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Phrase-Based MT
‣ Key idea: transla-on works be5er the bigger chunks you use

‣ Remember phrases from training data, translate piece-by-piece and 
s-tch those pieces together to translate

‣ How to iden-fy phrases? Word alignment over source-target bitext

‣ How to s-tch together? Language model over target language

‣ Decoder takes phrases and a language model and searches over possible 
transla-ons

‣ NOT like standard discrimina-ve models (take a bunch of transla-on 
pairs, learn a ton of parameters in an end-to-end way)



Phrase-Based MT

Unlabeled English data 

cat ||| chat ||| 0.9  
the cat ||| le chat ||| 0.8 
dog ||| chien ||| 0.8  
house ||| maison ||| 0.6  
my house ||| ma maison ||| 0.9 
language ||| langue ||| 0.9  
… 
 
 

Language 
model P(e) 

Phrase table P(f|e) P (e|f) / P (f |e)P (e)

Noisy channel model: 
combine scores from 
translation model + 
language model to 
translate foreign to 

English 

“Translate faithfully but make fluent English” 

}
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Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a 
reference, mul-plied by brevity penalty

‣ Typically n = 4, wi = 1/4

‣ r = length of reference 
c = length of predic-on

‣ Does this capture fluency and adequacy?



BLEU Score
‣ Be5er methods with 

human-in-the-loop

‣ HTER: human-assisted 
transla-on error rate

‣ If you’re building real MT 
systems, you do user studies. 
In academia, you mostly use 
BLEU
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N-gram Language Models

‣ Simple genera-ve model: distribu-on of next word is a mul-nomial 
distribu-on condi-oned on previous n-1 words

Maximum likelihood es-mate of this 
probability from a corpus

I visited San _____ put a distribu-on over the next word

P (x|visited San) =
count(visited San, x)

count(visited San)

‣ Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B 
n-grams (all 5-grams occurring >40 -mes on the Web)
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Neural Language Models

Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

I visited New _____

FFNN
P (wi|wi�n, . . . , wi�1)

‣ Variable length context with RNNs:
I visited New

‣ Works like a decoder with no encoder

P (wi|w1, . . . , wi�1)

‣ Slow to train over lots of data!
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Evalua-on

‣ Perplexity: 2�
1
n

Pn
i=1 log2 p(xi|x1,...,xi�1)

‣ (One sentence) nega-ve log likelihood: 
nX

i=1

log p(xi|x1, . . . , xi�1)

‣ NLL (base 2) averaged over the sentence, exponen-ated

‣ NLL = -2 -> on average, correct thing has prob 1/4 -> PPL = 4. PPL is sort 
of like branching factor
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Results

‣ Kneser-Ney 5-gram model with cache: PPL = 125.7

Merity et al. (2017), Melis et al. (2017)

‣ LSTM: PPL ~ 60-80 (depending on how much you op-mize it)

‣ Evaluate on Penn Treebank: small dataset (1M words) compared to 
what’s used in MT, but common benchmark 
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Encoder-Decoder
‣ Encode a sequence into a fixed-sized vector

the  movie  was   great

‣ Now use that vector to produce a series of tokens as output from a 
separate LSTM decoder

le      film   était   bon [STOP]

Sutskever et al. (2014)



Encoder-Decoder

‣ Is this true? Sort of…we’ll come back to 
this later
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Model
‣ Generate next word condi-oned on previous word as well as hidden state

the  movie  was   great <s>

h̄

‣ W size is |vocab| x |hidden state|, soqmax over en-re vocabulary

Decoder has separate 
parameters from encoder, so 
this can learn to be a language 
model (produce a plausible next 
word given current one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)
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Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the  movie  was   great

‣ During inference: need to compute the argmax over the word predic-ons 
and then feed that to the next RNN state 

le     

<s>

‣ Need to actually evaluate computa-on graph up to this point to form 
input for the next state

‣ Decoder is advanced one state at a -me un-l [STOP] is reached

film était bon [STOP]
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Implemen-ng seq2seq Models

the  movie  was   great

‣ Encoder: consumes sequence of tokens, produces a vector. Analogous to 
encoders for classifica-on/tagging tasks

le     

<s>

‣ Decoder: separate module, single cell. Takes two inputs: hidden state 
(vector h or tuple (h, c)) and previous token. Outputs token + new state

Encoder

…

film     

le

Decoder Decoder



Training

‣ Objec-ve: maximize

the  movie  was   great <s> le      film   était   bon

le

‣ One loss term for each target-sentence word, feed the correct word 
regardless of model’s predic-on

