
Lecture 7: Tricks + Word Embeddings

Alan Ri;er
(many slides from Greg Durrett)
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This Lecture
‣ Training

‣ Word representaJons

‣ word2vec/GloVe

‣ EvaluaJng word embeddings
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Training Basics
‣ Basic formula: compute gradients on batch, use first-order opt. method

‣ How to iniJalize? How to regularize? What opJmizer to use?

‣ This lecture: some pracJcal tricks. Take deep learning or opJmizaJon 
courses to understand this further
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‣ How do we iniJalize V and W? What consequences does this have?

‣ Nonconvex problem, so iniJalizaJon ma;ers!
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‣ Nonlinear model…how does this affect things?

‣ If cell acJvaJons are too large in absolute value, gradients are small

‣ ReLU: larger dynamic range (all posiJve numbers), but can produce 
big values, can break down if everything is too negaJve

How does iniJalizaJon affect learning?
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‣ Xavier iniJalizer:

‣ Want variance of inputs and gradients for each layer to be the same

‣ Batch normalizaJon (Ioffe and Szegedy, 2015): periodically shiG+rescale 
each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

2) IniJalize too large and cells are saturated
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Dropout
‣ ProbabilisJcally zero out parts of the network during training to prevent 

overfidng, use whole network at test Jme

Srivastava et al. (2014)

‣ Similar to benefits of 
ensembling: network 
needs to be robust to 
missing signals, so it 
has redundancy

‣ Form of stochasJc 
regularizaJon 

‣ One line in Pytorch/Tensorflow
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OpJmizer
‣ Wilson et al. NIPS 2017: adapJve methods can actually perform badly at 

test Jme (Adam is in pink, SGD in black)
‣ Check dev set periodically, decrease learning rate if not making progress
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‣ Four elements of a machine learning method:

‣ Model: feedforward, RNNs, CNNs can be defined in a uniform framework

‣ ObjecJve: many loss funcJons look 
similar, just changes the last layer of the 
neural network

‣ Inference: define the network, your 
library of choice takes care of it (mostly…)

‣ Training: lots of choices for opJmizaJon/hyperparameters
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Word RepresentaJons

‣ ConJnuous model <-> expects conJnuous semanJcs from input

‣ “You shall know a word by the company it keeps” Firth (1957)

‣ Neural networks work very well at conJnuous data, but words are discrete

slide credit: Dan Klein
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Sample Brown Clusters:
- https://raw.githubusercontent.com/aritter/5525_perceptron_tagger/master/60K_clusters.bits.txt

https://raw.githubusercontent.com/aritter/5525_perceptron_tagger/master/60K_clusters.bits.txt
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Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input em
b(interest)

em
b(rates)

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

‣ What properJes should these vectors have?
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‣ Want a vector space where similar words have similar embeddings

the movie was great

the movie was good
~~

Word Embeddings

‣ Goal: come up with a way to 
produce these embeddings
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ConJnuous Bag-of-Words
‣ Predict word from context the dog bit the man

‣ Parameters: d x |V| (one d-length vector per voc word), 
                      |V| x d output parameters (W)
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+
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soGmaxMulJply 
by W

gold label = bit, 
no manual labeling 
required!

Mikolov et al. (2013)

d-dimensional 
word embeddings

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

size |V| x d
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Skip-Gram
the dog bit the man‣ Predict one word of context from word

bit

soGmaxMulJply 
by W

gold = dog

‣ Parameters: d x |V| vectors, |V| x d output parameters (W) (also 
usable as vectors!)

‣ Another training example: bit -> the

P (w0|w) = softmax(We(w))

Mikolov et al. (2013)
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‣ Matmul + soGmax over |V| is very slow to compute for CBOW and SG

‣ Hierarchical soGmax:

P (w|w�1, w+1) = softmax (W (c(w�1) + c(w+1)))

‣ Standard soGmax: 
[|V| x d] log(|V|) dot products of size d,

…

…

the
a

‣ Huffman encode 
vocabulary, use binary 
classifiers to decide 
which branch to take

|V| x d parameters Mikolov et al. (2013)

P (w0|w) = softmax(We(w))

‣ log(|V|) binary decisions
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Skip-Gram with NegaJve Sampling

‣ d x |V| vectors, d x |V| context vectors (same # of params as before)

Mikolov et al. (2013)

