# Machine Translation, EncoderDecoder Models and Attention 

Alan Ritter

(many slides from Greg Durrett)

## This Lecture

- Machine Translation Basics
- Seq2Seq / Encoder-Decoder Models
- Attention
- Decoding Strategies
- Transformers


## MT Basics

MT Basics


People’s Daily, August 30, 2017

## MT Basics



People’s Daily, August 30, 2017

## MT Basics



People’s Daily, August 30, 2017
Trump Pope family watch a hundred years a year in the White House balcony

## MT Basics



People’s Daily, August 30, 2017
Trump Pope family watch a hundred years a year in the White House balcony

## Phrase-Based MT

- Key idea: translation works better the bigger chunks you use


## Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate


## Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext


## Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext
- How to stitch together? Language model over target language


## Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext
- How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations


## Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext
- How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)


## Phrase-Based MT

```
cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
```

Phrase table $P(f \mid e)$


$$
P(e \mid f) \propto P(f \mid e) P(e)
$$

Noisy channel model: combine scores from translation model + language model to translate foreign to

English

Unlabeled English data

"Translate faithfully but make fluent English"

## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?


## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty


## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

| hypothesis 1 |  | 1-gram | 2-gram | 3-gram |
| :---: | :---: | :---: | :---: | :---: |
|  | I am exhausted | 3/3 | 1/2 | 0/1 |
| hypothesis 2 | Tired is I | 1/3 | 0/2 | 0/1 |
| hypothesis 3 | I I I | 1/3 | 0/2 | 0/1 |

reference 1 I am tired
reference 2 I am ready to sleep now and so exhausted

## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty
reference 1 I am tired
reference 2 I am ready to sleep now and so exhausted


## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) .
$$

## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . ~ \bullet \text { Typically } n=4, w_{i}=1 / 4
$$

## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\begin{aligned}
& \mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . \\
& \mathrm{BP}=\left\{\begin{array}{ll}
1 & \text { if } c>r \\
e^{(1-r / c)} & \text { if } c \leq r
\end{array} .\right.
\end{aligned}
$$

## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\begin{array}{ll}
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . & \text { Typically } n=4, w_{i}=1 / 4 \\
\mathrm{BP}= \begin{cases}1 & \text { if } c>r \\
e^{(1-r / c)} & \text { if } c \leq r\end{cases} & \mathrm{r}=\text { length of reference }
\end{array}
$$

## Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\begin{array}{ll}
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . & , \text { Typically } n=4, w_{i}=1 / 4 \\
\mathrm{BP}= \begin{cases}1 & \text { if } c>r \\
e^{(1-r / c)} & \text { if } c \leq r\end{cases} & , \mathrm{r}=\text { length of reference }
\end{array}
$$

- Does this capture fluency and adequacy?


## BLEU Score

- Better methods with human-in-the-loop
- HTER: human-assisted translation error rate
- If you're building real MT systems, you do user studies. In academia, you mostly use BLEU


Human Judgments

## Language Modeling

## Phrase-Based MT

```
cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
```

Phrase table $P(f \mid e)$


$$
P(e \mid f) \propto P(f \mid e) P(e)
$$

Noisy channel model: combine scores from translation model + language model to translate foreign to

English
"Translate faithfully but make fluent English"

## N-gram Language Models

I visited San $\qquad$ put a distribution over the next word

## N-gram Language Models

I visited San $\qquad$ put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words


## N-gram Language Models

I visited San $\qquad$ put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\text { visited } \operatorname{San}, x)}{\operatorname{count}(\text { visited San })}
$$

## N-gram Language Models

I visited San $\qquad$ put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\operatorname{visited} \operatorname{San}, x)}{\operatorname{count}(\text { visited San })}
$$

Maximum likelihood estimate of this probability from a corpus

## N-gram Language Models

I visited San $\qquad$ put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\operatorname{visited} \operatorname{San}, x)}{\operatorname{count}(\text { visited San })}
$$

Maximum likelihood estimate of this probability from a corpus

- Just relies on counts, even in 2008 could scale up to 1.3 M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)


## Neural Language Models

- Early work: feedforward neural networks looking at context


## Neural Language Models

- Early work: feedforward neural networks looking at context



## Neural Language Models

- Early work: feedforward neural networks looking at context



## Neural Language Models

- Early work: feedforward neural networks looking at context
- Variable length context with RNNs:

$$
P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)
$$

I visited New $\qquad$


I visited New

- Works like a decoder with no encoder


## Neural Language Models

- Early work: feedforward neural networks looking at context

- Slow to train over lots of data!

