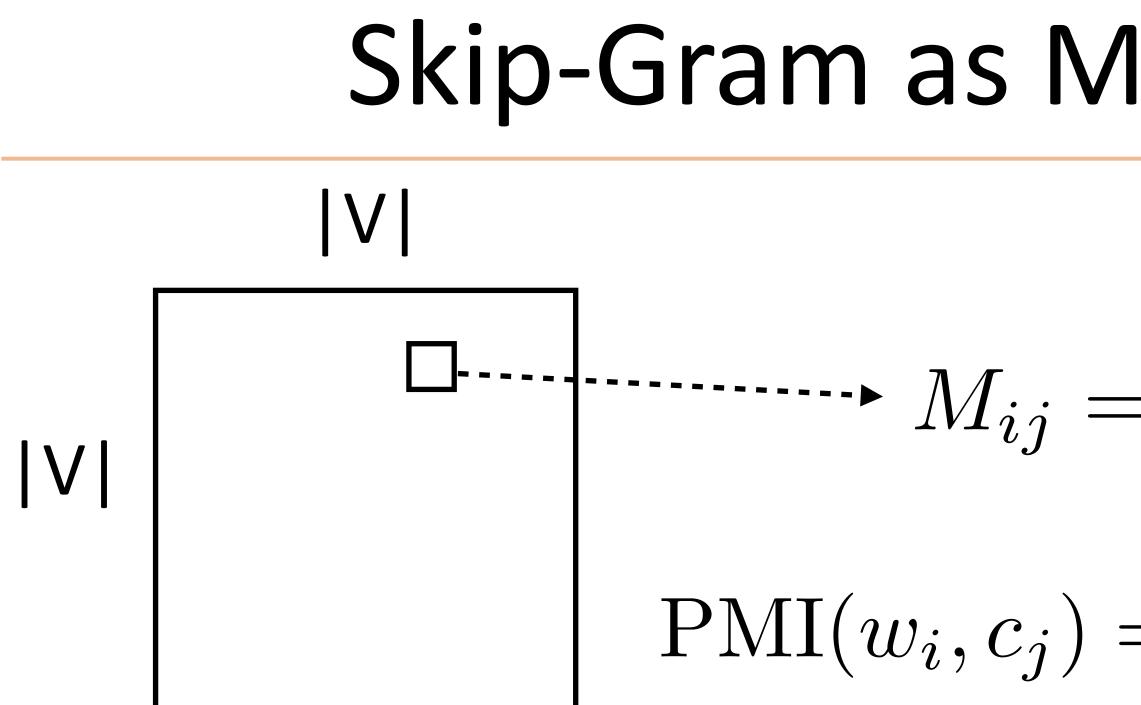
Skip-Gram as Matrix Factorization



num negative samples

 $\longrightarrow M_{ij} = \mathrm{PMI}(w_i, c_j) - \log k$

 $\operatorname{count}(w_i,c_j)$ $PMI(w_i, c_j) = \frac{P(w_i, c_j)}{P(w_i)P(c_j)} = \frac{\frac{count(w_i, c_j)}{D}}{\frac{count(w_i)}{D} \frac{count(c_j)}{D}}$

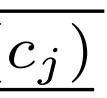


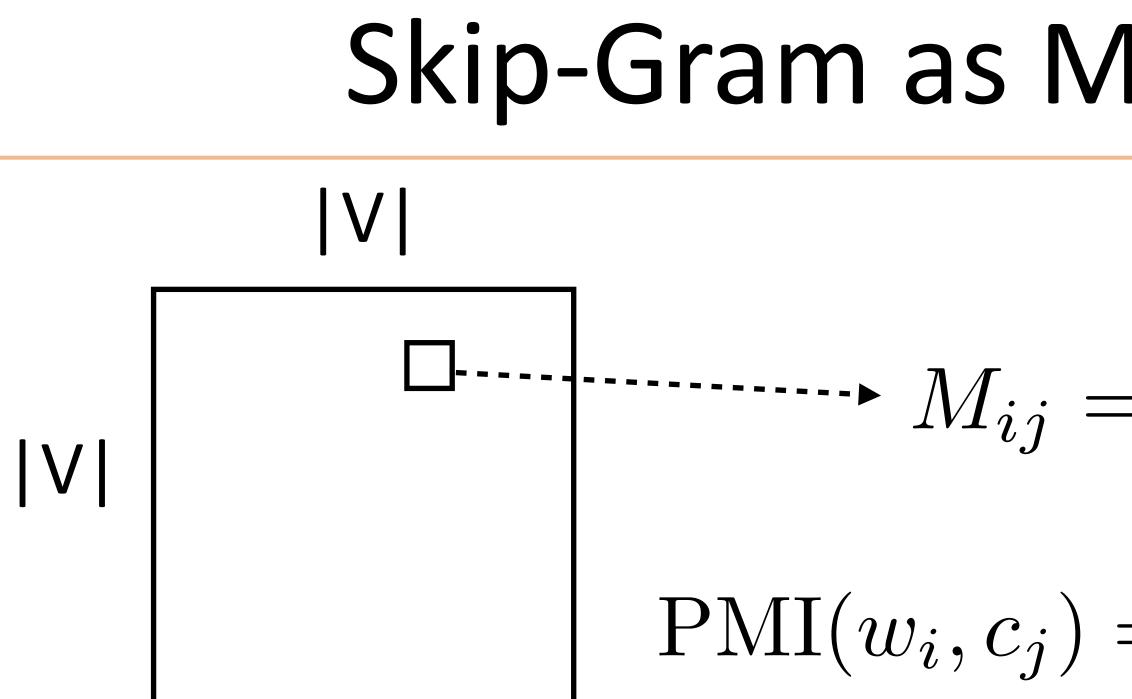
Skip-gram objective *exactly* corresponds to factoring this matrix:

Skip-Gram as Matrix Factorization

num negative samples

$$= \operatorname{PMI}(w_i, c_j) - \log k$$
$$= \frac{P(w_i, c_j)}{P(w_i)P(c_j)} = \frac{\frac{\operatorname{count}(w_i, c_j)}{D}}{\frac{\operatorname{count}(w_i)}{D} \frac{\operatorname{count}(w_i)}{D}}$$





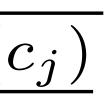
Skip-gram objective *exactly* corresponds to factoring this matrix:

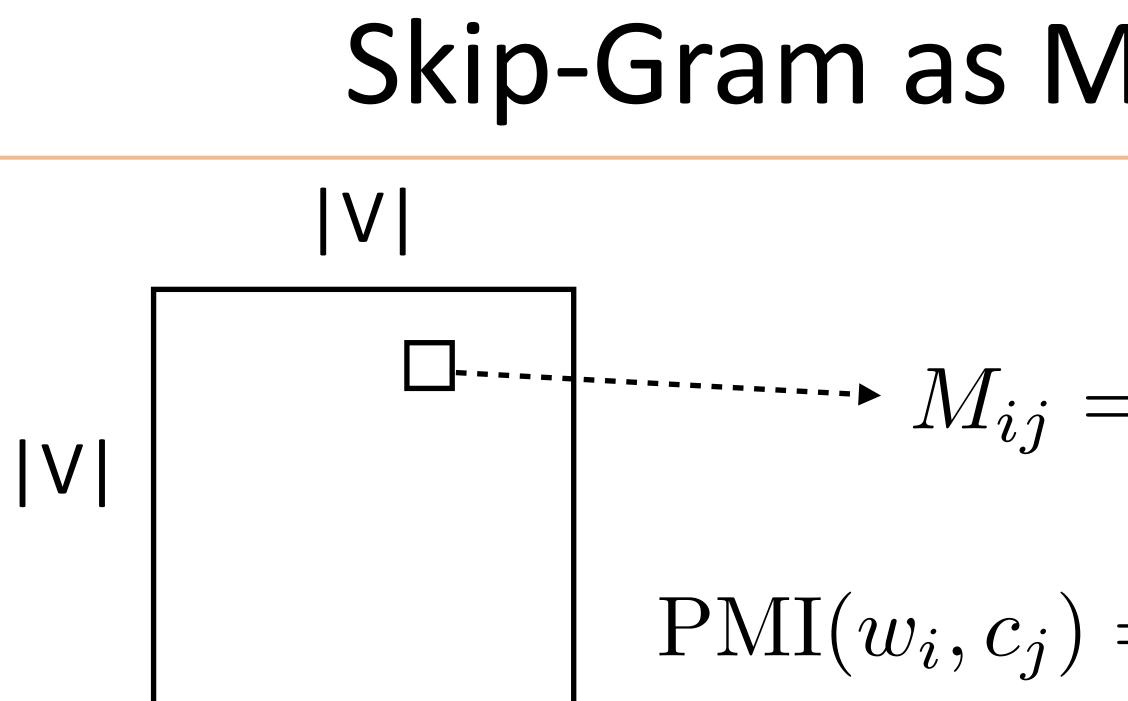
If we sample negative examples from the uniform distribution over words

Skip-Gram as Matrix Factorization

num negative samples

$$= \operatorname{PMI}(w_i, c_j) - \log k$$
$$= \frac{P(w_i, c_j)}{P(w_i)P(c_j)} = \frac{\frac{\operatorname{count}(w_i, c_j)}{D}}{\frac{\operatorname{count}(w_i)}{D} \frac{\operatorname{count}(w_i)}{D}}$$





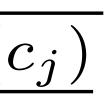
Skip-gram objective *exactly* corresponds to factoring this matrix:

- If we sample negative examples from the uniform distribution over words
- ...and it's a weighted factorization problem (weighted by word freq)

Skip-Gram as Matrix Factorization

num negative samples

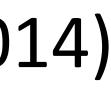
$$= \operatorname{PMI}(w_i, c_j) - \log k$$
$$= \frac{P(w_i, c_j)}{P(w_i)P(c_j)} = \frac{\frac{\operatorname{count}(w_i, c_j)}{D}}{\frac{\operatorname{count}(w_i)}{D} \frac{\operatorname{count}(w_i)}{D}}$$



GloVe (Global Vectors)

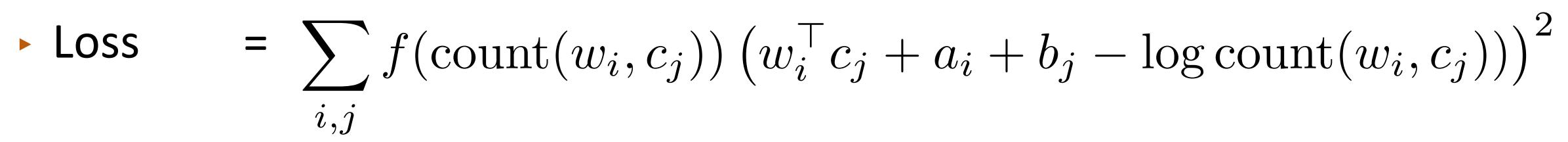
Also operates on counts matrix, weighted regression on the log co-occurrence matrix

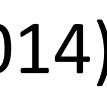
word pair counts



GloVe (Global Vectors) |V|word pair counts |V|

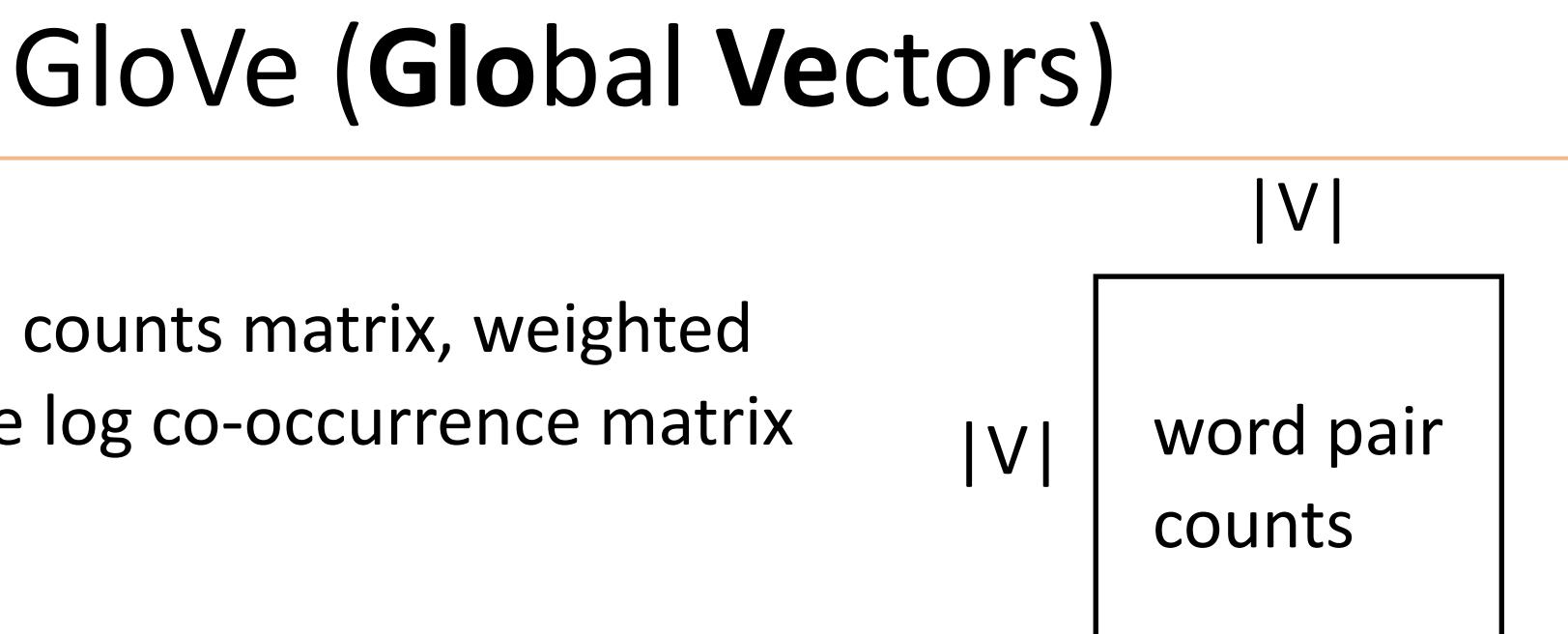
Also operates on counts matrix, weighted regression on the log co-occurrence matrix





