Lecture 13: Machine Translation II

(many slides from Greg Durrett)

Alan Ritter

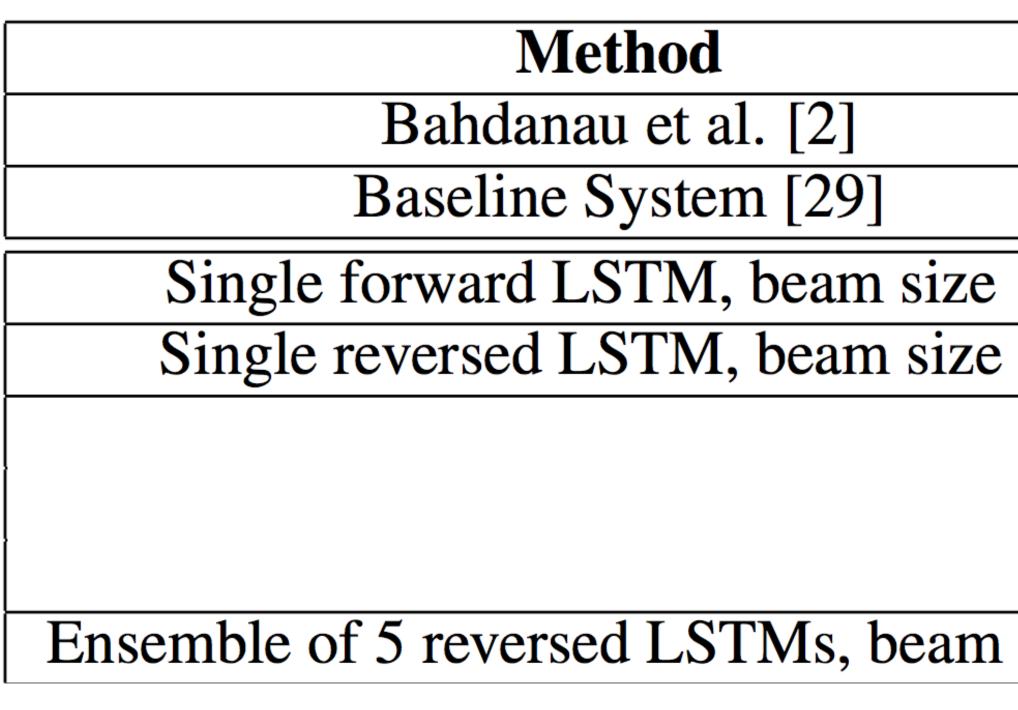
Neural MT Details

Sutskever seq2seq paper: first major application of LSTMs to NLP

Sutskever et al. (2014)

- Sutskever seq2seq paper: first major application of LSTMs to NLP
- Basic encoder-decoder with beam search