Evaluation

## Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

## Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

- Perplexity: $\quad 2^{-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)}$


## Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

- Perplexity: $2^{-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)}$
- NLL (base 2) averaged over the sentence, exponentiated


## Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

- Perplexity: $2^{-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)}$
- NLL (base 2) averaged over the sentence, exponentiated
- NLL = -2 -> on average, correct thing has prob $1 / 4$-> PPL $=4$. PPL is sort of like branching factor


## Results

Merity et al. (2017), Melis et al. (2017)

## Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark


## Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7

Merity et al. (2017), Melis et al. (2017)

## Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL ~ 60-80 (depending on how much you optimize it)

Encoder-Decoder Models

## Encoder-Decoder

- Encode a sequence into a fixed-sized vector

the movie was great


## Encoder-Decoder

- Encode a sequence into a fixed-sized vector

- Now use that vector to produce a series of tokens as output from a separate LSTM decoder


## Encoder-Decoder

It's not an ACL tutorial on vector representations of meaning if thi least one Ray Mooney quote.

```
A Transduction Bottleneck
```

In the words of Ray Mooney
"You can't cram the meaning of a whole \%\&! \$ing sentence into a single \$\&!*ing vector!" Yes, the cenoreds out memaing is copied verbatim.

Single vector re sentences cause

- Training focusses on learning marginal language model of target language first.
- Longer input sequences cause compressive loss.
Encoder gets significantly diminished gradient.


## In the words of Ray Mooney

"You can't cram the meaning of a whole \% \&! \$ing sentence into a single $\$ \&!*$ ing vector!" Yes, the censored-out smearing is copied verbatim

## - Is this true? Sort of...we'll come back to this later

[^0]20 Retwets 127 Likes © O O O

## Model

- Generate next word conditioned on previous word as well as hidden state



## Model

- Generate next word conditioned on previous word as well as hidden state



## Model

- Generate next word conditioned on previous word as well as hidden state
- W size is |vocab| x |hidden state|, softmax over entire vocabulary

$$
P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}(W \bar{h})
$$



## Model

- Generate next word conditioned on previous word as well as hidden state
- W size is |vocab| x |hidden state|, softmax over entire vocabulary



## Model

- Generate next word conditioned on previous word as well as hidden state
- W size is |vocab| x |hidden state|, softmax over entire vocabulary

$$
P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}(W \bar{h})
$$


$P(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{n} P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)$
Decoder has separate
parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)

## Inference

- Generate next word conditioned on previous word as well as hidden state



## Inference

- Generate next word conditioned on previous word as well as hidden state



## Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state


## Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state


## Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state
- Need to actually evaluate computation graph up to this point to form input for the next state


## Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state
- Need to actually evaluate computation graph up to this point to form input for the next state


## Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state
- Need to actually evaluate computation graph up to this point to form input for the next state


## Inference

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state
- Need to actually evaluate computation graph up to this point to form input for the next state
- Decoder is advanced one state at a time until [STOP] is reached


## Implementing seq2seq Models



## Implementing seq2seq Models



- Encoder: consumes sequence of tokens, produces a vector. Analogous to encoders for classification/tagging tasks


## Implementing seq2seq Models



- Encoder: consumes sequence of tokens, produces a vector. Analogous to encoders for classification/tagging tasks
- Decoder: separate module, single cell. Takes two inputs: hidden state (vector $h$ or tuple $(h, c)$ ) and previous token. Outputs token + new state


## Training



- Objective: maximize $\sum_{(\mathbf{x}, \mathbf{y})} \sum_{i=1}^{n} \log P\left(y_{i}^{*} \mid \mathbf{x}, y_{1}^{*}, \ldots, y_{i-1}^{*}\right)$
- One loss term for each target-sentence word, feed the correct word regardless of model's prediction


## Implementation Details

## Implementation Details

- Sentence lengths vary for both encoder and decoder:


## Implementation Details

- Sentence lengths vary for both encoder and decoder:
- Typically pad everything to the right length


## Implementation Details

- Sentence lengths vary for both encoder and decoder:
- Typically pad everything to the right length
- Encoder: Can be a CNN/LSTM/Transformer...