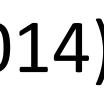
Also operates on counts matrix, weighted regression on the log co-occurrence matrix

- = $\sum f(\operatorname{count}(w_i, c_j))$ Loss



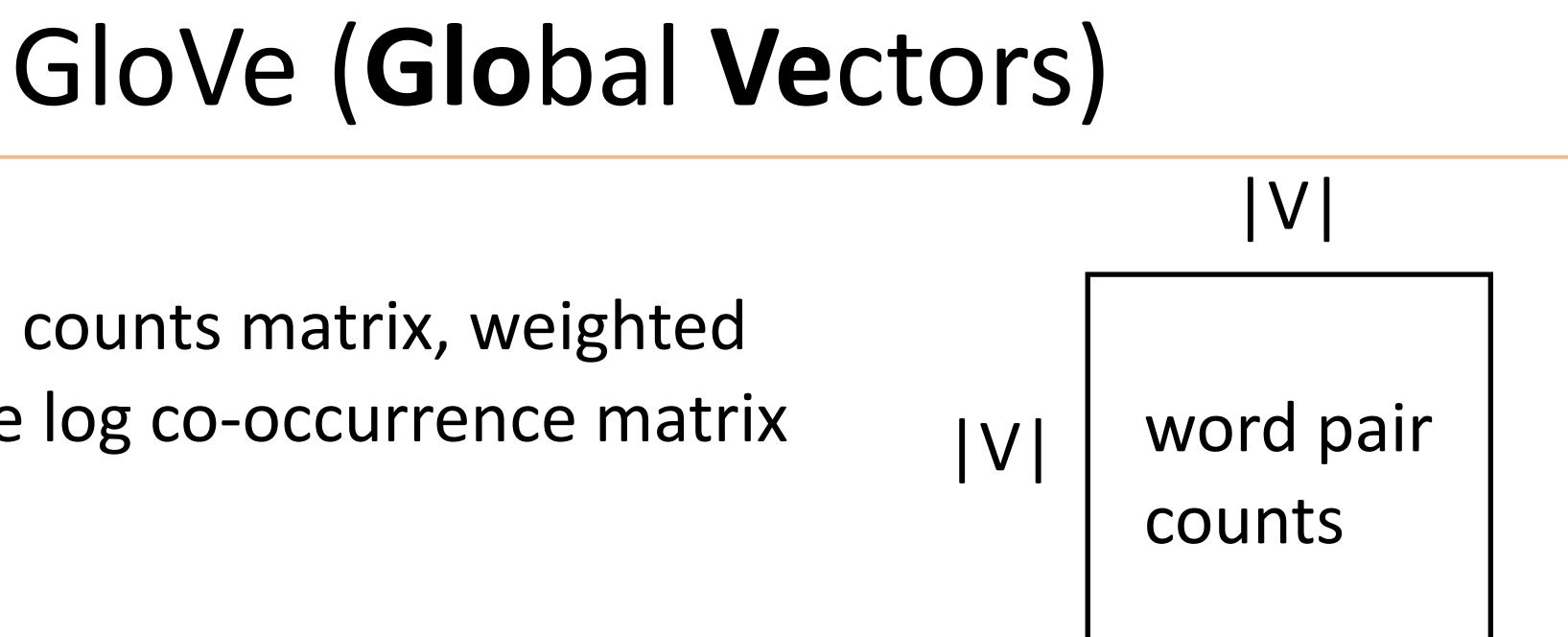
$$(w_i^{\top}c_j + a_i + b_j - \log \operatorname{count}(w_i, c_j))$$

Constant in the dataset size (just need counts), quadratic in voc size



Also operates on counts matrix, weighted regression on the log co-occurrence matrix

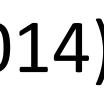
- = $\sum_{i=1}^{i} f(\operatorname{count}(w_i, c_j))$ Loss
- (20,000+ citations)



$$(w_i^{\top}c_j + a_i + b_j - \log \operatorname{count}(w_i, c_j))$$

Constant in the dataset size (just need counts), quadratic in voc size

By far the most common (uncontextualized) word vectors used today



How to handle different word senses? One vector for balls

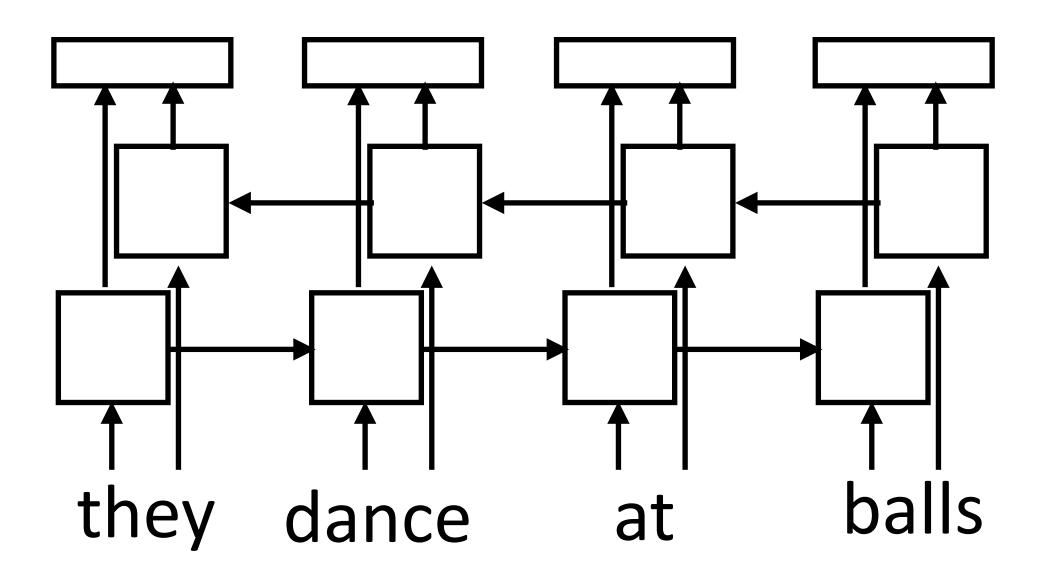
balls they dance at

balls they hit the

How to handle different word senses? One vector for balls

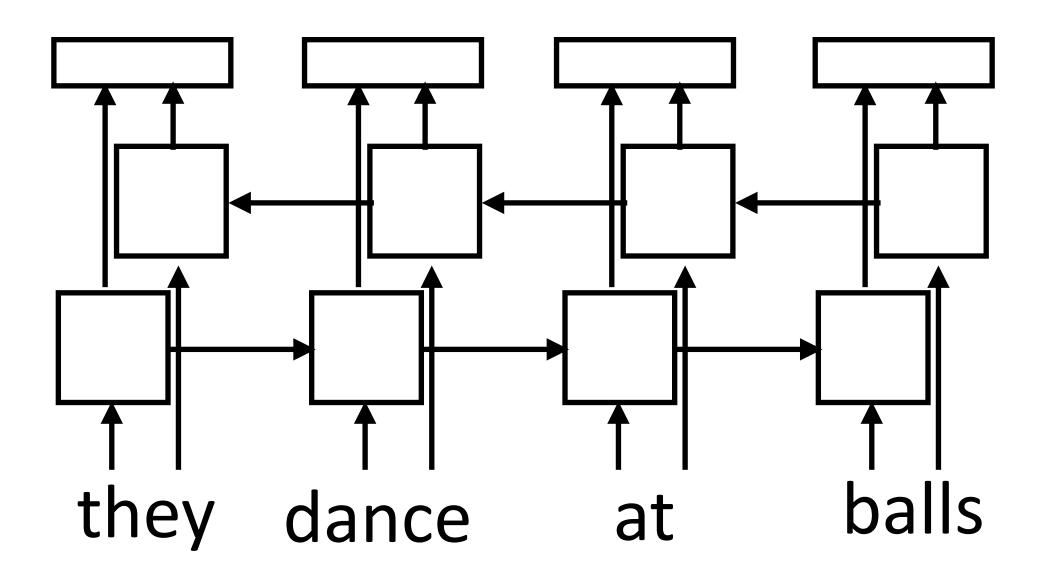
balls balls dance they at they hit the Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

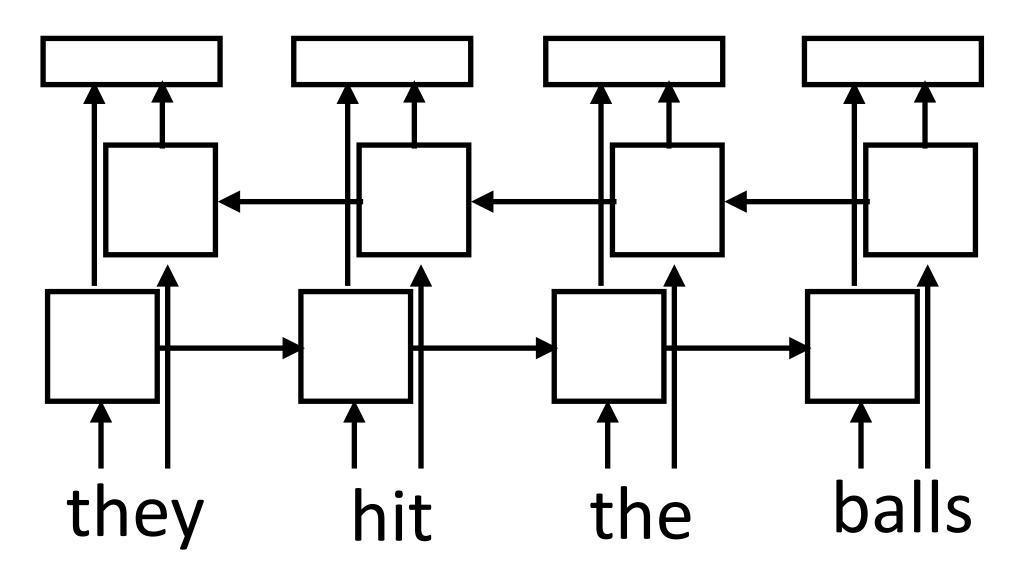
How to handle different word senses? One vector for balls



balls they hit the Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

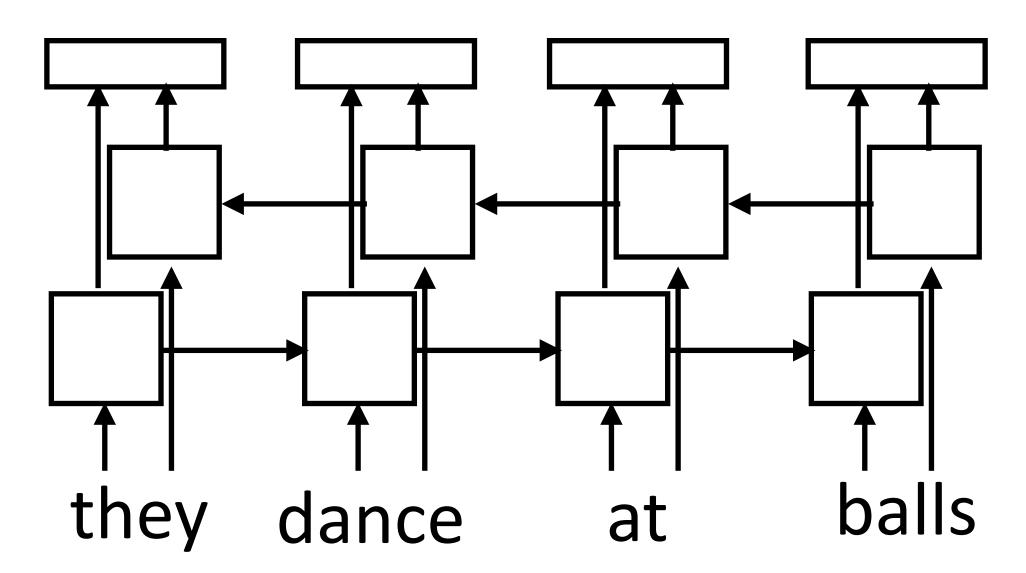
How to handle different word senses? One vector for balls

