Machine Translation, Encoder-
Decoder Models and Attention

Alan Ritter

(many slides from Greg Durrett)



This Lecture

» Machine Translation Basics

- Seq2Seq / Encoder-Decoder Models
- Attention

» Decoding Strategies

» Transformers
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Phrase-Based MT

- Key idea: translation works better the bigger chunks you use

- Remember phrases from training data, translate piece-by-piece and
stitch those pieces together to translate

> How to identify phrases? Word alighnment over source-target bitext

» How to stitch together? Language model over target language

» Decoder takes phrases and a language model and searches over possible
translations

» NOT like standard discriminative models (take a bunch of translation
pairs, learn a ton of parameters in an end-to-end way)



cat ||| chat ||| 0.9

the cat

dog ||| chien ||| 0.8

house |

my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9

| le chat

maison

0.8

0.6

Phrase table P(f|e)

N

Phrase-Based MT

Language
model P(e)

Unlabeled English data

P(e|f) o< P(fle)P(e)

Noisy channel model:
combine scores from
translation model +
language model to
translate foreign to
English

N

“Translate faithfully but make fluent English”
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» Fluency: does it sound good in the target language?

- Fidelity/adequacy: does it capture the meaning of the original?

» BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
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N
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Evaluating MT

» Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?

» BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a
reference, multiplied by brevity penalty

N
BLEU= BP-exp (Z Wy, logpn> . > Typicallyn=4,w;=1/4
n=1

Bp — ] if c>r » r = length of reference
) el if o<y ¢ = length of prediction

» Does this capture fluency and adequacy?



» Better methods with
human-in-the-loop

» HTER: human-assisted
translation error rate

> If you’re building real MT

BLEU Score

(variant of BLEU)

NIST Score

systems, you do user studies.
In academia, you mostly use

BLEU

¢ Adequacy .
2 Fluency
1.3
1.0 .
) =
g0 e
B
0
O ‘ -1.0 -
O

Human Judgments

slide from G. Doddington (NIST)
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Phrase-Based MT

the cat

house |

cat ||| chat ||| 0.9

| le chat

dog ||| chien ||| 0.8

maison

0.8

0.6

my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9

Phrase table P(f|e)

j> Language

model P(e)

Unlabeled English data

N

P(e|f) o< P(fle)P(e)

Noisy channel model:
combine scores from
translation model +
language model to
translate foreign to
English

“Translate faithfully but make fluent English”
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N-gram Language Models

| visited San put a distribution over the next word

» Simple generative model: distribution of next word is a multinomial
distribution conditioned on previous n-1 words

count(visited San, x)

P(x|visited San) =
(z|visited San) count(visited San)

Maximum likelihood estimate of this
probability from a corpus

» Just relies on counts, even in 2008 could scale up to 1.3M word types, 4B
n-grams (all 5-grams occurring >40 times on the Web)
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Neural Language Models

~ Early work: feedforward neural networks looking at context

] P(wilwimn,. -, wisn)

IFFNN
=== Pl v
— 0]
| visited New ¢|
~ Variable length context with RNNs: ‘ ‘

| visited New
» Works like a decoder with no encoder

> Slow to train over lots of data! Mnih and Hinton (2003)
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Evaluation

- (One sentence) negative log likelihood: ) logp(wi|z1,..., @i—1)
1=1

> PerpIEXity: 2 }L @T'L:l 10g2 p(ajz |aj1 7“'75873—1)
» NLL (base 2) averaged over the sentence, exponentiated

» NLL = -2 -> on average, correct thing has prob 1/4 -> PPL = 4. PPL is sort
of like branching factor
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Results

~ Evaluate on Penn Treebank: small dataset (1M words) compared to
what’s used in MT, but common benchmark

» Kneser-Ney 5-gram model with cache: PPL=125.7

» LSTM: PPL ~ 60-80 (depending on how much you optimize it)

Merity et al. (2017), Melis et al. (2017)
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Encoder-Decoder

» Encode a sequence into a fixed-sized vector

le film était bon [STOP]