## Implementation Details

- Sentence lengths vary for both encoder and decoder:
- Typically pad everything to the right length
- Encoder: Can be a CNN/LSTM/Transformer...
- Decoder: also flexible in terms of architecture (more later). Execute one step of computation at a time, so computation graph is formulated as taking one input + hidden state


## Implementation Details

- Sentence lengths vary for both encoder and decoder:
- Typically pad everything to the right length
- Encoder: Can be a CNN/LSTM/Transformer...
- Decoder: also flexible in terms of architecture (more later). Execute one step of computation at a time, so computation graph is formulated as taking one input + hidden state
- Beam search: can help with lookahead. Finds the (approximate) highest scoring sequence:

$$
\operatorname{argmax}_{\mathbf{y}} \prod_{i=1}^{n} P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)
$$

## Beam Search

- Maintain decoder state, token history in beam



## Beam Search

- Maintain decoder state, token history in beam




## Beam Search

- Maintain decoder state, token history in beam



## Beam Search

- Maintain decoder state, token history in beam



## Beam Search

- Maintain decoder state, token history in beam



## Beam Search

- Maintain decoder state, token history in beam



## Beam Search

- Maintain decoder state, token history in beam



## Beam Search

- Maintain decoder state, token history in beam
film: 0.4



## Beam Search

- Maintain decoder state, token history in beam
film: 0.4



## Beam Search

- Maintain decoder state, token history in beam
film: 0.4



## Beam Search

- Maintain decoder state, token history in beam
film: 0.4



## Beam Search

- Maintain decoder state, token history in beam
film: 0.4

- Do not max over the two film states! Hidden state vectors are different


## Regex Prediction

Locascio et al. (2016)

## Regex Prediction

- Can use for other translation-like tasks


## Regex Prediction

- Can use for other translation-like tasks
- Predict regex from text


## Regex Prediction

- Can use for other translation-like tasks
- Predict regex from text



## Regex Prediction

- Can use for other translation-like tasks
- Predict regex from text


## Natural Language Encoder



- Problem: requires a lot of data: 10,000 examples needed to get $\sim 60 \%$ accuracy on pretty simple regexes


## SQL Generation

- Convert natural language description into a SQL query against some DB

Question:
How many CFL teams are from York College?
SQL:

```
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"
```


## SQL Generation

## - Convert natural language description into a SQL query against some DB

## Question:

## How many CFL teams are from York College?

SQL:

```
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"
```



Zhong et al. (2017)

## SQL Generation

- Convert natural language description into a SQL query against some DB


## Question:

## How many CFL teams are from York College?

SQL:

```
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"
```

- How to ensure that wellformed SQL is generated?


Zhong et al. (2017)

## SQL Generation

- Convert natural language description into a SQL query against some DB


## Question:

## How many CFL teams are from York College?

SQL:

```
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"
```

- How to ensure that wellformed SQL is generated?
- Three seq2seq models


Zhong et al. (2017)

## SQL Generation

- Convert natural language description into a SQL query against some DB


## Question:

## How many CFL teams are from York College?

SQL:

```
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"
```

- How to ensure that wellformed SQL is generated?
- Three seq2seq models
- How to capture column names + constants?


Zhong et al. (2017)

## SQL Generation

- Convert natural language description into a SQL query against some DB


## Question:

## How many CFL teams are from York College?

SQL:

```
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = "York"
```

- How to ensure that wellformed SQL is generated?
- Three seq2seq models
- How to capture column names + constants?
- Pointer mechanisms


Zhong et al. (2017)

## Attention

## Problems with Seq2seq Models

- Encoder-decoder models like to repeat themselves:


## Problems with Seq2seq Models

- Encoder-decoder models like to repeat themselves:

Un garçon joue dans la neige $\rightarrow$ A boy plays in the snow boy plays boy plays

## Problems with Seq2seq Models

- Encoder-decoder models like to repeat themselves:

Un garçon joue dans la neige $\rightarrow$ A boy plays in the snow boy plays boy plays