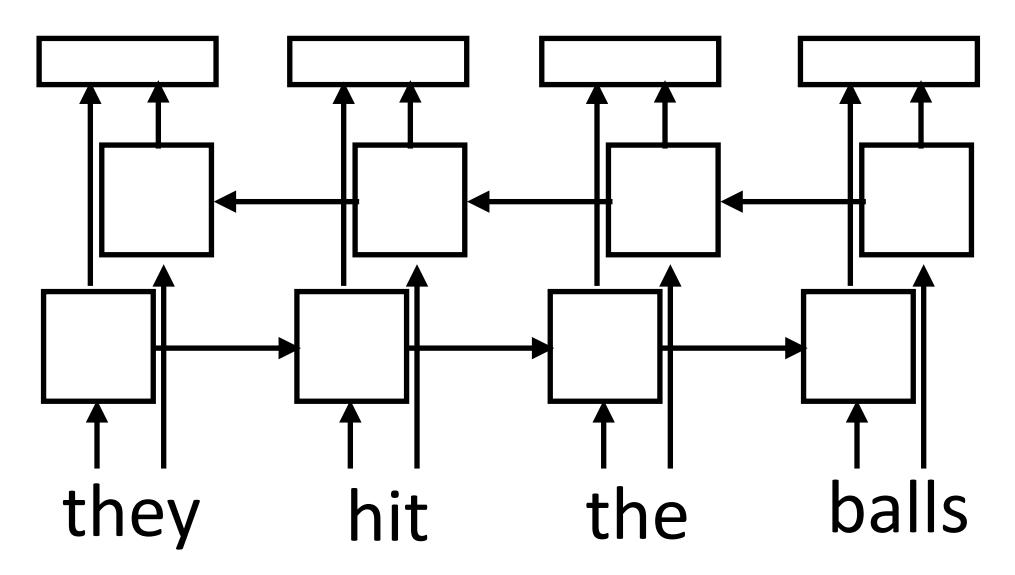




Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors

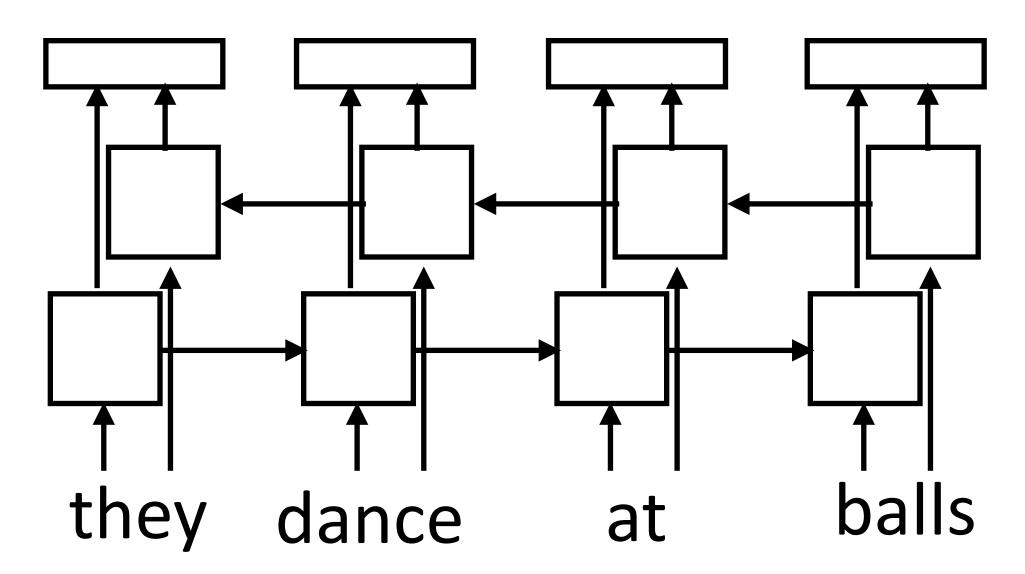
How to handle different word senses? One vector for balls



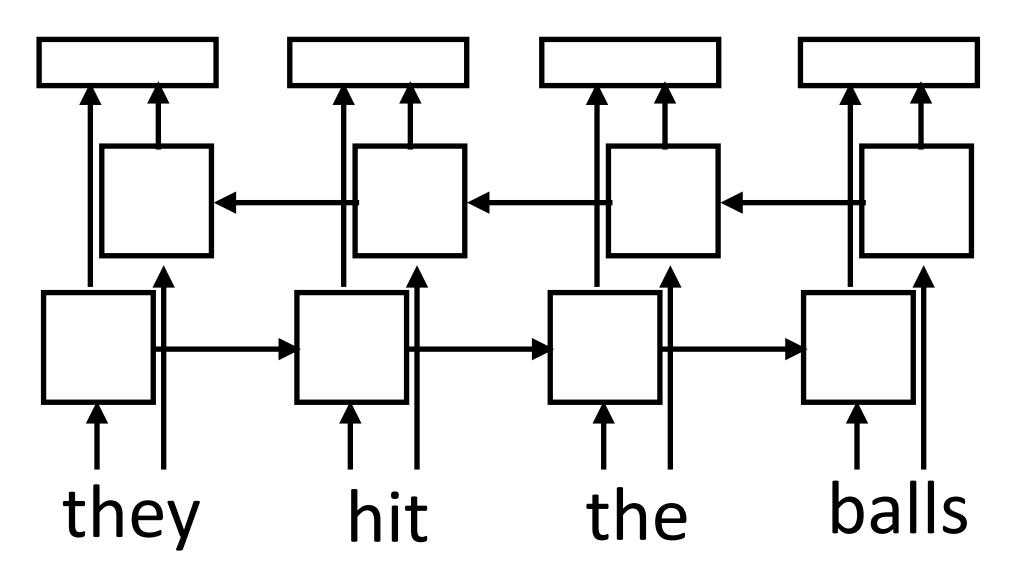


Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors Context-sensitive word embeddings: depend on rest of the sentence

How to handle different word senses? One vector for balls



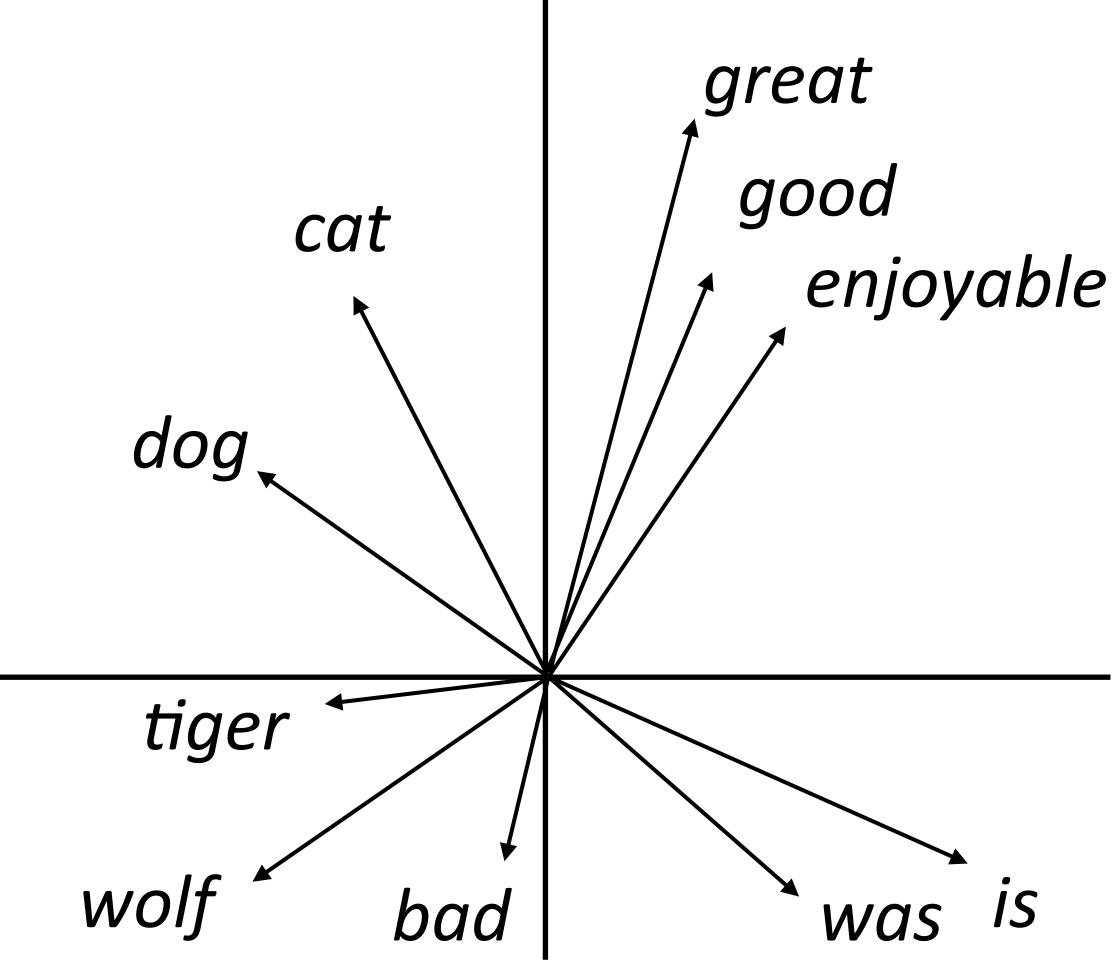
- Huge improvements across nearly all NLP tasks over GloVe



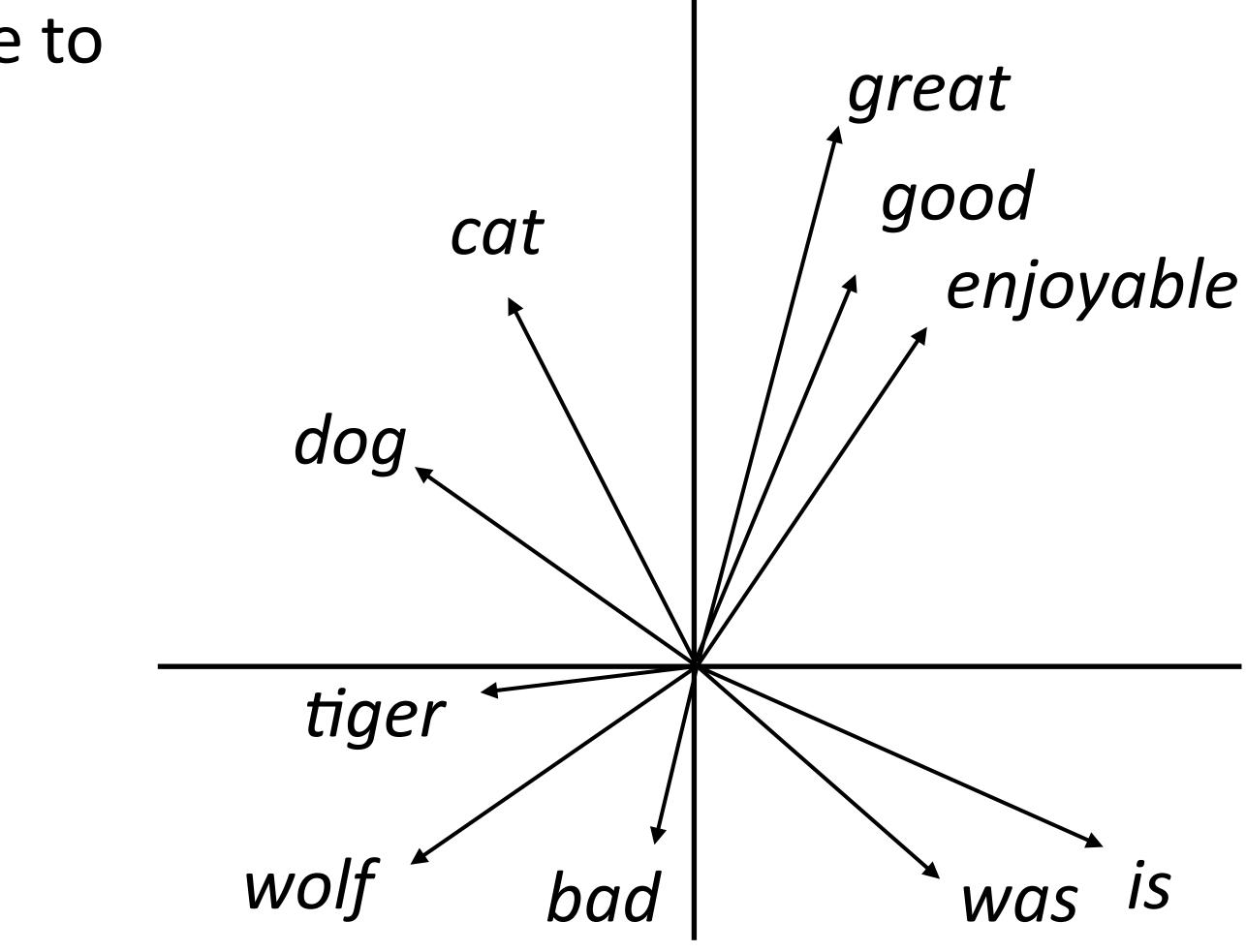
Train a neural language model to predict the next word given previous words in the sentence, use its internal representations as word vectors Context-sensitive word embeddings: depend on rest of the sentence