H OO

the movie was great

» Now use that vector to produce a series of tokens as output from a
separate LSTM decoder

Sutskever et al. (2014)



Encoder-Decoder

Edward Grefenstette ( Eollow ) v

@egrefen

“You can't cram the meaning of a whole %&!$ing sentence into a single
s&'*lng VeCtOr!" Yes. the censored-out swearing is copied verbatim

Single vector re r
sentences cause._ .. __._..._.

s>

]

® - |
45 @ Training focusses on learning

A marginal language model of
N
4

g

It’'s not an ACL tutorial on vector
representations of meaning if the
least one Ray Mooney quote.

A Transduction Bottleneck

target language first.

J
@@@ @g@@@ o Longer input sequencs caus - Is this true? Sort of...we’ll come back to

compressive loss.

@ Encoder gets significantly

diminished gradient. t h iS I ate r

“You can't cram the meaning of a whole %&!$ing sentence into a single
s&'*"‘g VeCtor!" Yes, the censored-out swearing is copied verbatim

12:27 AM - 11 Jul 2017

20 Retweets 127 Likes '. Q 3 06@ I 3
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Model

» Generate next word conditioned on previous word as well as hidden state

- W size is |vocab| x | hidden state|, softmax over entire vocabulary

(yZ|X7 Y, .- - Yi— 1) — SOftmaX(Wh)

Y‘X prz‘xvylv'“vy’i—l)

Decoder has separate
parameters from encoder, so
the movie was great <> this can learn to be a language
model (produce a plausible next
word given current one)
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Inference

Generate next word conditioned on previous word as well as hidden state

L

the movie was great <S> !

- film |était | bon |[STOP]

During inference: need to compute the argmax over the word predictions
and then feed that to the next RNN state

Need to actually evaluate computation graph up to this point to form
input for the next state

Decoder is advanced one state at a time until [STOP] is reached
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Implementing seq2seq Models

Encoder Decoder Decoder
le film

the movie was great <S>

» Encoder: consumes sequence of tokens, produces a vector. Analogous to
encoders for classification/tagging tasks

» Decoder: separate module, single cell. Takes two inputs: hidden state
(vector h or tuple (h, c¢)) and previous token. Outputs token + new state



Tralning

e était [STOP]

R | D

the movie was great le film était bon

- Objective: maximize Z Zlog P(y; |x, 97,54, 1)
(x,y) 1=1

» One loss term for each target-sentence word, feed the correct word
regardless of model’s prediction
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Implementation Details

» Sentence lengths vary for both encoder and decoder:

- Typically pad everything to the right length

- Encoder: Can be a CNN/LSTM/Transformer...

- Decoder: also flexible in terms of architecture (more later). Execute
one step of computation at a time, so computation graph is
formulated as taking one input + hidden state

» Beam search: can help with lookahead. Finds the (approximate) highest
scoring segquence:

argmaxy H P(yz|X7 Yi, - - - 7yi—1)
1=1
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Beam Search

» Maintain decoder state, token history in beam
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le: 0.3
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» Maintain decoder state, token history in beam film: 0.4
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Beam Search

» Maintain decoder state, token history in beam film: 0.4

la: 0.4
le: 0.3
les: 0.1
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Beam Search

les: 0.1

» Maintain decoder state, token history in beam film: 0.4
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Beam Search

les: 0.1

» Maintain decoder state, token history in beam film: 0.4

~
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» Do not max over the two film states! Hidden state vectors are different
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» Predict regex from text

Natural Language Encoder _ .

