
Machine Transla-on, Encoder-
Decoder Models and A5en-on

Alan Ri5er
(many slides from Greg Durrett)

This Lecture
‣ Machine Transla-on Basics

‣ Seq2Seq / Encoder-Decoder Models

‣ A5en-on

‣ Decoding Strategies

‣ Transformers

MT Basics

MT Basics

People’s Daily, August 30, 2017

MT Basics

People’s Daily, August 30, 2017

MT Basics

Trump Pope family watch a hundred years a year in the White House balcony

People’s Daily, August 30, 2017

MT Basics

Trump Pope family watch a hundred years a year in the White House balcony

People’s Daily, August 30, 2017

Phrase-Based MT
‣ Key idea: transla-on works be5er the bigger chunks you use

Phrase-Based MT
‣ Key idea: transla-on works be5er the bigger chunks you use

‣ Remember phrases from training data, translate piece-by-piece and
s-tch those pieces together to translate

Phrase-Based MT
‣ Key idea: transla-on works be5er the bigger chunks you use

‣ Remember phrases from training data, translate piece-by-piece and
s-tch those pieces together to translate

‣ How to iden-fy phrases? Word alignment over source-target bitext

Phrase-Based MT
‣ Key idea: transla-on works be5er the bigger chunks you use

‣ Remember phrases from training data, translate piece-by-piece and
s-tch those pieces together to translate

‣ How to iden-fy phrases? Word alignment over source-target bitext

‣ How to s-tch together? Language model over target language

Phrase-Based MT
‣ Key idea: transla-on works be5er the bigger chunks you use

‣ Remember phrases from training data, translate piece-by-piece and
s-tch those pieces together to translate

‣ How to iden-fy phrases? Word alignment over source-target bitext

‣ How to s-tch together? Language model over target language

‣ Decoder takes phrases and a language model and searches over possible
transla-ons

Phrase-Based MT
‣ Key idea: transla-on works be5er the bigger chunks you use

‣ Remember phrases from training data, translate piece-by-piece and
s-tch those pieces together to translate

‣ How to iden-fy phrases? Word alignment over source-target bitext

‣ How to s-tch together? Language model over target language

‣ Decoder takes phrases and a language model and searches over possible
transla-ons

‣ NOT like standard discrimina-ve models (take a bunch of transla-on
pairs, learn a ton of parameters in an end-to-end way)

Phrase-Based MT

Unlabeled English data

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
…

Language
model P(e)

Phrase table P(f|e) P (e|f) / P (f |e)P (e)

Noisy channel model:
combine scores from
translation model +
language model to
translate foreign to

English

“Translate faithfully but make fluent English”

}

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

‣ Typically n = 4, wi = 1/4

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

‣ Typically n = 4, wi = 1/4

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

‣ Typically n = 4, wi = 1/4

‣ r = length of reference
c = length of predic-on

Evalua-ng MT
‣ Fluency: does it sound good in the target language?

‣ Fidelity/adequacy: does it capture the meaning of the original?

‣ BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, mul-plied by brevity penalty

‣ Typically n = 4, wi = 1/4

‣ r = length of reference
c = length of predic-on

‣ Does this capture fluency and adequacy?

BLEU Score
‣ Be5er methods with

human-in-the-loop

‣ HTER: human-assisted
transla-on error rate

‣ If you’re building real MT
systems, you do user studies.
In academia, you mostly use
BLEU

Language Modeling

Phrase-Based MT

Unlabeled English data

cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
…

Language
model P(e)

Phrase table P(f|e) P (e|f) / P (f |e)P (e)

Noisy channel model:
combine scores from
translation model +
language model to
translate foreign to

English

“Translate faithfully but make fluent English”

}

N-gram Language Models
I visited San _____ put a distribu-on over the next word

N-gram Language Models

‣ Simple genera-ve model: distribu-on of next word is a mul-nomial
distribu-on condi-oned on previous n-1 words

I visited San _____ put a distribu-on over the next word

N-gram Language Models

‣ Simple genera-ve model: distribu-on of next word is a mul-nomial
distribu-on condi-oned on previous n-1 words

I visited San _____ put a distribu-on over the next word

P (x|visited San) =
count(visited San, x)

count(visited San)

N-gram Language Models

‣ Simple genera-ve model: distribu-on of next word is a mul-nomial
distribu-on condi-oned on previous n-1 words