- Often a byproduct of training these models poorly


## Problems with Seq2seq Models

- Encoder-decoder models like to repeat themselves:

Un garçon joue dans la neige $\rightarrow$ A boy plays in the snow boy plays boy plays

- Often a byproduct of training these models poorly
- Need some notion of input coverage or what input words we've translated


## Problems with Seq2seq Models

- Bad at long sentences: 1) a fixed-size representation doesn't scale; 2) LSTMs still have a hard time remembering for really long periods of time


RNNsearch: introduces attention mechanism to give "variable-sized" representation

## Encoder-Decoder

- Encode a sequence into a fixed-sized vector

the movie was great


## Encoder-Decoder

- Encode a sequence into a fixed-sized vector

- Now use that vector to produce a series of tokens as output from a separate LSTM decoder


## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated


## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
the movie was great

le film était bon


## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!
the movie was great

le film était bon


## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!



## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!
the movie was great

le film était bon



## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!



## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!



## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!
- Much less burden on the hidden state
the movie was great

le film était bon



## Aligned Inputs

- Suppose we knew the source and target would be word-by-word translated
- Can look at the corresponding input word when translating this could scale!
- Much less burden on the hidden state
the movie was great

le film était bon

- How can we achieve this without hardcoding it?


## Attention



## Attention

- For each decoder state, compute weighted sum of input states



## Attention

- For each decoder state, compute weighted sum of input states



## Attention

- For each decoder state, compute weighted sum of input states



## Attention

- For each decoder state, compute weighted sum of input states



## Attention

- For each decoder state, compute weighted sum of input states


$$
e_{i j}=f\left(\bar{h}_{i}, h_{j}\right)
$$

- Unnormalized scalar weight


## Attention

- For each decoder state, compute weighted sum of input states


$$
\begin{aligned}
& \alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{j^{\prime}} \exp \left(e_{i j^{\prime}}\right)} \\
& e_{i j}=f\left(\bar{h}_{i}, h_{j}\right) \\
& \text { - Unnormalized } \\
& \text { scalar weight }
\end{aligned}
$$

## Attention

- For each decoder state, compute weighted sum of input states


$$
\begin{aligned}
& c_{i}=\sum_{j} \alpha_{i j} h_{j} \\
& \alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{j^{\prime}} \exp \left(e_{i j^{\prime}}\right)} \\
& e_{i j}=f\left(\bar{h}_{i}, h_{j}\right)
\end{aligned}
$$

- Weighted sum of input hidden states (vector)

- Unnormalized scalar weight


## Attention

- For each decoder state, compute weighted sum of


$$
\begin{aligned}
& c_{i}=\sum_{j} \alpha_{i j} h_{j} \\
& \alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{j^{\prime}} \exp \left(e_{i j^{\prime}}\right)} \\
& e_{i j}=f\left(\bar{h}_{i}, h_{j}\right) \\
& \text { - Weighted sum } \\
& \text { of input hidden } \\
& \text { states (vector) } \\
& \text { - Unnormalized } \\
& \text { scalar weight }
\end{aligned}
$$

## Attention

- For each decoder state, compute weighted sum of


$$
\begin{aligned}
& P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}\left(W\left[c_{i} ; \bar{h}_{i}\right]\right) \\
& c_{i}=\sum_{j} \alpha_{i j} h_{j} \\
& \text { - Weighted sum } \\
& \text { of input hidden } \\
& \text { states (vector) } \\
& \alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{j^{\prime}} \exp \left(e_{i j^{\prime}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& e_{i j}=f\left(\bar{h}_{i}, h_{j}\right) \\
& \text { - Unnormalized } \\
& \text { scalar weight }
\end{aligned}
$$

## Attention

- For each decoder state,
- No attn: $P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}\left(W \bar{h}_{i}\right)$ compute weighted sum of


$$
\begin{aligned}
& P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}\left(W\left[c_{i} ; \bar{h}_{i}\right]\right) \\
& c_{i}=\sum_{j} \alpha_{i j} h_{j} \\
& \text { - Weighted sum } \\
& \text { of input hidden } \\
& \text { states (vector) } \\
& \alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{j^{\prime}} \exp \left(e_{i j^{\prime}}\right)} \\
& e_{i j}=f\left(\bar{h}_{i}, h_{j}\right) \\
& \text { - Unnormalized } \\
& \text { scalar weight }
\end{aligned}
$$