Q <END>
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he he he he | hd | hd L . d
0 1 2 3 0 LU Hh™y
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. l I
| | I
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Regex Prediction

» Can use for other translation-like tasks

» Predict regex from text

Natural Language Encoder

. Q <END>
r r r r
o 8 e e 0 d 1 d ¢ d S
hO h1 h2 h3 hO h1 h2
LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM
Yo ol w2 W3
lines ending in ‘Q’

Regular Expression Decoder

>~ Problem: requires a lot of data: 10,000 examples needed to get ~“60%
accuracy on pretty simple regexes
Locascio et al. (2016)
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SQL Generation

Question:

» Convert natural language
description into a SQL

[How many CFL teams are from York CoIIege?J

query against some DB SUL: \
SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York"”
» How to ensure that well-
formed SQL is generated?  |Towmany Seq2SQL SELECT
engine types did [ (Aggregation w
Val M ' ?
. Three squSeq models > al Musetti use < >c|assiﬁer < > COUNT
Entrant , [SELECT column] [~
H | Constructor oointer ngine
: — WHERE
names + constants? Ef;g'”e oointer > Driver =
. .
~ Pointer mechanisms Driver J == g R

Zhong et al. (2017)
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Problems with Seg2seq Models
» Encoder-decoder models like to repeat themselves:

Un garcon joue dans la neige - A boy plays in the snow boy plays boy plays

» Often a byproduct of training these models poorly

» Need some notion of input coverage or what input words we’ve
translated



Problems with Seg2seq Models

- Bad at long sentences: 1) a fixed-size representation doesn’t scale; 2)
LSTMs still have a hard time remembering for really long periods of time

BLEU score

30

10

— RNNsea,rch-SO ......................................... \\ .....................
""" RNNsearch-30 |: -g\ SOl
— = RNNenc-50 [ T
- RNNenc-30
|
10 20 30 4() 50 60

Sentence length

RNNsearch: introduces
attention mechanism to give
“variable-sized”
representation

Bahdanau et al. (2014)
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Encoder-Decoder

» Encode a sequence into a fixed-sized vector

le film était bon [STOP]

H OO

the movie was great

» Now use that vector to produce a series of tokens as output from a
separate LSTM decoder

Sutskever et al. (2014)
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Aligned Inputs

» Suppose we knew the source and the movie was great

target would be word-by-word / / / /

translated le film était bon

- Can look at the corresponding le  film était bon [STOP]
input word when translating —
this could scale!

- Much less burden on the hidden etalf bon

state the movie was great

> How can we achieve this without hardcoding it?
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Attention

» At each decoder state,
compute a distribution over
source inputs based on

the movie was great <> e current decoder state

» Use that in output layer
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» For each decoder state,
compute weighted sum of
Input states

P(y;|x,y1,...,yi—1) = softmax(W |c;; h;])
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- For each decoder state, - No attn: p(y.|x.y1. ...,y 1) = softmax(Wh;)
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Luong et al. (2015)
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Attention

f(hi, hy) = tanh(Wh, hy])
» Bahdanau+ (2014): additive

le

f(hi,hj) = h; - h;
» Luong+ (2015): dot product

f(hishy) = h; Wh;
» Luong+ (2015): bilinear

>~ Note that this all uses outputs of hidden layers
Luong et al. (2015)
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Attention

» Encoder hidden states capture
contextual source word identity

agreement
on

the
European
Economic
Area

was
signed

N

August
1992
<end>
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europeéenne

ad
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out word-by-word translations

<end>
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token outputs: batch size x sentence length x dimension

\ hidden state: batch size
X hidden size
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Batching Attention

token outputs: batch size x sentence length x dimension

\ hidden state: batch size
X hidden size
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token outputs: batch size x sentence length x dimension

\ hidden state: batch size
X hidden size
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batch size x hidden size
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token outputs: batch size x sentence length x dimension

\ hidden state: batch size
X hidden size
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Batching Attention

token outputs: batch size x sentence length x dimension

\ hidden state: batch size
X hidden size

5m el

' ' exp(e;;)
, Crij = )
the movie was great <s> 2_jr expleijr)
sentence outputs: attention scores = batch size x sentence length
batch size x hidden size _ _ ,
Cc = batch size x hidden size — E Q5

~ Make sure tensors are the right size! J
Luong et al. (2015)
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Results

» Machine translation: BLEU score of 14.0 on English-German -> 16.8 with
attention, 19.0 with smarter attention (we’ll come back to this later)

» Summarization/headline generation: bigram recall from 11% -> 15%

» Semantic parsing: ~“30% accuracy -> 7/0+% accuracy on Geoquery

Luong et al. (2015)
Chopra et al. (2016)
Jia and Liang (2016)



Decoding Strategies



Greedy Decoding

» Generate next word conditioned on previous word as well as hidden state

L

the movie was great <S$>

- film |était | bon |[STOP]

» During inference: need to compute the argmax over the word predictions
and then feed that to the next RNN state. This is greedy decoding

Ply;|xX,y1,...,Yi_1) = softmax(Wi_L) (or attention/copying/etc.)