Maximum likelihood es-mate of this
probability from a corpus

I visited San _____ put a distribu-on over the next word

P (x|visited San) =
count(visited San, x)

count(visited San)

N-gram Language Models

‣ Simple genera-ve model: distribu-on of next word is a mul-nomial
distribu-on condi-oned on previous n-1 words

Maximum likelihood es-mate of this
probability from a corpus

I visited San _____ put a distribu-on over the next word

P (x|visited San) =
count(visited San, x)

count(visited San)

‣ Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B
n-grams (all 5-grams occurring >40 -mes on the Web)

Neural Language Models

Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

Neural Language Models

Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

I visited New _____

FFNN
P (wi|wi�n, . . . , wi�1)

Neural Language Models

Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

I visited New _____

FFNN
P (wi|wi�n, . . . , wi�1)

‣ Variable length context with RNNs:
I visited New

P (wi|w1, . . . , wi�1)

Neural Language Models

Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

I visited New _____

FFNN
P (wi|wi�n, . . . , wi�1)

‣ Variable length context with RNNs:
I visited New

‣ Works like a decoder with no encoder

P (wi|w1, . . . , wi�1)

Neural Language Models

Mnih and Hinton (2003)

‣ Early work: feedforward neural networks looking at context

I visited New _____

FFNN
P (wi|wi�n, . . . , wi�1)

‣ Variable length context with RNNs:
I visited New

‣ Works like a decoder with no encoder

P (wi|w1, . . . , wi�1)

‣ Slow to train over lots of data!

Evalua-on

Evalua-on

‣ (One sentence) nega-ve log likelihood:
nX

i=1

log p(xi|x1, . . . , xi�1)

Evalua-on

‣ Perplexity: 2�
1
n

Pn
i=1 log2 p(xi|x1,...,xi�1)

‣ (One sentence) nega-ve log likelihood:
nX

i=1

log p(xi|x1, . . . , xi�1)

Evalua-on

‣ Perplexity: 2�
1
n

Pn
i=1 log2 p(xi|x1,...,xi�1)

‣ (One sentence) nega-ve log likelihood:
nX

i=1

log p(xi|x1, . . . , xi�1)

‣ NLL (base 2) averaged over the sentence, exponen-ated

Evalua-on

‣ Perplexity: 2�
1
n

Pn
i=1 log2 p(xi|x1,...,xi�1)

‣ (One sentence) nega-ve log likelihood:
nX

i=1

log p(xi|x1, . . . , xi�1)

‣ NLL (base 2) averaged over the sentence, exponen-ated

‣ NLL = -2 -> on average, correct thing has prob 1/4 -> PPL = 4. PPL is sort
of like branching factor

Results

Merity et al. (2017), Melis et al. (2017)

Results

Merity et al. (2017), Melis et al. (2017)

‣ Evaluate on Penn Treebank: small dataset (1M words) compared to
what’s used in MT, but common benchmark

Results

‣ Kneser-Ney 5-gram model with cache: PPL = 125.7

Merity et al. (2017), Melis et al. (2017)

‣ Evaluate on Penn Treebank: small dataset (1M words) compared to
what’s used in MT, but common benchmark

Results

‣ Kneser-Ney 5-gram model with cache: PPL = 125.7

Merity et al. (2017), Melis et al. (2017)

‣ LSTM: PPL ~ 60-80 (depending on how much you op-mize it)

‣ Evaluate on Penn Treebank: small dataset (1M words) compared to
what’s used in MT, but common benchmark

Encoder-Decoder Models

Encoder-Decoder
‣ Encode a sequence into a fixed-sized vector

the movie was great

Sutskever et al. (2014)

Encoder-Decoder
‣ Encode a sequence into a fixed-sized vector

the movie was great

‣ Now use that vector to produce a series of tokens as output from a
separate LSTM decoder

le film était bon [STOP]

Sutskever et al. (2014)

Encoder-Decoder

‣ Is this true? Sort of…we’ll come back to
this later

Model
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

Model
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great <s>

Model
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great <s>

h̄

‣ W size is |vocab| x |hidden state|, soqmax over en-re vocabulary

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

Model
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great <s>

h̄

‣ W size is |vocab| x |hidden state|, soqmax over en-re vocabulary

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

Model
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great <s>

h̄

‣ W size is |vocab| x |hidden state|, soqmax over en-re vocabulary

Decoder has separate
parameters from encoder, so
this can learn to be a language
model (produce a plausible next
word given current one)