Evaluation

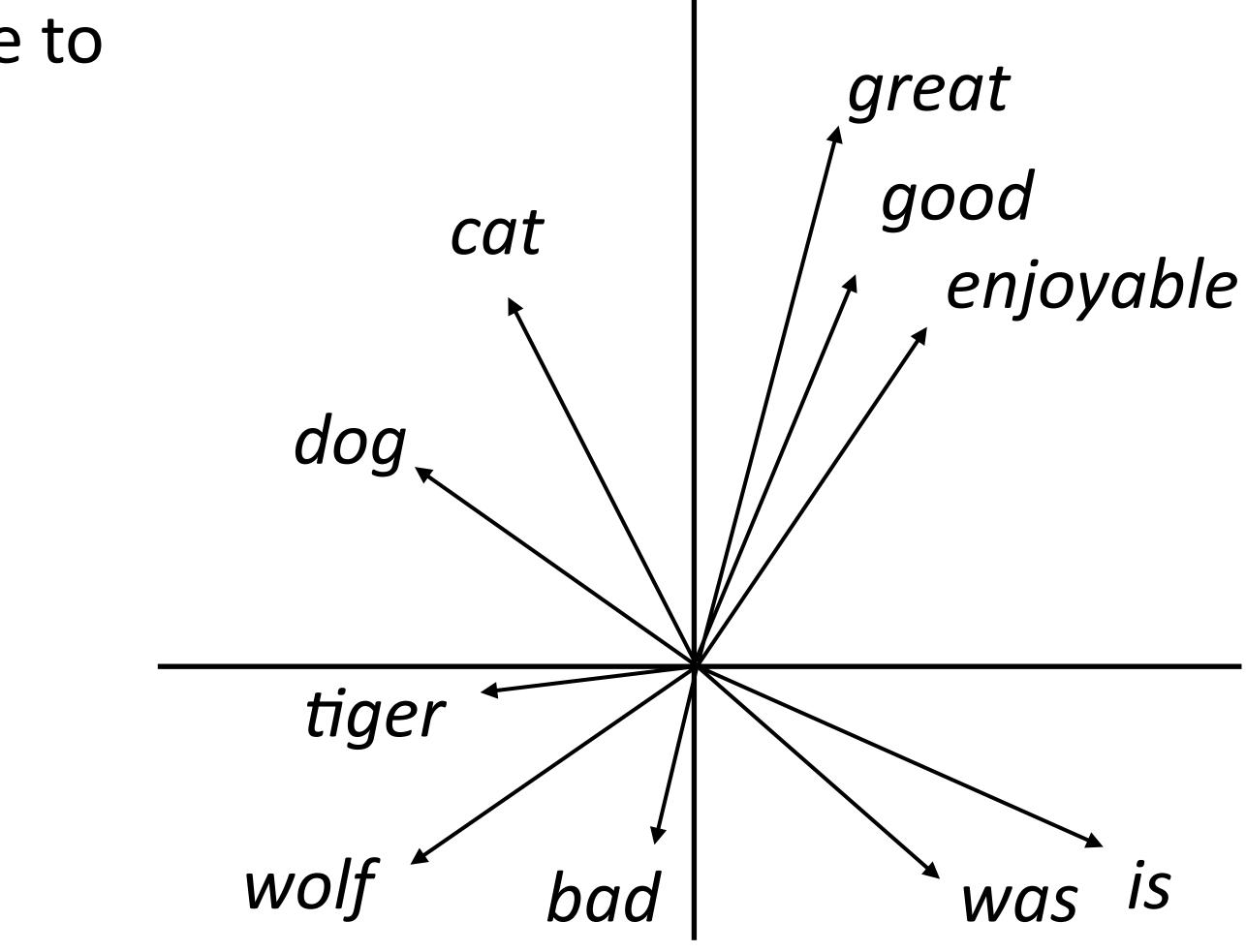
What properties of language should word embeddings capture?



- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other

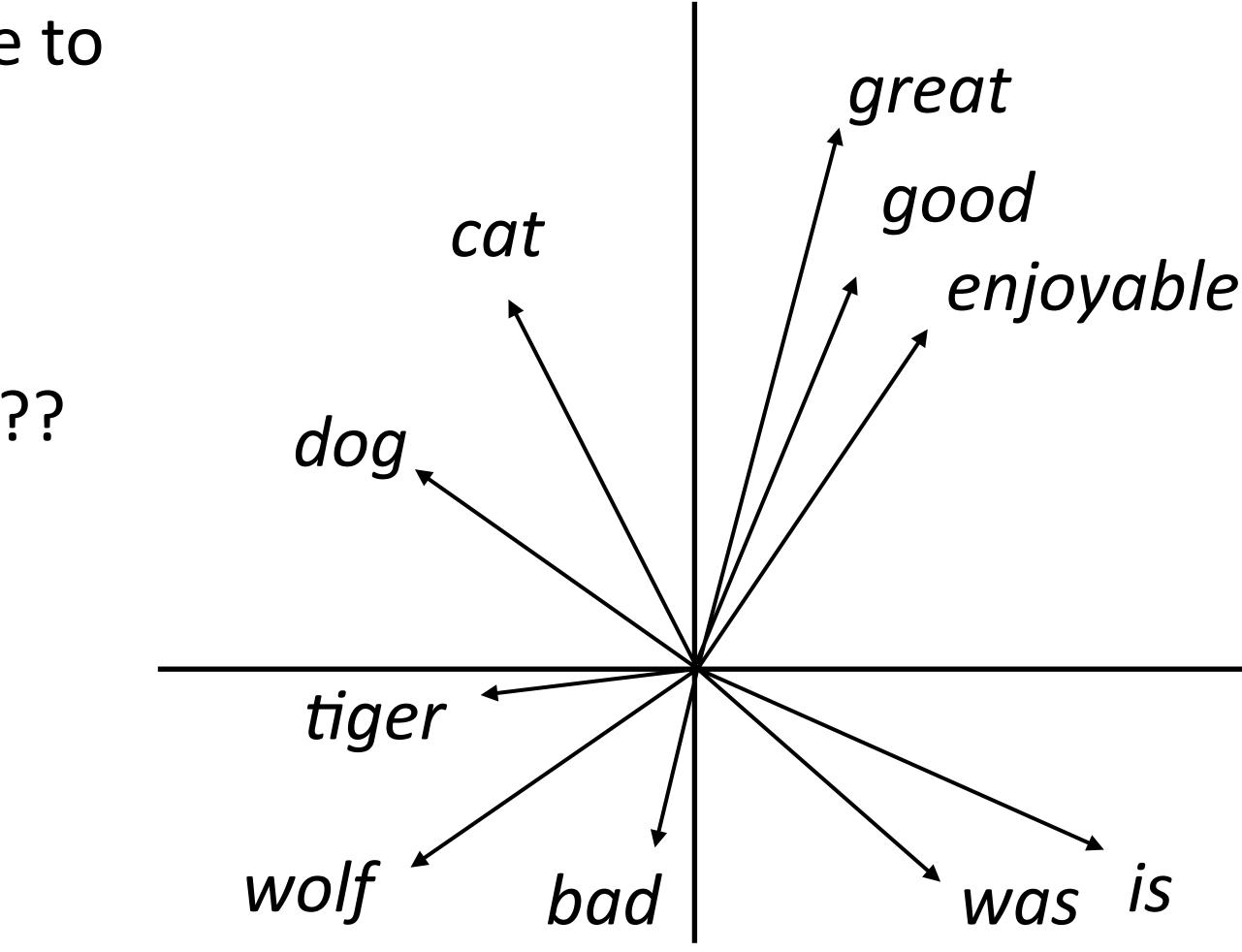


- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other
- Analogy:



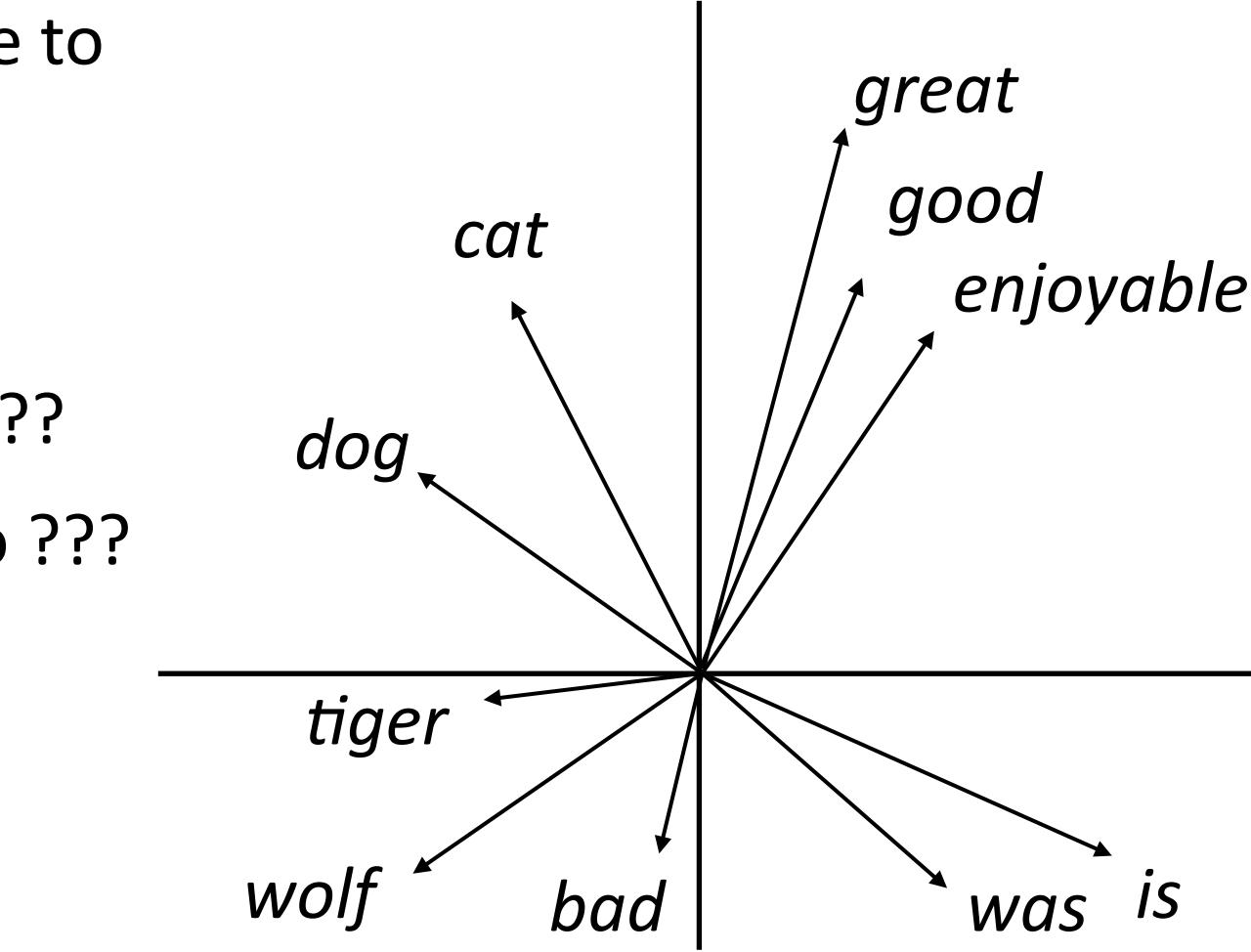
- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other
- Analogy:

good is to best as smart is to ???



- What properties of language should word embeddings capture?
- Similarity: similar words are close to each other
- Analogy:

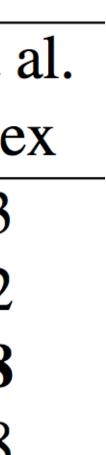
good is to best as smart is to ??? Paris is to France as Tokyo is to ???



Similarity

	Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et a
		Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLe
	PPMI	.755	.697	.745	.686	.462	.393
	SVD	.793	.691	.778	.666	.514	.432
	SGNS	.793	.685	.774	.693	.470	.438
	GloVe	.725	.604	.729	.632	.403	.398

SVD = singular value decomposition on PMI matrix



Similarity

_							
-	Method	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et a
		Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLe
-	PPMI	.755	.697	.745	.686	.462	.393
	SVD	.793	.691	.778	.666	.514	.432
	SGNS	.793	.685	.774	.693	.470	.438
	GloVe	.725	.604	.729	.632	.403	.398

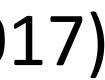
- SVD = singular value decomposition on PMI matrix
- matter in practice

GloVe does not appear to be the best when experiments are carefully controlled, but it depends on hyperparameters + these distinctions don't



Hypernyms: detective is a person, dog is a animal

- Hypernyms: detective is a person, dog is a animal
- Do word vectors encode these relationships?



- Hypernyms: detective is a person, dog is a animal
- Do word vectors encode these relationships?