Ypred = argmaXyP(mx, Yls s Yio1)



Problems with Greedy Decoding

» Only returns one solution, and it may not be optimal

» Can address this with beam search, which usually works better...but even
beam search may not find the correct answer! (max probability sequence)

Model Beam-10
BLEU #Search err.
LSTM™ 28.6 58.4%
SliceNet™ 28.8 46.0%
Transformer-Base 30.3 57.7%
Transformer-Big”™ 31.7 32.1%

Stahlberg and Byrne (2019)



“Problems™ with Beam Decoding

» For machine translation, the highest probability sequence is often the
empty string! (>50% of the time)

Search BLEU Ratio #Search errors #Empty
Greedy 293 1.02 73.6% 0.0%
Beam-10 30.3 1.00 S7.7% 0.0%
Exact 2.1 0.06 0.0% 51.8%

» Beam search results in fortuitous search errors that avoid these bad
solutions

Stahlberg and Byrne (2019)



Sampling

» Beam search may give many similar sequences, and these actually may be
too close to the optimal. Can sample instead:

P(y;|x,y1,...,y;_1) = softmax(Wh)

Ysampled " P(y‘Xa Y1, - - 7yi—1)

» Text degeneration: greedy solution can be uninteresting / vacuous for
various reasons. Sampling can help.
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Holtzman et al. (2019)



Beam Search vs. Sampling

» These are samples from an unconditioned language model (not seqg2seq
model)

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32: Pure Sampling:
"The study, published in the Proceedings of the They were cattle called Bolivian Cavalleros; they live in a
National Academy of Sciences of the United States of remote desert uninterrupted by town, and they speak huge,

America (PNAS), was conducted by researchers from the beautiful, paradisiacal Bolivian linguistic thing. They say,
Universidad Nacional Auténoma de México (UNAM) and ‘Lunch, marge.' They don't tell what the lunch is," director

the Universidad Nacional Autonoma de México Professor Chuperas Omwell told Sky News. "They've only
(UNAM/Universidad Nacional Auténoma de been talking to scientists, like we're being interviewed by TV
Mexico/Universidad Nacional Autonoma de reporters. We don't even stick around to be interviewed by
México/Universidad Nacional Auténoma de TV reporters. Maybe that's how they figured out that they're
México/Universidad Nacional Autonoma de ..." cosplaying as the Bolivian Cavalleros."

» Sampling is better but sometimes draws too far from the tail of the

distribution
Holtzman et al. (2019)



Decoding Strategies

» Greedy

» Beam search

» Sampling

» Nucleus or top-k sampling:

» Nucleus: take the top p% (95%) of the distribution, sample from
within that

» Top-k: take the top k most likely words (k=5), sample from those



Generation Tasks

An unprecedented number of mostly young whales have become stranded on
the West Australian coast since 2008.

WebText

he number of stranded whales has increased by more than 50 per cent in the past year,
with the number of stranded whales on the \West Australian coast increasing by more
( than 50 per cent in the past year. The number of whales stranded on the West Australian
coast has increased by more than 50 per cent in the past year, with the number of
stranded whales on the West Australian coast increasing by more than 50 per cent in the

Beam Search b=16 Pastyear

, 'he Australian Food Safety Authority has warned Australia's beaches may be revitalised
/ this year because healthy seabirds and seals have been on the move. More than 50,000
e seabirds, sea mammals and seahorses have been swept into the sea by the Holden
4 CS118 and Adelaide Airport CS300 from 2013. A major white-bat and umidauda
Pure Sampling migration across Australia is under way in Australia for the first time, with numbers

reaching an estimated 50,000.