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)
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Implementa-on Details
‣ Sentence lengths vary for both encoder and decoder:

‣ Typically pad everything to the right length

‣ Encoder: Can be a CNN/LSTM/Transformer…

‣ Decoder: also flexible in terms of architecture (more later). Execute 
one step of computa-on at a -me, so computa-on graph is 
formulated as taking one input + hidden state

‣ Beam search: can help with lookahead. Finds the (approximate) highest 
scoring sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)
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Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4     

<s>

la

le

les

le: 0.3
les: 0.1     

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8     

le

…

la 
film…

log(0.4)+log(0.4)

the  movie  was   great



Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4     

<s>

la

le

les

le: 0.3
les: 0.1     

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8     

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

the  movie  was   great



Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4     

<s>

la

le

les

le: 0.3
les: 0.1     

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8     

le

… le 
film

la 
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Do not max over the two film states! Hidden state vectors are different

the  movie  was   great
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Regex Predic-on
‣ Can use for other transla-on-like tasks

‣ Predict regex from text

‣ Problem: requires a lot of data: 10,000 examples needed to get ~60% 
accuracy on pre5y simple regexes

Locascio et al. (2016)
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SQL Genera-on
‣ Convert natural language 

descrip-on into a SQL 
query against some DB

‣ How to ensure that well-
formed SQL is generated?

Zhong et al. (2017)

‣ Three seq2seq models

‣ How to capture column 
names + constants?
‣ Pointer mechanisms
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Problems with Seq2seq Models

‣ Need some no-on of input coverage or what input words we’ve 
translated

‣ Encoder-decoder models like to repeat themselves:

A boy plays in the snow boy plays boy playsUn garçon joue dans la neige

‣ Oqen a byproduct of training these models poorly



Problems with Seq2seq Models

‣ Bad at long sentences: 1) a fixed-size representa-on doesn’t scale; 2) 
LSTMs s-ll have a hard -me remembering for really long periods of -me

RNNsearch: introduces 
a5en-on mechanism to give 
“variable-sized” 
representa-on

Bahdanau et al. (2014)
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‣ Encode a sequence into a fixed-sized vector

the  movie  was   great

‣ Now use that vector to produce a series of tokens as output from a 
separate LSTM decoder

le      film   était   bon [STOP]

Sutskever et al. (2014)
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‣ Much less burden on the hidden 
state

‣ Suppose we knew the source and 
target would be word-by-word 
translated

‣ Can look at the corresponding 
input word when transla-ng — 
this could scale!

le      film   était    bon   [STOP]

‣ How can we achieve this without hardcoding it?
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compute a distribu-on over 
source inputs based on 
current decoder statethe  movie  was   great <s> le

the
movie was

gre
atthe

movie was
gre

at

… …

‣ Use that in output layer
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P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])
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c1
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‣ Decoder hidden states are now 
mostly responsible for selec-ng 
what to a5end to

‣ Doesn’t take a complex hidden 
state to walk monotonically 
through a sentence and spit 
out word-by-word transla-ons

‣ Encoder hidden states capture 
contextual source word iden-ty
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Batching A5en-on

Luong et al. (2015)

the  movie  was   great

token outputs: batch size x sentence length x dimension

sentence outputs: 
batch size x hidden size

<s>

hidden state: batch size 
x hidden size

eij = f(h̄i, hj)

↵ij =
exp(eij)P
j0 exp(eij0)

a5en-on scores = batch size x sentence length

c = batch size x hidden size ci =
X

j

↵ijhj

‣ Make sure tensors are the right size!
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Results
‣ Machine transla-on: BLEU score of 14.0 on English-German -> 16.8 with 

a5en-on, 19.0 with smarter a5en-on (we’ll come back to this later)

Luong et al. (2015) 
Chopra et al. (2016) 
Jia and Liang (2016)

‣ Summariza-on/headline genera-on: bigram recall from 11% -> 15%

‣ Seman-c parsing: ~30% accuracy -> 70+% accuracy on Geoquery
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Decoding	Strategies
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Greedy	Decoding
‣ Generate	next	word	condi?oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predic?ons	
and	then	feed	that	to	the	next	RNN	state.	This	is	greedy	decoding

le					

<s>

film était bon [STOP]

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ypred = argmaxyP (y|x, y1, . . . , yi�1)
<latexit sha1_base64="BKzIm/yKraU6a64Z2EgswwSRmsQ="></latexit>