P (y|x) =
nY

i=1

P (yi|x, y1, . . . , yi�1)

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great <s>

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

le

<s>

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

‣ During inference: need to compute the argmax over the word predic-ons
and then feed that to the next RNN state

le

<s>

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

‣ During inference: need to compute the argmax over the word predic-ons
and then feed that to the next RNN state

le

<s>

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

‣ During inference: need to compute the argmax over the word predic-ons
and then feed that to the next RNN state

le

<s>

‣ Need to actually evaluate computa-on graph up to this point to form
input for the next state

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

‣ During inference: need to compute the argmax over the word predic-ons
and then feed that to the next RNN state

le

<s>

‣ Need to actually evaluate computa-on graph up to this point to form
input for the next state

film était

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

‣ During inference: need to compute the argmax over the word predic-ons
and then feed that to the next RNN state

le

<s>

‣ Need to actually evaluate computa-on graph up to this point to form
input for the next state

film était bon [STOP]

Inference
‣ Generate next word condi-oned on previous word as well as hidden state

the movie was great

‣ During inference: need to compute the argmax over the word predic-ons
and then feed that to the next RNN state

le

<s>

‣ Need to actually evaluate computa-on graph up to this point to form
input for the next state

‣ Decoder is advanced one state at a -me un-l [STOP] is reached

film était bon [STOP]

Implemen-ng seq2seq Models

the movie was great

le

<s>

Encoder

…

film

le

Decoder Decoder

Implemen-ng seq2seq Models

the movie was great

‣ Encoder: consumes sequence of tokens, produces a vector. Analogous to
encoders for classifica-on/tagging tasks

le

<s>

Encoder

…

film

le

Decoder Decoder

Implemen-ng seq2seq Models

the movie was great

‣ Encoder: consumes sequence of tokens, produces a vector. Analogous to
encoders for classifica-on/tagging tasks

le

<s>

‣ Decoder: separate module, single cell. Takes two inputs: hidden state
(vector h or tuple (h, c)) and previous token. Outputs token + new state

Encoder

…

film

le

Decoder Decoder

Training

‣ Objec-ve: maximize

the movie was great <s> le film était bon

le

‣ One loss term for each target-sentence word, feed the correct word
regardless of model’s predic-on

[STOP]était

X

(x,y)

nX

i=1

logP (y⇤i |x, y⇤1 , . . . , y⇤i�1)

Implementa-on Details

Implementa-on Details
‣ Sentence lengths vary for both encoder and decoder:

Implementa-on Details
‣ Sentence lengths vary for both encoder and decoder:

‣ Typically pad everything to the right length

Implementa-on Details
‣ Sentence lengths vary for both encoder and decoder:

‣ Typically pad everything to the right length

‣ Encoder: Can be a CNN/LSTM/Transformer…

Implementa-on Details
‣ Sentence lengths vary for both encoder and decoder:

‣ Typically pad everything to the right length

‣ Encoder: Can be a CNN/LSTM/Transformer…

‣ Decoder: also flexible in terms of architecture (more later). Execute
one step of computa-on at a -me, so computa-on graph is
formulated as taking one input + hidden state

Implementa-on Details
‣ Sentence lengths vary for both encoder and decoder:

‣ Typically pad everything to the right length

‣ Encoder: Can be a CNN/LSTM/Transformer…

‣ Decoder: also flexible in terms of architecture (more later). Execute
one step of computa-on at a -me, so computa-on graph is
formulated as taking one input + hidden state

‣ Beam search: can help with lookahead. Finds the (approximate) highest
scoring sequence:

argmaxy

nY

i=1

P (yi|x, y1, . . . , yi�1)

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

le: 0.3
les: 0.1

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

le: 0.3
les: 0.1

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

…

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

…

la
film

log(0.4)+log(0.4)

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8

le

…

la
film…

log(0.4)+log(0.4)

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8

le

… le
film

la
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

the movie was great

Beam Search
‣ Maintain decoder state, token history in beam

la: 0.4

<s>

la

le

les

le: 0.3
les: 0.1

log(0.4)
log(0.3)

log(0.1)

film: 0.4

la

…

film: 0.8

le

… le
film

la
film

log(0.3)+log(0.8)