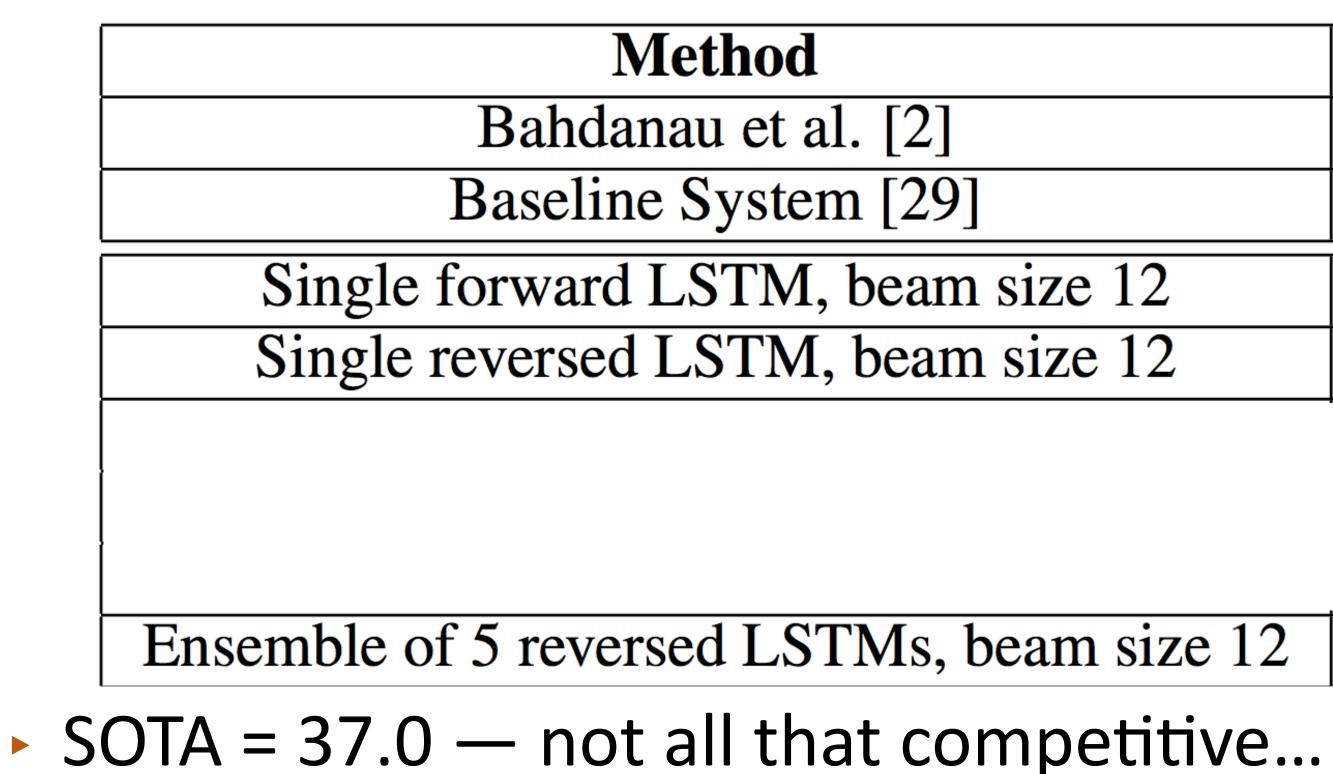
- Sutskever seq2seq paper: first major application of LSTMs to NLP
- Basic encoder-decoder with beam search



	test BLEU score (ntst14)
	28.45
	33.30
12	26.17
e 12	30.59
size 12	34.81

Sutskever et al. (2014)