There has been an unprecedented number of calves caught in the nets of whaling
stations that operate in WA. Pilot whales continue to migrate to feeding grounds to
feed their calves. They are now vulnerable due to the decline of wild populations;

they are restricted to one breeding site each year. Image copyright Yoon Bo Kim But,
with sharp decline in wild populations the size of the Petrels are shrinking and dwindling
Nucleus, p=0.95 population means there will only be room for a few new fowl.




Generation Tasks

» There are a range of seg2seq modeling tasks we will address
» For more constrained problems: greedy/beam decoding are usually best

» For less constrained problems: nucleus sampling introduces favorable
variation in the output

Less constrained More constrained
Unconditioned sampling/ Dialogue Translation Text-to-code
“story generation” Summarization

Data-to-text



Transformers



Sentence Encoders

» LSTM abstraction: maps each vector in
a sentence to a new, context-aware

vector |
the movie was great

» CNNs do something similar with filters N

L LN NN

the movie was great

» Attention can give us a third way to do this

Vaswani et al. (2017)



Self-Attention

» Assume we’re using GloVe — what do we want our neural network to do?

— T~

The ballerina is very excited that she will dance in the show.

» What words need to be contextualized here?

» Pronouns need to look at antecedents

» Ambiguous words should look at context

» Words should look at syntactic parents/children

» Problem: LSTMs and CNNs don’t do this
Vaswani et al. (2017)



Self-Attention

» Want:

/_\/\/\

The ballerina is very excited that she will dance in the show.

» LSTMs/CNNs: tend to look at local context

The ballerina is very excited that she will dance in the show.

» To appropriately contextualize embeddings, we need to pass information
over long distances dynamically for each word

Vaswani et al. (2017)
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Self-Attention

» Each word forms a “qguery” which then )
computes attention over each word '%
O 5 = softmax(:c;a:j) scalar 1 T4
- e
= . - vector = sum of scalar * vector I;I
Li = 2 Yij¥s - t f

— the movie was great
71=1

» Multiple “heads” analogous to different convolutional filters. Use
parameters Wi and Vi to get different attention values + transform vectors

n
_ T /
(ki = softmax(z; Wixj) ) ; = E i i Vit
J=1

Vaswani et al. (2017)



Self-Attention

» Each word forms a “query” which then !
computes attention over each word EI EI EI

-

Oéi,j — softmax(:ci ZI?j) scalar ===
/ [ ]
L

p— — e 3
— E QG 5 vector = sum of scalar * vector T T

— the movie was great
71=1

» Multiple “heads” analogous to different convolutional filters. Use
parameters Wi and Vi to get different attention values + transform vectors

n
f i.§ — SOftmaX($;er$j) .CIZ;C,?; — Z ozk,f,;,ijxj
Vaswani et al. (2017)



What can self-attention do?
‘/\\/\/\

The ballerina is very excited that she will dance in the show.

O 05 o, 0 01 (010 (0.1 0.2 |OjO| O
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» Attend nearby + to semantically related terms

» This is a demonstration, we will revisit what these models actually learn
when we discuss BERT

» Why multiple heads? Softmaxes end up being peaked, single distribution

cannot easily put weight on multiple things
Vaswani et al. (2017)



Transformer Uses

» Supervised: transformer can replace LSTM as encoder, decoder, or both;
will revisit this when we discuss MT

» Unsupervised: transformers work better than LSTM for unsupervised
pre-training of embeddings: predict word given context words

» BERT (Bidirectional Encoder BERT (Ours)
Representations from Transformers): T
pretraining transformer language models
similar to ELMo

» Stronger than similar methods, SOTA on ~11
tasks (including NER — 92.8 F1)
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Takeaways

~ Attention is very helpful for seq2seq models
» Used for tasks including summarization and sentence ordering
~ Explicitly copying input can be beneficial as well

» Transformers are strong models we’ll come back to later