## Attention



## Attention



## Attention



## Attention



## Attention



- Note that this all uses outputs of hidden layers


## Attention



## Attention

- Encoder hidden states capture contextual source word identity



## Attention

- Encoder hidden states capture contextual source word identity
- Decoder hidden states are now mostly responsible for selecting what to attend to



## Attention

- Encoder hidden states capture contextual source word identity
- Decoder hidden states are now mostly responsible for selecting what to attend to
- Doesn't take a complex hidden state to walk monotonically through a sentence and spit out word-by-word translations



## Batching Attention



## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size x sentence length x dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension


## Batching Attention

token outputs: batch size $x$ sentence length $x$ dimension

hidden state: batch size x hidden size

$$
\begin{aligned}
e_{i j} & =f\left(\bar{h}_{i}, h_{j}\right) \\
\alpha_{i j} & =\frac{\exp \left(e_{i j}\right)}{\sum_{j^{\prime}} \exp \left(e_{i j^{\prime}}\right)}
\end{aligned}
$$

sentence outputs: batch size $x$ hidden size
attention scores $=$ batch size $x$ sentence length

$$
\mathrm{c}=\mathrm{batch} \text { size } \mathrm{x} \text { hidden size }
$$

$$
c_{i}=\sum_{j} \alpha_{i j} h_{j}
$$

## Results

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

## Results

- Machine translation: BLEU score of 14.0 on English-German -> 16.8 with attention, 19.0 with smarter attention (we'll come back to this later)

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

## Results

- Machine translation: BLEU score of 14.0 on English-German -> 16.8 with attention, 19.0 with smarter attention (we'll come back to this later)
- Summarization/headline generation: bigram recall from 11\% -> 15\%

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

## Results

- Machine translation: BLEU score of 14.0 on English-German -> 16.8 with attention, 19.0 with smarter attention (we'll come back to this later)
- Summarization/headline generation: bigram recall from 11\% -> 15\%
- Semantic parsing: ~30\% accuracy -> 70+\% accuracy on Geoquery

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

## Decoding Strategies

## Greedy Decoding

- Generate next word conditioned on previous word as well as hidden state

- During inference: need to compute the argmax over the word predictions and then feed that to the next RNN state. This is greedy decoding

$$
\begin{aligned}
& P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}(W \bar{h}) \\
& y_{\text {pred }}=\operatorname{argmax}_{y} P\left(y \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)
\end{aligned}
$$

(or attention/copying/etc.)

## Problems with Greedy Decoding

- Only returns one solution, and it may not be optimal
- Can address this with beam search, which usually works better...but even beam search may not find the correct answer! (max probability sequence)

| Model | Beam-10 |  |
| :--- | ---: | ---: |
|  | BLEU | \#Search err. |
| LSTM $^{*}$ | 28.6 | $58.4 \%$ |
| SliceNet $^{*}$ | 28.8 | $46.0 \%$ |
| Transformer-Base | 30.3 | $57.7 \%$ |
| Transformer-Big* | 31.7 | $32.1 \%$ |

## "Problems" with Beam Decoding

- For machine translation, the highest probability sequence is often the empty string! ( $>50 \%$ of the time)

| Search | BLEU | Ratio | \#Search errors | \#Empty |
| :--- | ---: | ---: | ---: | ---: |
| Greedy | 29.3 | 1.02 | $73.6 \%$ | $0.0 \%$ |
| Beam-10 | 30.3 | 1.00 | $57.7 \%$ | $0.0 \%$ |
| Exact | 2.1 | 0.06 | $0.0 \%$ | $51.8 \%$ |

- Beam search results in fortuitous search errors that avoid these bad solutions


## Sampling

- Beam search may give many similar sequences, and these actually may be too close to the optimal. Can sample instead:

$$
\begin{aligned}
& P\left(y_{i} \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)=\operatorname{softmax}(W \bar{h}) \\
& y_{\text {sampled }} \sim P\left(y \mid \mathbf{x}, y_{1}, \ldots, y_{i-1}\right)
\end{aligned}
$$

- Text degeneration: greedy solution can be uninteresting / vacuous for various reasons. Sampling can help.