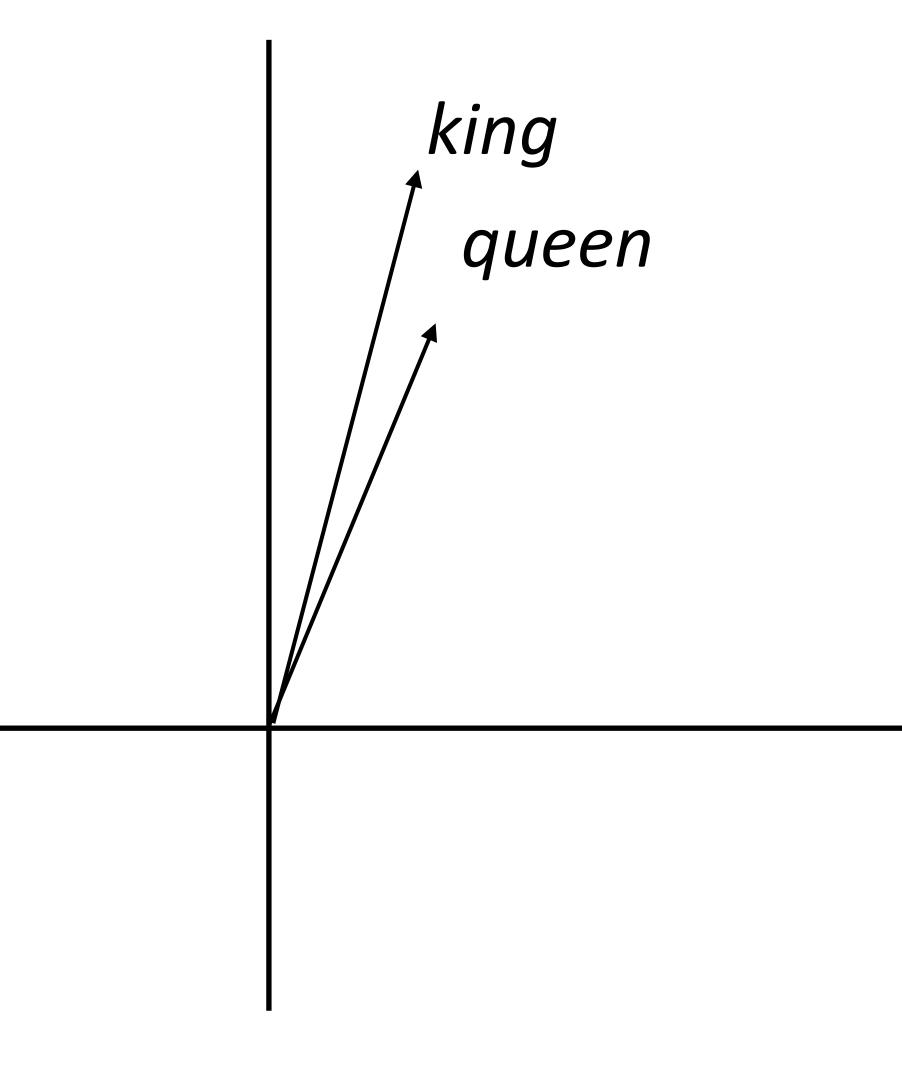
Dataset	TM14	Kotlerman 2010	HypeNet	WordNet	Avg (10 dataset
Random	52.0	30.8	24.5	55.2	23.2
Word2Vec + C	52.1	39.5	20.7	63.0	25.3
GE + C	53.9	36.0	21.6	58.2	26.1
GE + KL	52.0	39.4	23.7	54.4	25.9
DIVE + $C \cdot \Delta S$	57.2	36.6	32.0	60.9	32.7

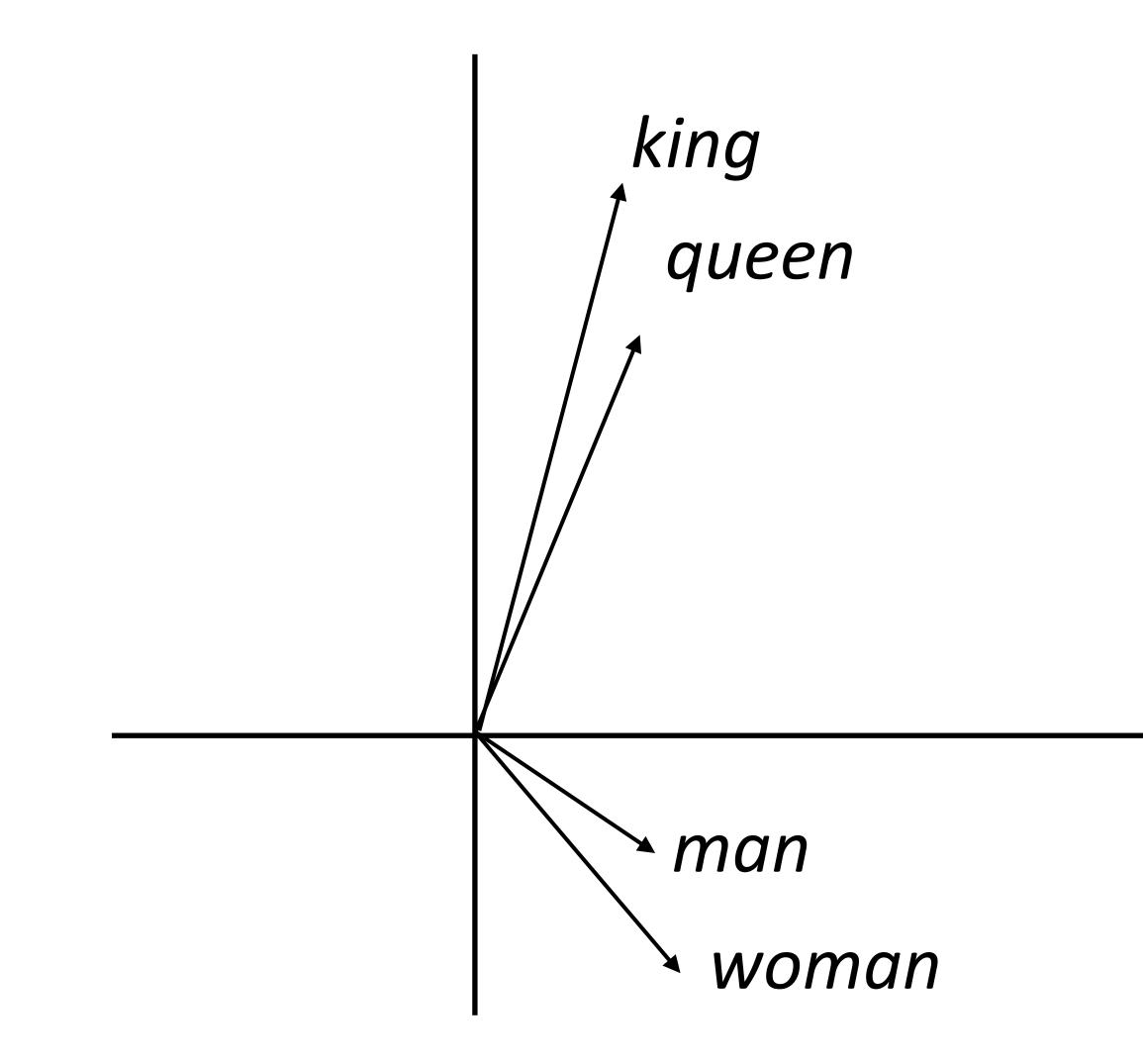
- Hypernyms: detective is a person, dog is a animal
- Do word vectors encode these relationships?

Dataset TM14		Kotlerman 2010	UunoNot	WordNet	Avg (10 datagat	
	Dataset	11/11/4	Kouennan 2010	HypeNet	worunei	Avg (10 dataset
	Random	52.0	30.8	24.5	55.2	23.2
	Word2Vec + C	52.1	39.5	20.7	63.0	25.3
	GE + C	53.9	36.0	21.6	58.2	26.1
	GE + KL	52.0	39.4	23.7	54.4	25.9
	DIVE + $C \cdot \Delta S$	57.2	36.6	32.0	60.9	32.7

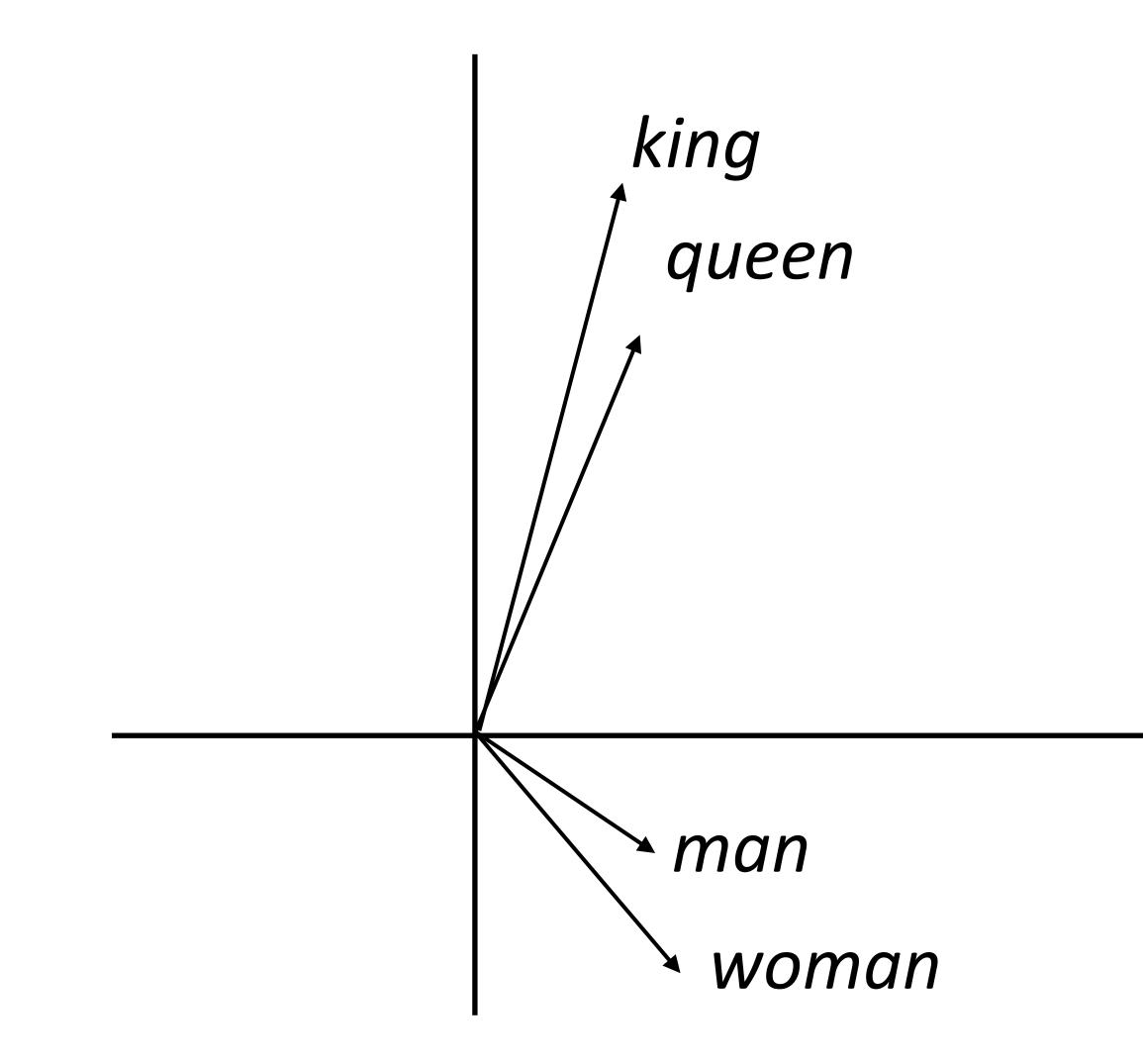
word2vec (SGNS) works barely better than random guessing here