…

log(0.4)+log(0.4)

‣ Do not max over the two film states! Hidden state vectors are different

the movie was great

Regex Predic-on

Locascio et al. (2016)

Regex Predic-on
‣ Can use for other transla-on-like tasks

Locascio et al. (2016)

Regex Predic-on
‣ Can use for other transla-on-like tasks

‣ Predict regex from text

Locascio et al. (2016)

Regex Predic-on
‣ Can use for other transla-on-like tasks

‣ Predict regex from text

Locascio et al. (2016)

Regex Predic-on
‣ Can use for other transla-on-like tasks

‣ Predict regex from text

‣ Problem: requires a lot of data: 10,000 examples needed to get ~60%
accuracy on pre5y simple regexes

Locascio et al. (2016)

SQL Genera-on
‣ Convert natural language

descrip-on into a SQL
query against some DB

Zhong et al. (2017)

SQL Genera-on
‣ Convert natural language

descrip-on into a SQL
query against some DB

Zhong et al. (2017)

SQL Genera-on
‣ Convert natural language

descrip-on into a SQL
query against some DB

‣ How to ensure that well-
formed SQL is generated?

Zhong et al. (2017)

SQL Genera-on
‣ Convert natural language

descrip-on into a SQL
query against some DB

‣ How to ensure that well-
formed SQL is generated?

Zhong et al. (2017)

‣ Three seq2seq models

SQL Genera-on
‣ Convert natural language

descrip-on into a SQL
query against some DB

‣ How to ensure that well-
formed SQL is generated?

Zhong et al. (2017)

‣ Three seq2seq models

‣ How to capture column
names + constants?

SQL Genera-on
‣ Convert natural language

descrip-on into a SQL
query against some DB

‣ How to ensure that well-
formed SQL is generated?

Zhong et al. (2017)

‣ Three seq2seq models

‣ How to capture column
names + constants?
‣ Pointer mechanisms

A5en-on

Problems with Seq2seq Models

‣ Encoder-decoder models like to repeat themselves:

Problems with Seq2seq Models

‣ Encoder-decoder models like to repeat themselves:

A boy plays in the snow boy plays boy playsUn garçon joue dans la neige

Problems with Seq2seq Models

‣ Encoder-decoder models like to repeat themselves:

A boy plays in the snow boy plays boy playsUn garçon joue dans la neige

‣ Oqen a byproduct of training these models poorly

Problems with Seq2seq Models

‣ Need some no-on of input coverage or what input words we’ve
translated

‣ Encoder-decoder models like to repeat themselves:

A boy plays in the snow boy plays boy playsUn garçon joue dans la neige

‣ Oqen a byproduct of training these models poorly

Problems with Seq2seq Models

‣ Bad at long sentences: 1) a fixed-size representa-on doesn’t scale; 2)
LSTMs s-ll have a hard -me remembering for really long periods of -me

RNNsearch: introduces
a5en-on mechanism to give
“variable-sized”
representa-on

Bahdanau et al. (2014)

Encoder-Decoder
‣ Encode a sequence into a fixed-sized vector

the movie was great

Sutskever et al. (2014)

Encoder-Decoder
‣ Encode a sequence into a fixed-sized vector

the movie was great

‣ Now use that vector to produce a series of tokens as output from a
separate LSTM decoder

le film était bon [STOP]

Sutskever et al. (2014)

Aligned Inputs
‣ Suppose we knew the source and

target would be word-by-word
translated

Aligned Inputs
the movie was great

le film était bon

‣ Suppose we knew the source and
target would be word-by-word
translated

Aligned Inputs
the movie was great

le film était bon

‣ Suppose we knew the source and
target would be word-by-word
translated

‣ Can look at the corresponding
input word when transla-ng —
this could scale!

Aligned Inputs
the movie was great

le film était bon

‣ Suppose we knew the source and
target would be word-by-word
translated

‣ Can look at the corresponding
input word when transla-ng —
this could scale!

Aligned Inputs

the movie was great

the movie was great

le film était bon

‣ Suppose we knew the source and
target would be word-by-word
translated

‣ Can look at the corresponding
input word when transla-ng —
this could scale!