(or	a8en?on/copying/etc.)
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Problems	with	Greedy	Decoding

‣ Only	returns	one	solu?on,	and	it	may	not	be	op?mal

‣ Can	address	this	with	beam	search,	which	usually	works	be8er…but	even	
beam	search	may	not	find	the	correct	answer!	(max	probability	sequence)

Stahlberg	and	Byrne	(2019)
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“Problems”	with	Beam	Decoding
‣ For	machine	transla?on,	the	highest	probability	sequence	is	oWen	the	
empty	string!	(>50%	of	the	?me)

Stahlberg	and	Byrne	(2019)

‣ Beam	search	results	in	fortuitous	search	errors	that	avoid	these	bad	
solu?ons
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Sampling
‣ Beam	search	may	give	many	similar	sequences,	and	these	actually	may	be	
too	close	to	the	op?mal.	Can	sample	instead:

‣ Text	degeneraIon:	greedy	solu?on	can	be	uninteres?ng	/	vacuous	for	
various	reasons.	Sampling	can	help.

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ysampled ⇠ P (y|x, y1, . . . , yi�1)
<latexit sha1_base64="PRMh0d0POdeSz1TX/ixzw2HuV+c="></latexit>
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Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)
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Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)

‣ These	are	samples	from	an	uncondi?oned	language	model	(not	seq2seq	
model)

‣ Sampling	is	be8er	but	some?mes	draws	too	far	from	the	tail	of	the	
distribu?on
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Decoding	Strategies

‣ Greedy
‣ Beam	search

‣ Sampling

‣ Nucleus	or	top-k	sampling:

‣ Nucleus:	take	the	top	p%	(95%)	of	the	distribu?on,	sample	from	
within	that

‣ Top-k:	take	the	top	k	most	likely	words	(k=5),	sample	from	those
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Genera?on	Tasks

Uncondi?oned	sampling/	
“story	genera?on”

Dialogue Transla?on

Summariza?on

Text-to-code

Less	constrained More	constrained

Data-to-text

‣ There	are	a	range	of	seq2seq	modeling	tasks	we	will	address

‣ For	more	constrained	problems:	greedy/beam	decoding	are	usually	best

‣ For	less	constrained	problems:	nucleus	sampling	introduces	favorable	
varia?on	in	the	output
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Sentence	Encoders

the		movie		was			great

‣ LSTM	abstrac?on:	maps	each	vector	in	
a	sentence	to	a	new,	context-aware	
vector

‣ CNNs	do	something	similar	with	filters

‣ A8en?on	can	give	us	a	third	way	to	do	this

Vaswani	et	al.	(2017)

the		movie		was			great
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Self-A8en?on

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ Pronouns	need	to	look	at	antecedents
‣ Ambiguous	words	should	look	at	context

‣ Assume	we’re	using	GloVe	—	what	do	we	want	our	neural	network	to	do?

‣What	words	need	to	be	contextualized	here?

‣Words	should	look	at	syntac?c	parents/children

‣ Problem:	LSTMs	and	CNNs	don’t	do	this
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Self-A8en?on

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣Want:

‣ LSTMs/CNNs:	tend	to	look	at	local	context

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ To	appropriately	contextualize	embeddings,	we	need	to	pass	informa?on	
over	long	distances	dynamically	for	each	word
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What	can	self-a8en?on	do?

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣Why	mul?ple	heads?	SoWmaxes	end	up	being	peaked,	single	distribu?on	
cannot	easily	put	weight	on	mul?ple	things

0.5 0.20.10.10.10 0 0 0 0 0 0

‣ This	is	a	demonstra?on,	we	will	revisit	what	these	models	actually	learn	
when	we	discuss	BERT

‣ A8end	nearby	+	to	seman?cally	related	terms

0.5 0 0.40 0.1 0 0 0 0 0 0 0
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Transformer	Uses

‣ Supervised:	transformer	can	replace	LSTM	as	encoder,	decoder,	or	both;	
will	revisit	this	when	we	discuss	MT

‣ Unsupervised:	transformers	work	be8er	than	LSTM	for	unsupervised	
pre-training	of	embeddings:	predict	word	given	context	words

‣ BERT	(Bidirec?onal	Encoder	
Representa?ons	from	Transformers):	
pretraining	transformer	language	models	
similar	to	ELMo

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)
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Takeaways
‣ A5en-on is very helpful for seq2seq models

‣ Used for tasks including summariza-on and sentence ordering

‣ Explicitly copying input can be beneficial as well

‣ Transformers are strong models we’ll come back to later