(bit, the) => +1
(bit, cat) => -1
(bit, a) => -1
(bit, fish) => -1

‣ Take (word, context) pairs and classify them as “real” or not. Create 
random negaJve examples by sampling from unigram distribuJon

words in similar 
contexts select for 
similar c vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ ObjecJve = logP (y = 1|w, c)� 1

k

nX

i=1

logP (y = 0|wi, c)

sampled
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ConnecJons with Matrix FactorizaJon

Levy et al. (2014)

‣ Skip-gram model looks at word-word co-occurrences and produces two 
types of vectors

word pair 
counts

|V|

|V| |V|

d

d

|V|

context vecs
word 
vecs

‣ Looks almost like a matrix factorizaJon…can we interpret it this way?
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Skip-Gram as Matrix FactorizaJon

Levy et al. (2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

‣ If we sample negaJve examples from the uniform distribuJon over words

num negaJve samples

‣ …and it’s a weighted factorizaJon problem (weighted by word freq)

Skip-gram objecJve exactly corresponds to factoring this matrix:



GloVe (Global Vectors)

Pennington et al. (2014)

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix word pair 

counts

|V|

|V|



GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Loss         = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix word pair 

counts

|V|

|V|



GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Loss         = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix

‣ Constant in the dataset size (just need counts), quadraJc in voc size

word pair 
counts

|V|

|V|



GloVe (Global Vectors)

Pennington et al. (2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ Loss         = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix

‣ Constant in the dataset size (just need counts), quadraJc in voc size

‣ By far the most common (uncontextualized) word vectors used today 
(20,000+ citaJons)

word pair 
counts

|V|

|V|
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Preview: Context-dependent Embeddings

Peters et al. (2018)

‣ Train a neural language model to predict the next word given previous 
words in the sentence, use its internal representaJons as word vectors

‣ Context-sensiCve word embeddings: depend on rest of the sentence

‣ Huge improvements across nearly all NLP tasks over GloVe

they hit the ballsthey dance at balls

‣ How to handle different word senses? One vector for balls
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EvaluaJng Word Embeddings
‣ What properJes of language should word embeddings capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Cger

was

‣ Similarity: similar words are close to 
each other

‣ Analogy:

Paris is to France as Tokyo is to ???

good is to best as smart is to ???
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Similarity

Levy et al. (2015)

‣ SVD = singular value decomposiJon on PMI matrix

‣ GloVe does not appear to be the best when experiments are carefully 
controlled, but it depends on hyperparameters + these disJncJons don’t 
ma;er in pracJce
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Hypernymy DetecJon

‣ Hypernyms: detecJve is a person, dog is a animal

‣ word2vec (SGNS) works barely be;er than random guessing here

‣ Do word vectors encode these relaJonships?

Chang et al. (2017)
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Analogies

queen
king

woman
man

(king - man) + woman = queen

‣ Why would this be?

‣ woman - man captures the difference in 
the contexts that these occur in

king + (woman - man) = queen

‣ Dominant change: more “he” with man 
and “she” with woman — similar to 
difference between king and queen
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Analogies

Levy et al. (2015)

‣ These methods can perform well on analogies on two different 
datasets using two different methods 

cos(b, a2 � a1 + b1)Maximizing for b: Add = Mul = cos(b2, a2) cos(b2, b1)
cos(b2, a1) + ✏
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Using SemanJc Knowledge

Faruqui et al. (2015)

‣ Structure derived from a resource like WordNet

Original vector for false

Adapted vector for false

‣ Doesn’t help most problems
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Using Word Embeddings
‣ Approach 1: learn embeddings as parameters from your data

‣ Approach 2: iniJalize using GloVe/ELMo, keep fixed

‣ Approach 3: iniJalize using GloVe, fine-tune
‣ Faster because no need to update these parameters

‣ Works best for some tasks, but not used for ELMo

‣ OGen works pre;y well
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ComposiJonal SemanJcs
‣ What if we want embedding representaJons for whole sentences?

‣ Skip-thought vectors (Kiros et al., 2015), similar to skip-gram generalized 
to a sentence level (more later)

‣ Is there a way we can compose vectors to make sentence 
representaJons? Summing?

‣ Will return to this in a few weeks
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Takeaways
‣ Lots to tune with neural networks

‣ Word vectors: learning word -> context mappings has given way to 
matrix factorizaJon approaches (constant in dataset size)

‣ Training: opJmizer, iniJalizer, regularizaJon (dropout), …

‣ Hyperparameters: dimensionality of word embeddings, layers, …

‣ Next Jme: RNNs and CNNs

‣ Lots of pretrained embeddings work well in pracJce, they capture some 
desirable properJes

‣ Even be;er: context-sensiJve word embeddings (ELMo)