Aligned Inputs

the movie was great

the movie was great

le film était bon

‣ Suppose we knew the source and
target would be word-by-word
translated

‣ Can look at the corresponding
input word when transla-ng —
this could scale!

le film était bon [STOP]

Aligned Inputs

<s> le film était bon

the movie was great

the movie was great

le film était bon

‣ Suppose we knew the source and
target would be word-by-word
translated

‣ Can look at the corresponding
input word when transla-ng —
this could scale!

le film était bon [STOP]

Aligned Inputs

<s> le film était bon

the movie was great

the movie was great

le film était bon

‣ Much less burden on the hidden
state

‣ Suppose we knew the source and
target would be word-by-word
translated

‣ Can look at the corresponding
input word when transla-ng —
this could scale!

le film était bon [STOP]

Aligned Inputs

<s> le film était bon

the movie was great

the movie was great

le film était bon

‣ Much less burden on the hidden
state

‣ Suppose we knew the source and
target would be word-by-word
translated

‣ Can look at the corresponding
input word when transla-ng —
this could scale!

le film était bon [STOP]

‣ How can we achieve this without hardcoding it?

A5en-on

the movie was great <s> le

A5en-on

the movie was great <s> le

the
movie was

gre
at

A5en-on

the movie was great <s> le

the
movie was

gre
at

…

A5en-on

the movie was great <s> le

the
movie was

gre
atthe

movie was
gre

at

…

A5en-on

the movie was great <s> le

the
movie was

gre
atthe

movie was
gre

at

… …

A5en-on

‣ At each decoder state,
compute a distribu-on over
source inputs based on
current decoder statethe movie was great <s> le

the
movie was

gre
atthe

movie was
gre

at

… …

A5en-on

‣ At each decoder state,
compute a distribu-on over
source inputs based on
current decoder statethe movie was great <s> le

the
movie was

gre
atthe

movie was
gre

at

… …

‣ Use that in output layer

A5en-on

the movie was great

h1 h2 h3 h4

<s>

‣ For each decoder state,
compute weighted sum of
input states

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

eij = f(h̄i, hj) ‣ Unnormalized
scalar weight

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

eij = f(h̄i, hj) ‣ Unnormalized
scalar weight

↵ij =
exp(eij)P
j0 exp(eij0) the

movie was
gre

at

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Unnormalized
scalar weight

‣ Weighted sum
of input hidden
states (vector)

↵ij =
exp(eij)P
j0 exp(eij0) the

movie was
gre

at

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Unnormalized
scalar weight

‣ Weighted sum
of input hidden
states (vector)

le

↵ij =
exp(eij)P
j0 exp(eij0) the

movie was
gre

at

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Unnormalized
scalar weight

‣ Weighted sum
of input hidden
states (vector)

le

↵ij =
exp(eij)P
j0 exp(eij0)

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

the
movie was
gre

at

A5en-on

the movie was great

h1 h2 h3 h4

<s>

h̄1

‣ For each decoder state,
compute weighted sum of
input states

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Unnormalized
scalar weight

‣ Weighted sum
of input hidden
states (vector)

le

↵ij =
exp(eij)P
j0 exp(eij0)

P (yi|x, y1, . . . , yi�1) = softmax(W [ci; h̄i])

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄i)‣ No a5n:

the
movie was
gre

at

A5en-on

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

Luong et al. (2015)

le

↵ij =
exp(eij)P
j0 exp(eij0)

A5en-on

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

f(h̄i, hj) = tanh(W [h̄i, hj])

‣ Bahdanau+ (2014): addi-ve

Luong et al. (2015)

le

↵ij =
exp(eij)P
j0 exp(eij0)

A5en-on

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

f(h̄i, hj) = tanh(W [h̄i, hj])

f(h̄i, hj) = h̄i · hj

‣ Bahdanau+ (2014): addi-ve

‣ Luong+ (2015): dot product

Luong et al. (2015)

le

↵ij =
exp(eij)P
j0 exp(eij0)

A5en-on

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

f(h̄i, hj) = tanh(W [h̄i, hj])

f(h̄i, hj) = h̄i · hj

f(h̄i, hj) = h̄>
i Whj

‣ Bahdanau+ (2014): addi-ve

‣ Luong+ (2015): dot product

Luong et al. (2015)

‣ Luong+ (2015): bilinear

le

↵ij =
exp(eij)P
j0 exp(eij0)