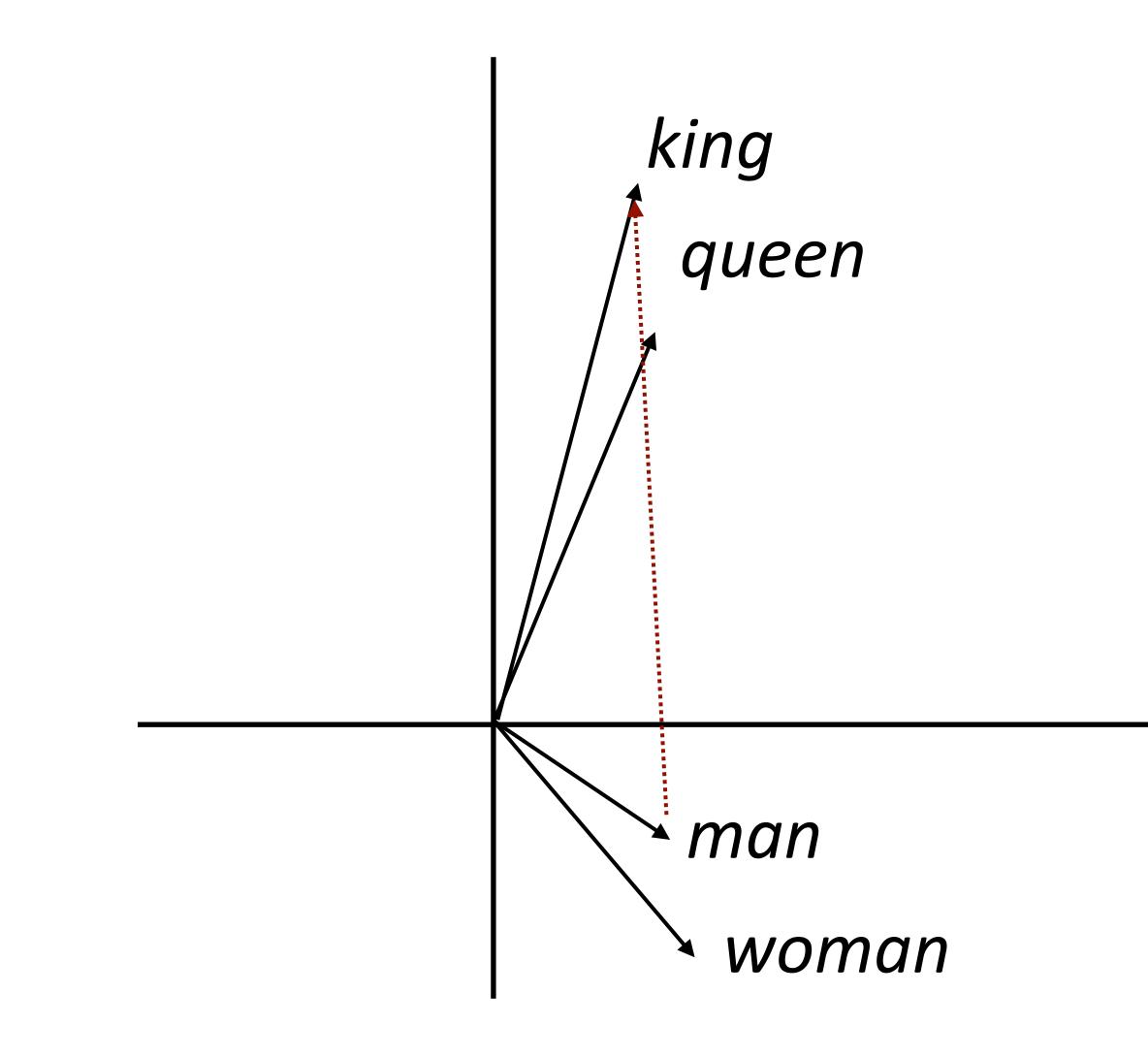




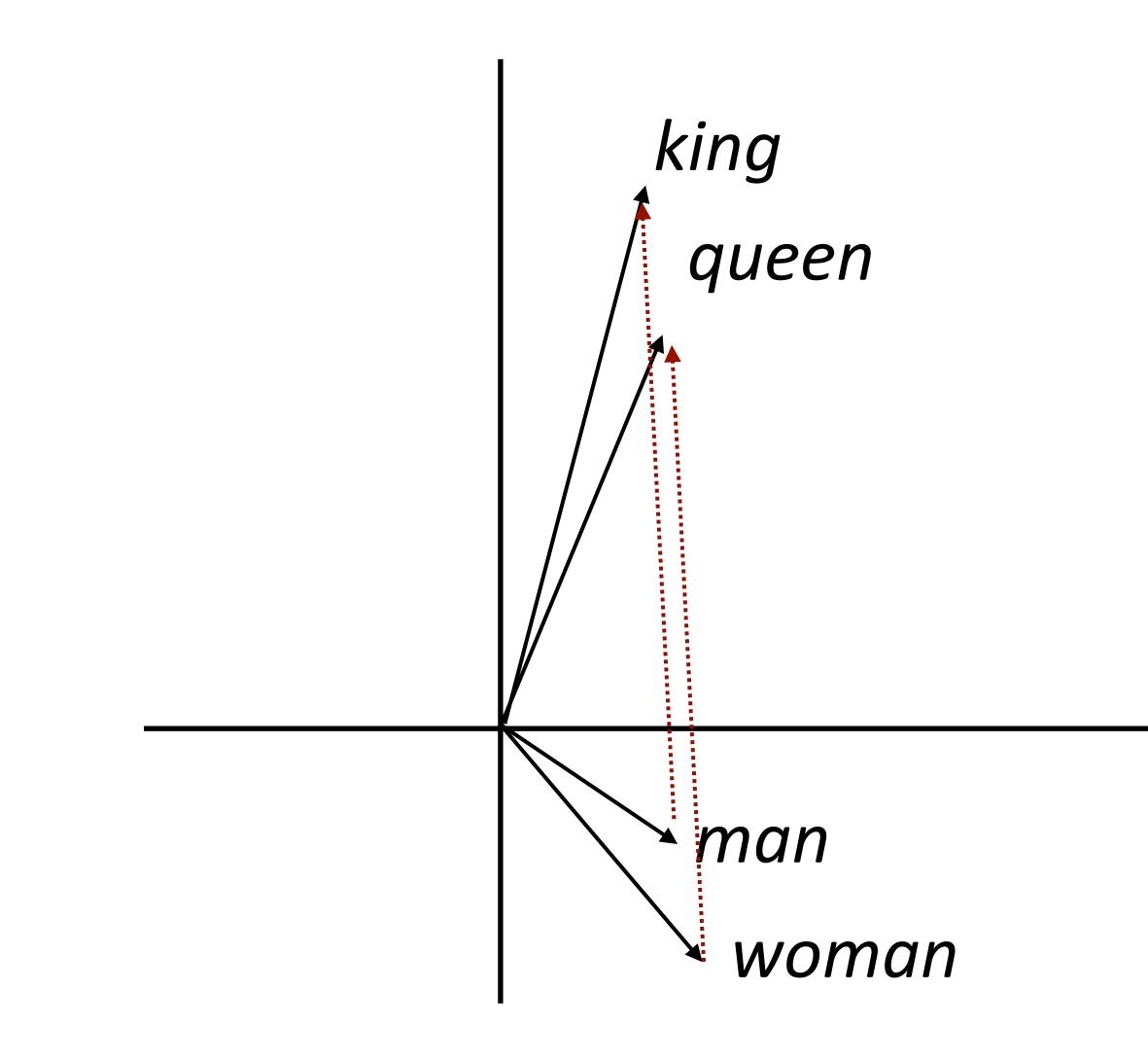
(king - man) + woman = queen



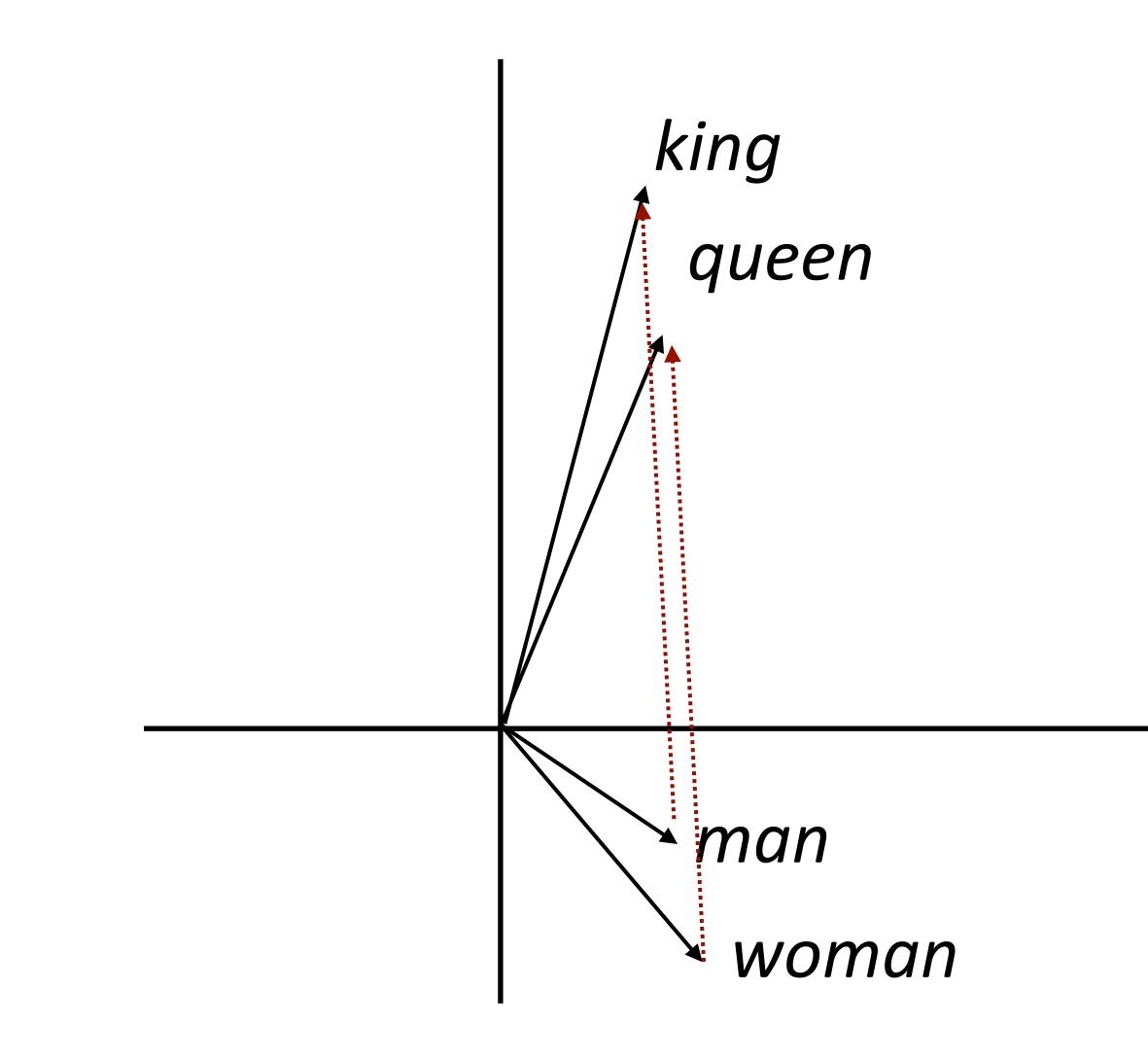
(king - man) + woman = queen



(king - man) + woman = queen

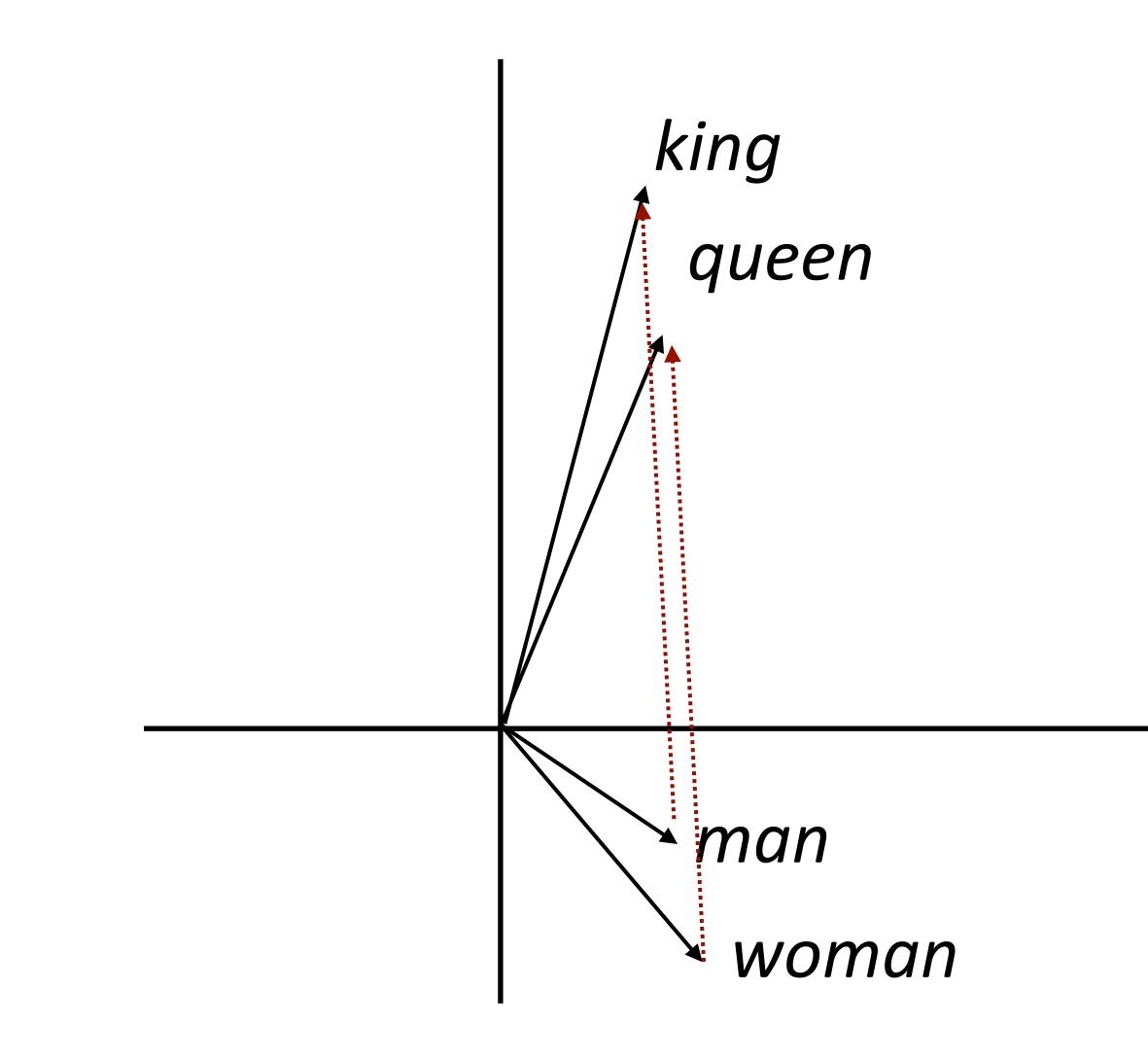


king + (woman - man) = queen



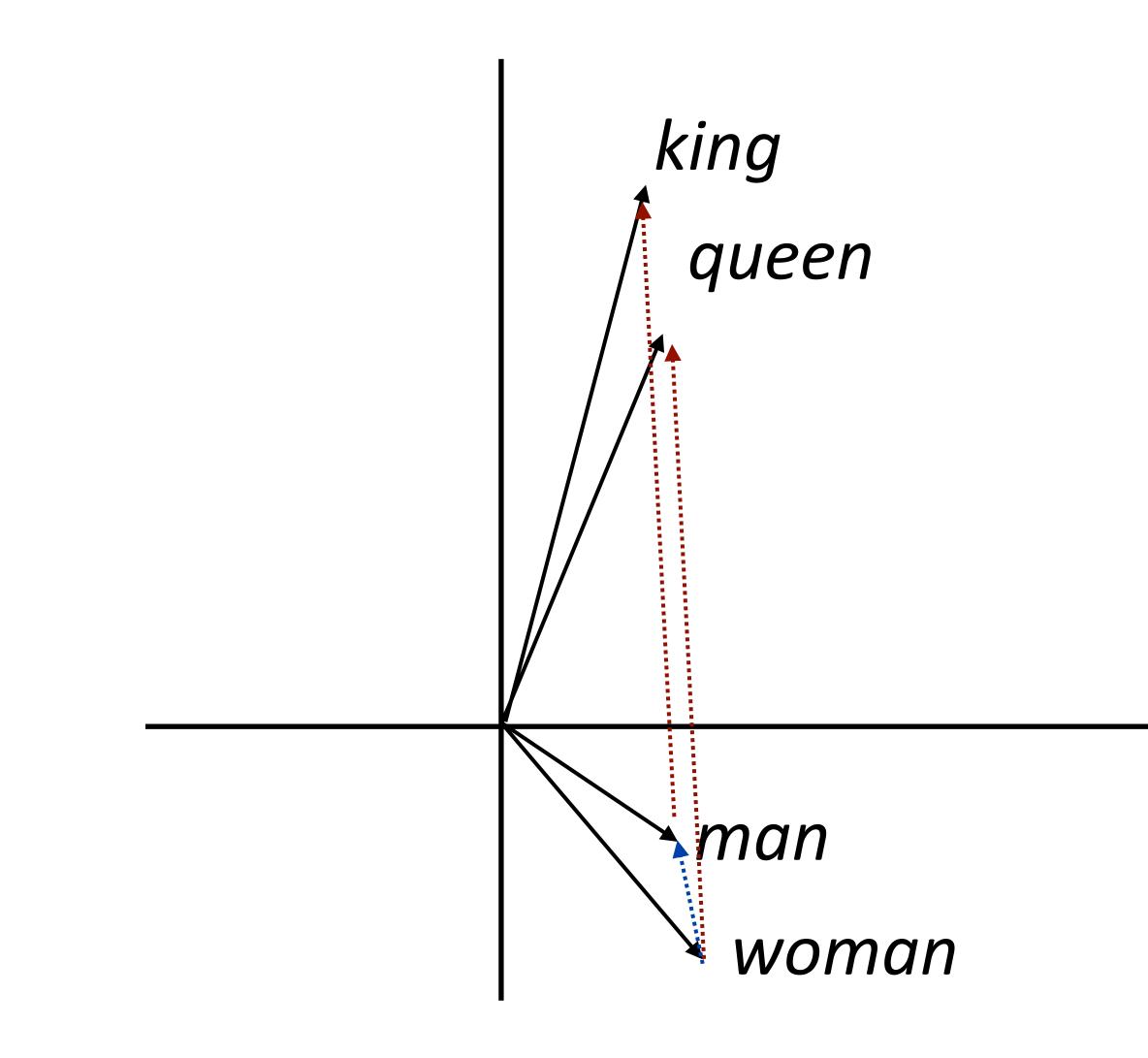
king + (woman - man) = queen

Why would this be?



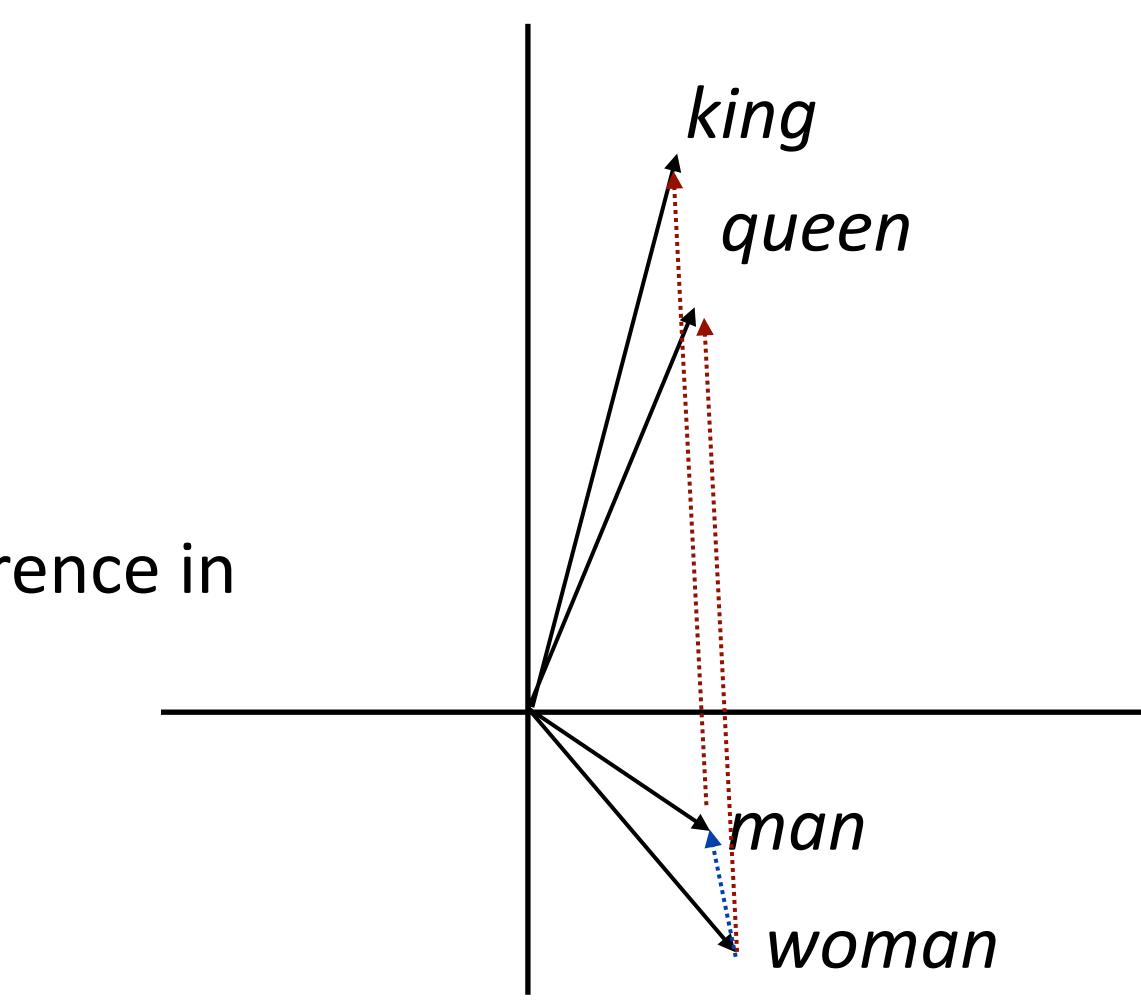
king + (woman - man) = queen

Why would this be?



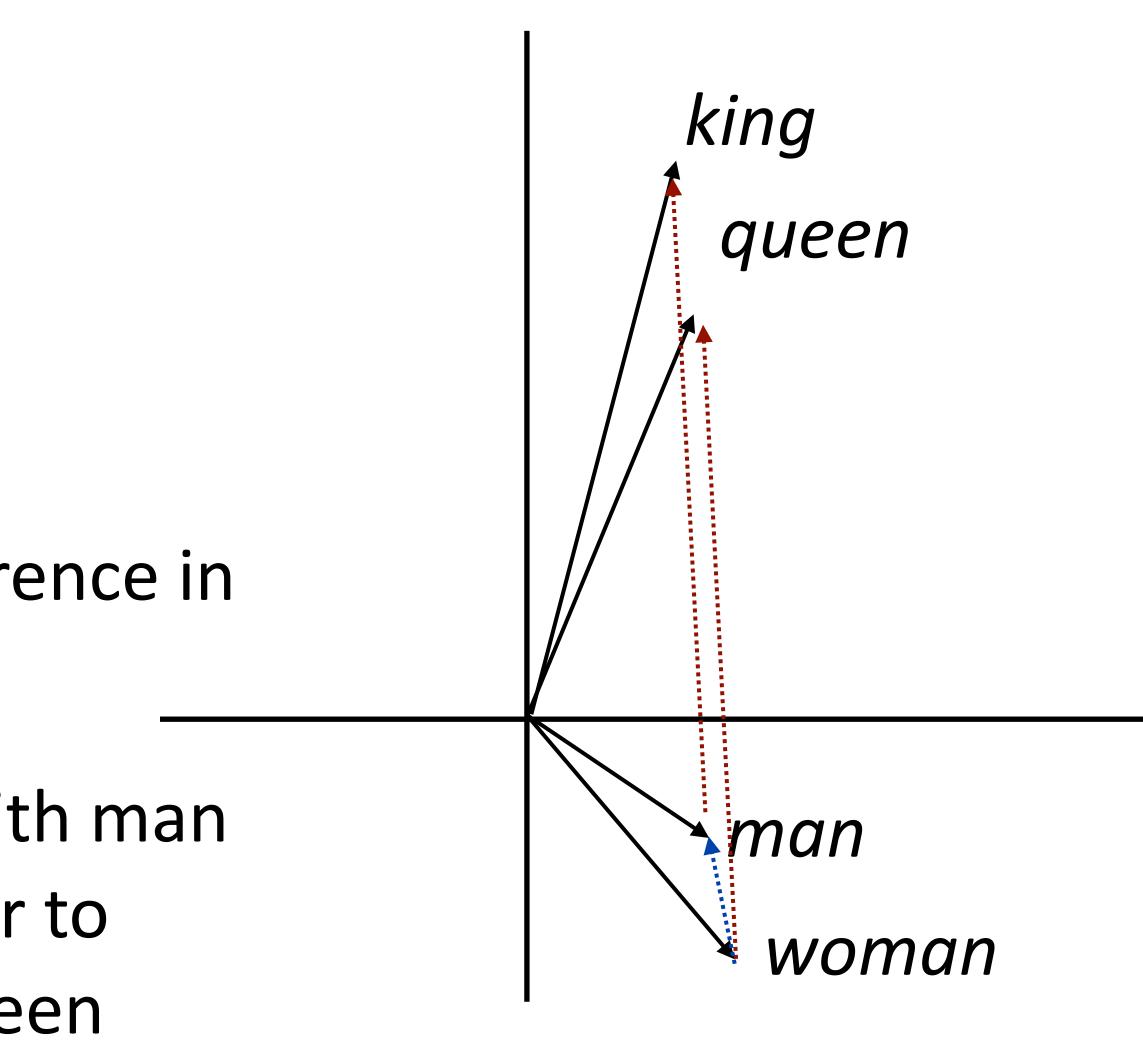
king + (woman - man) = queen

- Why would this be?
- woman man captures the difference in the contexts that these occur in



king + (woman - man) = queen

- Why would this be?
- woman man captures the difference in the contexts that these occur in
- Dominant change: more "he" with man and "she" with woman — similar to difference between king and queen



Analogies

Method	Google	MSR
	Add / Mul	Add / Mul
PPMI	.553 / .679	.306 / .535
SVD	.554 / .591	.408 / .468
SGNS	.676 / .688	.618 / .645
GloVe	.569 / .596	.533 / .580

Levy et al. (2015)

Analogies

Method	Google	
wichioù	Add / M	
PPMI	.553/.6	
SVD	.554/.5	
SGNS	.676 / .6	
GloVe	.569/.5	

These methods can perform well on analogies on two different datasets using two different methods

- e MSR Iul Add/Mul
- .306 / .535
- .408 / .468
- **688** .618 / .645
- *.*533 / .580

Levy et al. (2015)

Analogies

Method	Google	
wieniou	Add / M	
PPMI	.553/.6	
SVD	.554/.5	
SGNS	.676 / .6	
GloVe	.569/.5	