## Beam Search vs. Sampling

Beam Search Text is Less Surprising


Holtzman et al. (2019)

## Beam Search vs. Sampling

## - These are samples from an unconditioned language model (not seq2seq model)

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

## Beam Search, b=32:

"The study, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), was conducted by researchers from the Universidad Nacional Autónoma de México (UNAM) and the Universidad Nacional Autónoma de México (UNAM/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de México/Universidad Nacional Autónoma de ...'

## Pure Sampling:

They were cattle called Bolivian Cavalleros; they live in a remote desert uninterrupted by town, and they speak huge, beautiful, paradisiacal Bolivian linguistic thing. They say, 'Lunch, marge.' They don't tell what the lunch is," director Professor Chuperas Omwell told Sky News. "They've only been talking to scientists, like we're being interviewed by TV reporters. We don't even stick around to be interviewed by TV reporters. Maybe that's how they figured out that they're cosplaying as the Bolivian Cavalleros."

- Sampling is better but sometimes draws too far from the tail of the distribution


## Decoding Strategies

- Greedy
- Beam search
- Sampling
- Nucleus or top-k sampling:
- Nucleus: take the top p\% (95\%) of the distribution, sample from within that
- Top-k: take the top $k$ most likely words ( $k=5$ ), sample from those


## Generation Tasks



WebText


Beam Search, $b=16$


Pure Sampling

Nucleus, $p=0.95$

## An unprecedented number of mostly young whales have become stranded on the West Australian coast since 2008.

The number of stranded whales has increased by more than 50 per cent in the past year, with the number of stranded whales on the West Australian coast increasing by more than 50 per cent in the past year. The number of whales stranded on the West Australian coast has increased by more than 50 per cent in the past year, with the number of stranded whales on the West Australian coast increasing by more than 50 per cent in the past year.
The Australian Food Safety Authority has warned Australia's beaches may be revitalised this year because healthy seabirds and seals have been on the move. More than 50,000 seabirds, sea mammals and seahorses have been swept into the sea by the Holden CS118 and Adelaide Airport CS300 from 2013. A major white-bat and umidauda migration across Australia is under way in Australia for the first time, with numbers reaching an estimated 50,000.
There has been an unprecedented number of calves caught in the nets of whaling stations that operate in WA. Pilot whales continue to migrate to feeding grounds to feed their calves. They are now vulnerable due to the decline of wild populations; they are restricted to one breeding site each year. Image copyright Yoon Bo Kim But, with sharp decline in wild populations the size of the Petrels are shrinking and dwindling population means there will only be room for a few new fowl.

## Generation Tasks

- There are a range of seq2seq modeling tasks we will address
- For more constrained problems: greedy/beam decoding are usually best
- For less constrained problems: nucleus sampling introduces favorable variation in the output

Less constrained
More constrained

| Unconditioned sampling/ <br> "story generation" | Dialogue | Translation |
| :--- | :---: | :---: | Text-to-code

## Transformers

## Sentence Encoders

- LSTM abstraction: maps each vector in a sentence to a new, context-aware vector

- CNNs do something similar with filters

- Attention can give us a third way to do this


## Self-Attention

- Assume we're using GloVe - what do we want our neural network to do?


The ballerina is very excited that she will dance in the show.

- What words need to be contextualized here?
- Pronouns need to look at antecedents
- Ambiguous words should look at context
- Words should look at syntactic parents/children
- Problem: LSTMs and CNNs don't do this


## Self-Attention

- Want:

The ballerina is very excited that she will dance in the show.

- LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

- To appropriately contextualize embeddings, we need to pass information over long distances dynamically for each word


## Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \text { the movie was great }
\end{aligned}
$$

## Self-Attention

- Each word forms a "query" which then computes attention over each word



## Self-Attention

- Each word forms a "query" which then computes attention over each word


Vaswani et al. (2017)

## Self-Attention

- Each word forms a "query" which then computes attention over each word



## Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\alpha_{i, j}=\operatorname{softmax}\left(x_{i}^{\top} x_{j}\right) \quad \text { scalar }
$$



## Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\begin{aligned}
& \alpha_{i, j}=\operatorname{softmax}\left(x_{i}^{\top} x_{j}\right) \text { scalar } \\
& x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i, j} x_{j} \quad \text { vector }=\text { sum of scalar * vector }
\end{aligned}
$$



## Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\begin{aligned}
& \alpha_{i, j}=\operatorname{softmax}\left(x_{i}^{\top} x_{j}\right) \quad \text { scalar } \\
& x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i, j} x_{j} \quad \text { vector }=\text { sum of scalar * vector }
\end{aligned}
$$



- Multiple "heads" analogous to different convolutional filters. Use parameters $W_{k}$ and $V_{k}$ to get different attention values + transform vectors


## Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\begin{aligned}
& \alpha_{i, j}=\operatorname{softmax}\left(x_{i}^{\top} x_{j}\right) \quad \text { scalar } \\
& x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i, j} x_{j} \quad \text { vector }=\text { sum of scalar * vector }
\end{aligned}
$$



- Multiple "heads" analogous to different convolutional filters. Use parameters $W_{k}$ and $V_{k}$ to get different attention values + transform vectors
$\alpha_{k, i, j}=\operatorname{softmax}\left(x_{i}^{\top} W_{k} x_{j}\right)$


## Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\begin{aligned}
& \alpha_{i, j}=\operatorname{softmax}\left(x_{i}^{\top} x_{j}\right) \text { scalar } \\
& x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i, j} x_{j} \quad \text { vector }=\text { sum of scalar * vector }
\end{aligned}
$$



- Multiple "heads" analogous to different convolutional filters. Use parameters $W_{k}$ and $V_{k}$ to get different attention values + transform vectors
$\alpha_{k, i, j}=\operatorname{softmax}\left(x_{i}^{\top} W_{k} x_{j}\right) \quad x_{k, i}^{\prime}=\sum_{j=1}^{n} \alpha_{k, i, j} V_{k} x_{j}$


## Self-Attention

- Each word forms a "query" which then computes attention over each word

$$
\begin{aligned}
& \alpha_{i, j}=\operatorname{softmax}\left(x_{i}^{\top} x_{j}\right) \text { scalar } \\
& x_{i}^{\prime}=\sum_{j=1}^{n} \alpha_{i, j} x_{j} \quad \text { vector }=\text { sum of scalar * vector }
\end{aligned}
$$



- Multiple "heads" analogous to different convolutional filters. Use parameters $W_{k}$ and $V_{k}$ to get different attention values + transform vectors
$\alpha_{k, i, j}=\operatorname{softmax}\left(x_{i}^{\top} W_{k} x_{j}\right) \quad x_{k, i}^{\prime}=\sum_{j=1}^{n} \alpha_{k, i, j} V_{k} x_{j}$


## What can self-attention do?

The ballerina is very excited that she will dance in the show.

| 0 | 0.5 | 0 | 0 | 0.1 | 0.1 | 0 | 0.1 | 0.2 | 0 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0.4 | 0 |

- Attend nearby + to semantically related terms
- This is a demonstration, we will revisit what these models actually learn when we discuss BERT
- Why multiple heads? Softmaxes end up being peaked, single distribution cannot easily put weight on multiple things


## Transformer Uses

- Supervised: transformer can replace LSTM as encoder, decoder, or both; will revisit this when we discuss MT
- Unsupervised: transformers work better than LSTM for unsupervised pre-training of embeddings: predict word given context words
- BERT (Bidirectional Encoder Representations from Transformers): pretraining transformer language models similar to ELMo
- Stronger than similar methods, SOTA on ~11 tasks (including NER - 92.8 F1)


Takeaways

## Takeaways

- Attention is very helpful for seq2seq models


## Takeaways

- Attention is very helpful for seq2seq models
- Used for tasks including summarization and sentence ordering


## Takeaways

- Attention is very helpful for seq2seq models
- Used for tasks including summarization and sentence ordering
- Explicitly copying input can be beneficial as well


## Takeaways

- Attention is very helpful for seq2seq models
- Used for tasks including summarization and sentence ordering
- Explicitly copying input can be beneficial as well
- Transformers are strong models we'll come back to later


[^0]:    12:27 AM - 11 Jul 2017