A5en-on

<s>

h̄1

eij = f(h̄i, hj)

ci =
X

j

↵ijhj

c1

‣ Note that this all uses outputs of hidden layers

f(h̄i, hj) = tanh(W [h̄i, hj])

f(h̄i, hj) = h̄i · hj

f(h̄i, hj) = h̄>
i Whj

‣ Bahdanau+ (2014): addi-ve

‣ Luong+ (2015): dot product

Luong et al. (2015)

‣ Luong+ (2015): bilinear

le

↵ij =
exp(eij)P
j0 exp(eij0)

A5en-on

A5en-on

‣ Encoder hidden states capture
contextual source word iden-ty

A5en-on

‣ Decoder hidden states are now
mostly responsible for selec-ng
what to a5end to

‣ Encoder hidden states capture
contextual source word iden-ty

A5en-on

‣ Decoder hidden states are now
mostly responsible for selec-ng
what to a5end to

‣ Doesn’t take a complex hidden
state to walk monotonically
through a sentence and spit
out word-by-word transla-ons

‣ Encoder hidden states capture
contextual source word iden-ty

Batching A5en-on

Luong et al. (2015)

the movie was great

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

hidden state: batch size
x hidden size

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

hidden state: batch size
x hidden size

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

hidden state: batch size
x hidden size

eij = f(h̄i, hj)

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

hidden state: batch size
x hidden size

eij = f(h̄i, hj)

↵ij =
exp(eij)P
j0 exp(eij0)

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

hidden state: batch size
x hidden size

eij = f(h̄i, hj)

↵ij =
exp(eij)P
j0 exp(eij0)

a5en-on scores = batch size x sentence length

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

hidden state: batch size
x hidden size

eij = f(h̄i, hj)

↵ij =
exp(eij)P
j0 exp(eij0)

a5en-on scores = batch size x sentence length

c = batch size x hidden size ci =
X

j

↵ijhj

the movie was great

Batching A5en-on

Luong et al. (2015)

the movie was great

token outputs: batch size x sentence length x dimension

sentence outputs:
batch size x hidden size

<s>

hidden state: batch size
x hidden size

eij = f(h̄i, hj)

↵ij =
exp(eij)P
j0 exp(eij0)

a5en-on scores = batch size x sentence length

c = batch size x hidden size ci =
X

j

↵ijhj

‣ Make sure tensors are the right size!

Results

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

Results
‣ Machine transla-on: BLEU score of 14.0 on English-German -> 16.8 with

a5en-on, 19.0 with smarter a5en-on (we’ll come back to this later)

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

Results
‣ Machine transla-on: BLEU score of 14.0 on English-German -> 16.8 with

a5en-on, 19.0 with smarter a5en-on (we’ll come back to this later)

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

‣ Summariza-on/headline genera-on: bigram recall from 11% -> 15%

Results
‣ Machine transla-on: BLEU score of 14.0 on English-German -> 16.8 with

a5en-on, 19.0 with smarter a5en-on (we’ll come back to this later)

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)

‣ Summariza-on/headline genera-on: bigram recall from 11% -> 15%

‣ Seman-c parsing: ~30% accuracy -> 70+% accuracy on Geoquery

38

Decoding	Strategies

39

Greedy	Decoding
‣ Generate	next	word	condi?oned	on	previous	word	as	well	as	hidden	state

the		movie		was			great

‣ During	inference:	need	to	compute	the	argmax	over	the	word	predic?ons	
and	then	feed	that	to	the	next	RNN	state.	This	is	greedy	decoding

le					

<s>

film était bon [STOP]

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ypred = argmaxyP (y|x, y1, . . . , yi�1)
<latexit sha1_base64="BKzIm/yKraU6a64Z2EgswwSRmsQ=">AAADX3ichVLBattAEF3LbZM6aeK0p9LLUmOQaGKktJBcCqG99OhCnQQsI1arlbNkpRW7o9hC3Z/srdBL/6Qr2y2xU5MBwejNzHtvh4kLwTX4/s+W037y9NnO7vPO3v6Lg8Pu0ctLLUtF2YhKIdV1TDQTPGcj4CDYdaEYyWLBruLbz0396o4pzWX+DaqCTTIyzXnKKQELRUetsh+aTn/oznCY8QTPojoENgeV1ZbnzhgPf8Rhqgj9h1NZ5mDcWbTWeIxnnnmkx3tcSVjrCdmmuDGxRXOT1+B32A3wyV92bwv9PS6QQASeSZXgZdV0qjXexJjG7gogapqRuYkqPHQr/N0+kMBNnNZza7GKgmOrnEjQzU/NTwLjRd2eP/AXgR8mwSrpoVUMo+6PMJG0zFgOVBCtx4FfwMQKA6eCmU5YalYQekumbGzTnGRMT+rFfRjct0iCU6nslwNeoPcnapJpXWWx7WyM681aA/6vNi4hPZ/UPC9KYDldCqWlwCBxc2w44YpREJVNCFXcesX0htjdgz3Jjl1CsPnkh8nl6SB4Pzj9+qF38Wm1jl30Br1FLgrQGbpAX9AQjRBt/XIcZ8/Zd363d9oH7e6y1WmtZl6htWi//gMykBmH</latexit>