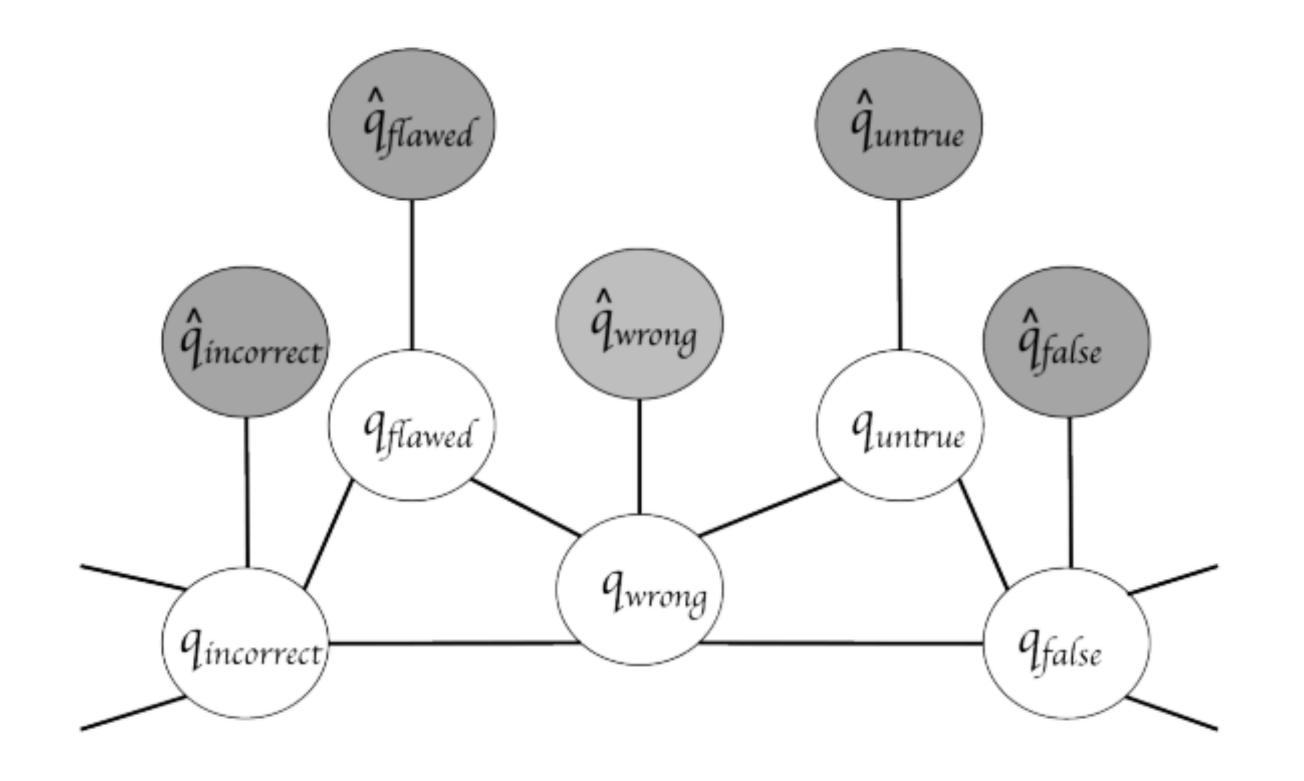
These methods can perform well on analogies on two different datasets using two different methods

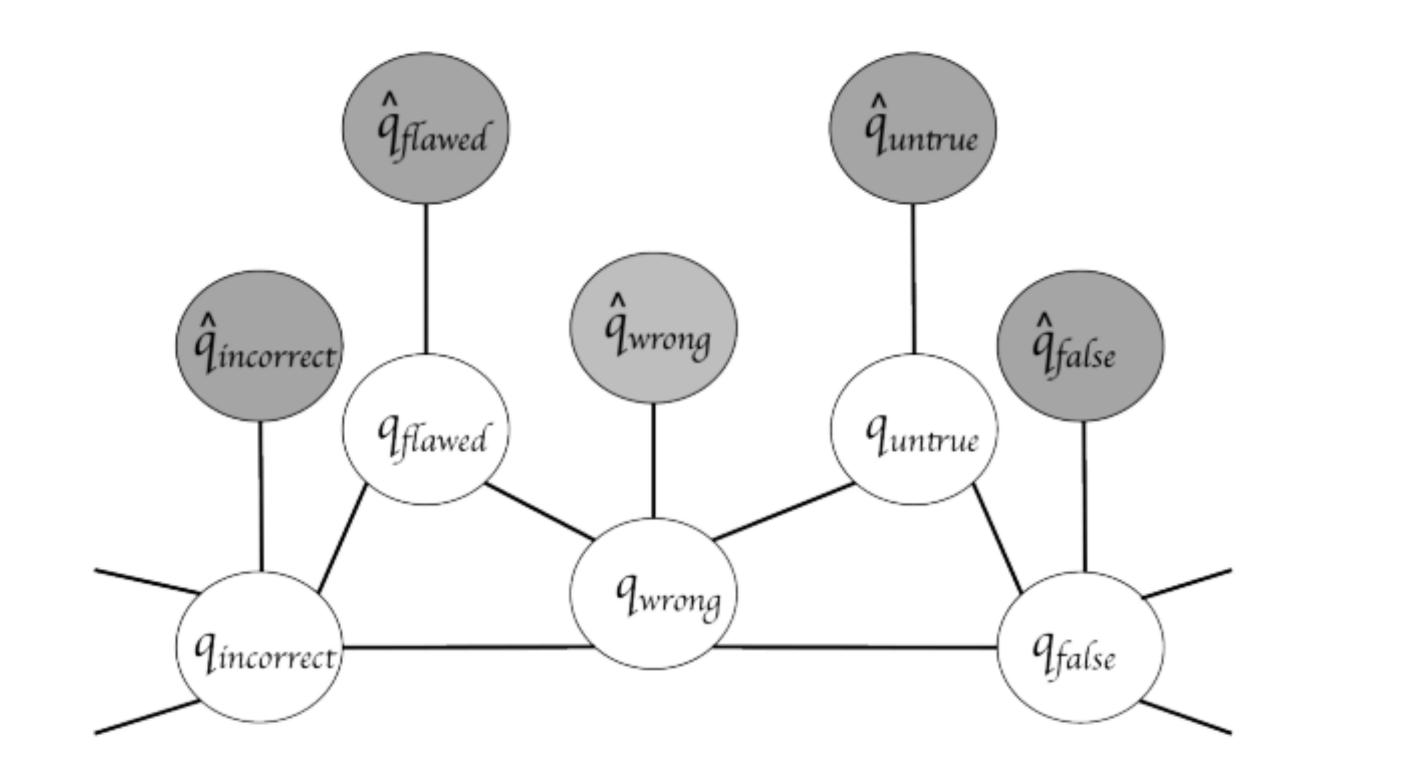
Maximizing for *b*: Add = $\cos(b, a_2 - b_2)$

- MSR e
- Add / Mul Iul
- 579 .306 / .535
- **591** .408 / .468
- **88** .618 / .645
- .533 / .580 596

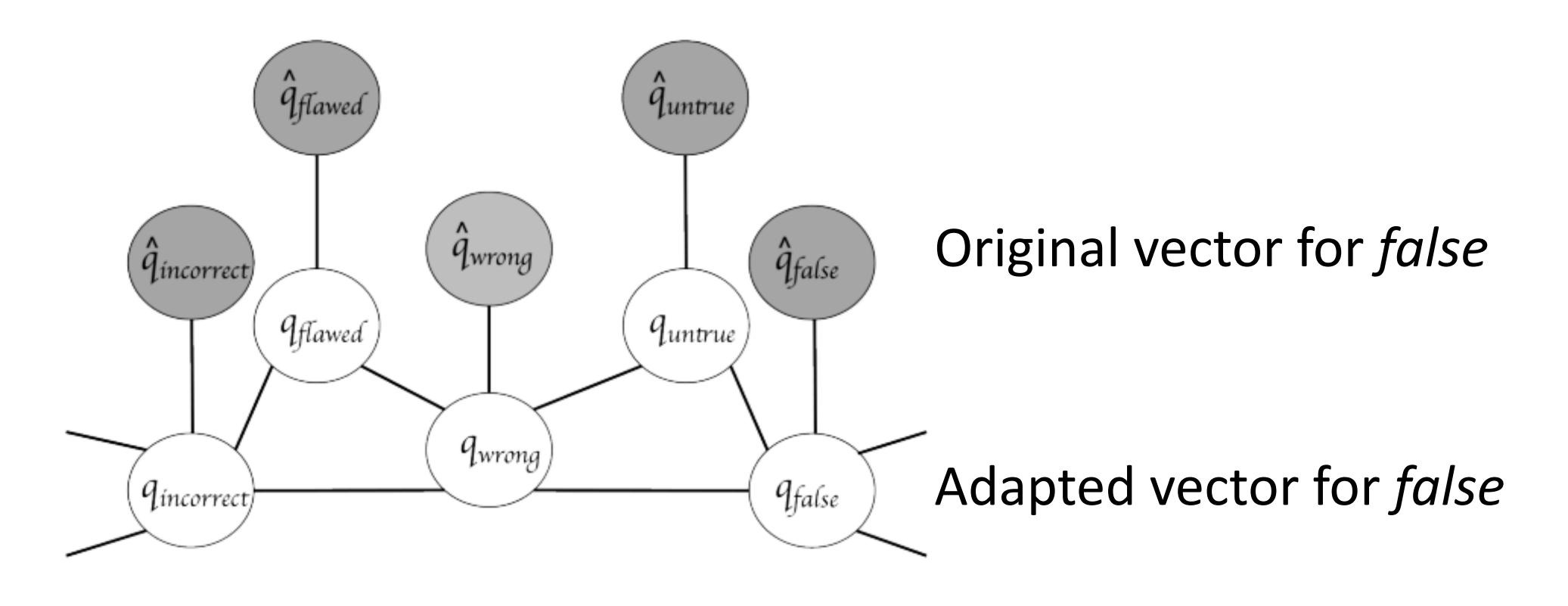
$$a_1 + b_1) \qquad \mathsf{Mul} = \frac{\cos(b_2, a_2) \cos(b_2, b_1)}{\cos(b_2, a_1) + \epsilon}$$

Levy et al. (2015)

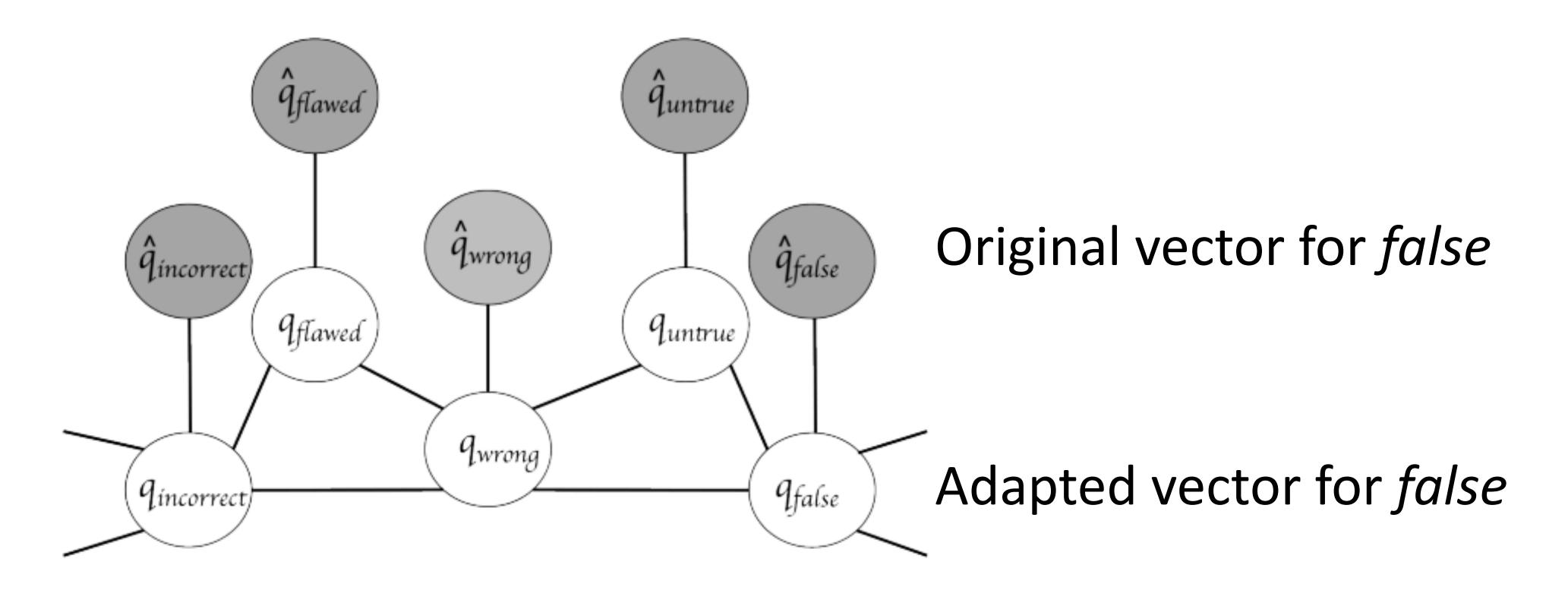




Structure derived from a resource like WordNet



Structure derived from a resource like WordNet



- Structure derived from a resource like WordNet
- Doesn't help most problems

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well
- Approach 2: initialize using GloVe/ELMo, keep fixed
 - Faster because no need to update these parameters

- Approach 1: learn embeddings as parameters from your data
 - Often works pretty well
- Approach 2: initialize using GloVe/ELMo, keep fixed
 - Faster because no need to update these parameters
- Approach 3: initialize using GloVe, fine-tune
 - Works best for some tasks, but not used for ELMo

What if we want embedding representations for whole sentences?

What if we want embedding representations for whole sentences?

Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)

What if we want embedding representations for whole sentences?

- Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)
- Is there a way we can compose vectors to make sentence representations? Summing?

What if we want embedding representations for whole sentences?

- Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized to a sentence level (more later)
- Is there a way we can compose vectors to make sentence representations? Summing?
- Will return to this in a few weeks

Lots to tune with neural networks

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties
- Even better: context-sensitive word embeddings (ELMo)

- Lots to tune with neural networks
 - Training: optimizer, initializer, regularization (dropout), ...
 - Hyperparameters: dimensionality of word embeddings, layers, ...
- Word vectors: learning word -> context mappings has given way to matrix factorization approaches (constant in dataset size)
- Lots of pretrained embeddings work well in practice, they capture some desirable properties
- Even better: context-sensitive word embeddings (ELMo)
- Next time: RNNs and CNNs