(or	a8en?on/copying/etc.)

40

Problems	with	Greedy	Decoding

‣ Only	returns	one	solu?on,	and	it	may	not	be	op?mal

‣ Can	address	this	with	beam	search,	which	usually	works	be8er…but	even	
beam	search	may	not	find	the	correct	answer!	(max	probability	sequence)

Stahlberg	and	Byrne	(2019)

41

“Problems”	with	Beam	Decoding
‣ For	machine	transla?on,	the	highest	probability	sequence	is	oWen	the	
empty	string!	(>50%	of	the	?me)

Stahlberg	and	Byrne	(2019)

‣ Beam	search	results	in	fortuitous	search	errors	that	avoid	these	bad	
solu?ons

42

Sampling
‣ Beam	search	may	give	many	similar	sequences,	and	these	actually	may	be	
too	close	to	the	op?mal.	Can	sample	instead:

‣ Text	degeneraIon:	greedy	solu?on	can	be	uninteres?ng	/	vacuous	for	
various	reasons.	Sampling	can	help.

P (yi|x, y1, . . . , yi�1) = softmax(Wh̄)

ysampled ⇠ P (y|x, y1, . . . , yi�1)
<latexit sha1_base64="PRMh0d0POdeSz1TX/ixzw2HuV+c=">AAADU3ichVNNbxMxEPUmfJRAaQpHLiOiSBvRRtmCBBekCi4cg0TaStlo5fV6W6ve9cqe7Xa1+D8iJA78ES4cwPkA2pSoI1kav5l5bzwax4UUBkej716rfefuvftbDzoPH20/3unuPjkyqtSMT5iSSp/E1HApcj5BgZKfFJrTLJb8OD5/P48fX3BthMo/YV3wWUZPc5EKRtFB0a4n+qHt9Md+BWEmEqiiJkR+iTprHM+FtQN4C2GqKfuLM1XmaP0qupa4B9XA3pIzuF1JutYTuklxrWKD5jqvhRfgB7D/h32wgf4KFyqkEiqlE1hGbaf+x2toVkieWAuhERmM/Ro+u0dRPIvT5tK1VUfBnlNLFJr5pRH7gR1E3d5oOFoY3HSCldMjKxtH3a9holiZ8RyZpMZMg1GBs4ZqFExy2wlLwwvKzukpnzo3pxk3s2axExb6DkkgVdqdHGGBXq1oaGZMncUuc964WY/Nwf/FpiWmb2aNyIsSec6WQmkpARXMFwwSoTlDWTuHMi1cr8DOqJs3ujXsuCEE60++6RwdDIOXw4OPr3qH71bj2CLPyHPik4C8JofkAxmTCWHeF++H96tFWt9aP9vulyxTW96q5im5Zu3t3+LjFz8=</latexit>

43

Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)

44

Beam	Search	vs.	Sampling

Holtzman	et	al.	(2019)

‣ These	are	samples	from	an	uncondi?oned	language	model	(not	seq2seq	
model)

‣ Sampling	is	be8er	but	some?mes	draws	too	far	from	the	tail	of	the	
distribu?on

45

Decoding	Strategies

‣ Greedy
‣ Beam	search

‣ Sampling

‣ Nucleus	or	top-k	sampling:

‣ Nucleus:	take	the	top	p%	(95%)	of	the	distribu?on,	sample	from	
within	that

‣ Top-k:	take	the	top	k	most	likely	words	(k=5),	sample	from	those

46

Genera?on	Tasks

47

Genera?on	Tasks

Uncondi?oned	sampling/	
“story	genera?on”

Dialogue Transla?on

Summariza?on

Text-to-code

Less	constrained More	constrained

Data-to-text

‣ There	are	a	range	of	seq2seq	modeling	tasks	we	will	address

‣ For	more	constrained	problems:	greedy/beam	decoding	are	usually	best

‣ For	less	constrained	problems:	nucleus	sampling	introduces	favorable	
varia?on	in	the	output

Transformers

49

Sentence	Encoders

the		movie		was			great

‣ LSTM	abstrac?on:	maps	each	vector	in	
a	sentence	to	a	new,	context-aware	
vector

‣ CNNs	do	something	similar	with	filters

‣ A8en?on	can	give	us	a	third	way	to	do	this

Vaswani	et	al.	(2017)

the		movie		was			great

50

Self-A8en?on

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ Pronouns	need	to	look	at	antecedents
‣ Ambiguous	words	should	look	at	context

‣ Assume	we’re	using	GloVe	—	what	do	we	want	our	neural	network	to	do?

‣What	words	need	to	be	contextualized	here?

‣Words	should	look	at	syntac?c	parents/children

‣ Problem:	LSTMs	and	CNNs	don’t	do	this

51

Self-A8en?on

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣Want:

‣ LSTMs/CNNs:	tend	to	look	at	local	context

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ To	appropriately	contextualize	embeddings,	we	need	to	pass	informa?on	
over	long	distances	dynamically	for	each	word

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

x4

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

x4

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

x4

x0
4

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

x4

x0
4

scalar↵i,j = softmax(x>
i xj)

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

‣ Mul-ple “heads” analogous to different convolu-onal filters. Use
parameters Wk and Vk to get different a5en-on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

‣ Mul-ple “heads” analogous to different convolu-onal filters. Use
parameters Wk and Vk to get different a5en-on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj)

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

‣ Mul-ple “heads” analogous to different convolu-onal filters. Use
parameters Wk and Vk to get different a5en-on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj

Self-A5en-on

Vaswani et al. (2017)

the movie was great

‣ Each word forms a “query” which then
computes a5en-on over each word

‣ Mul-ple “heads” analogous to different convolu-onal filters. Use
parameters Wk and Vk to get different a5en-on values + transform vectors

x4

x0
4

scalar

vector = sum of scalar * vector

↵i,j = softmax(x>
i xj)

x0
i =

nX

j=1

↵i,jxj

↵k,i,j = softmax(x>
i Wkxj) x0

k,i =
nX

j=1

↵k,i,jVkxj

53

What	can	self-a8en?on	do?

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣Why	mul?ple	heads?	SoWmaxes	end	up	being	peaked,	single	distribu?on	
cannot	easily	put	weight	on	mul?ple	things

0.5 0.20.10.10.10 0 0 0 0 0 0

‣ This	is	a	demonstra?on,	we	will	revisit	what	these	models	actually	learn	
when	we	discuss	BERT

‣ A8end	nearby	+	to	seman?cally	related	terms

0.5 0 0.40 0.1 0 0 0 0 0 0 0

54

Transformer	Uses

‣ Supervised:	transformer	can	replace	LSTM	as	encoder,	decoder,	or	both;	
will	revisit	this	when	we	discuss	MT

‣ Unsupervised:	transformers	work	be8er	than	LSTM	for	unsupervised	
pre-training	of	embeddings:	predict	word	given	context	words

‣ BERT	(Bidirec?onal	Encoder	
Representa?ons	from	Transformers):	
pretraining	transformer	language	models	
similar	to	ELMo

‣ Stronger	than	similar	methods,	SOTA	on	~11	
tasks	(including	NER	—	92.8	F1)

Takeaways

Takeaways
‣ A5en-on is very helpful for seq2seq models

Takeaways
‣ A5en-on is very helpful for seq2seq models

‣ Used for tasks including summariza-on and sentence ordering

Takeaways
‣ A5en-on is very helpful for seq2seq models

‣ Used for tasks including summariza-on and sentence ordering

‣ Explicitly copying input can be beneficial as well

Takeaways
‣ A5en-on is very helpful for seq2seq models

‣ Used for tasks including summariza-on and sentence ordering

‣ Explicitly copying input can be beneficial as well

‣ Transformers are strong models we’ll come back to later