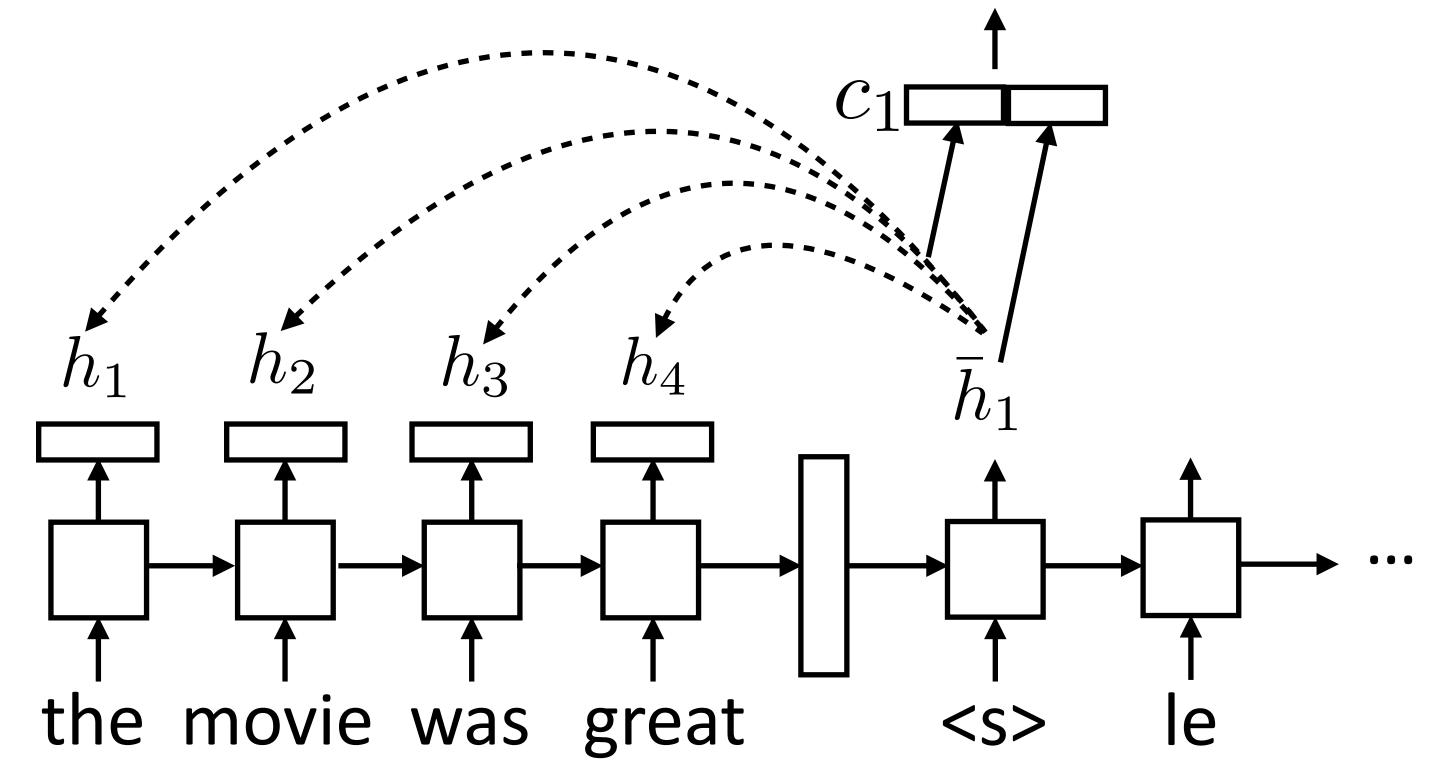
- Sutskever seq2seq paper: first major application of LSTMs to NLP
- Basic encoder-decoder with beam search



	test BLEU score (ntst14)
	28.45
	33.30
12	26.17
e 12	30.59
size 12	34.81

Sutskever et al. (2014)

- and copying for rare words



Better model from seq2seq lectures: encoder-decoder with attention

distribution over vocab + copying

12M sentence pairs

12M sentence pairs

Classic phrase-based system: ~33 BLEU, uses additional target-language data

12M sentence pairs

Classic phrase-based system: ~33 BLEU, uses additional target-language data Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

- 12M sentence pairs
- Classic phrase-based system: ~33 BLEU, uses additional target-language data Rerank with LSTMs: **36.5** BLEU (long line of work here; Devlin+ 2014) Sutskever+ (2014) seq2seq single: **30.6** BLEU

- 12M sentence pairs
- Classic phrase-based system: ~33 BLEU, uses additional target-language data
 - Rerank with LSTMs: **36.5** BLEU (long line of work here; Devlin+ 2014)
- Sutskever+ (2014) seq2seq single: **30.6** BLEU
- Sutskever+ (2014) seq2seq ensemble: **34.8** BLEU

- 12M sentence pairs
- Classic phrase-based system: ~33 BLEU, uses additional target-language data
 - Rerank with LSTMs: **36.5** BLEU (long line of work here; Devlin+ 2014)
- Sutskever+ (2014) seq2seq single: **30.6** BLEU
- Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU
- Luong+ (2015) seq2seq ensemble with attention and rare word handling: **37.5** BLEU
- But English-French is a really easy language pair and there's tons of data for it! Does this approach work for anything harder?

Results: WMT English-German

- 4.5M sentence pairs
- Classic phrase-based system: **20.7** BLEU
- Luong+ (2014) seq2seq: **14** BLEU
- Luong+ (2015) seq2seq ensemble with rare word handling: **23.0** BLEU
- languages

Not nearly as good in absolute BLEU, but not really comparable across

Results: WMT English-German

- 4.5M sentence pairs
- Classic phrase-based system: **20.7** BLEU
- Luong+ (2014) seq2seq: **14** BLEU
- Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU
- languages
- French, Spanish = easiest German, Czech = harder

Not nearly as good in absolute BLEU, but not really comparable across

Japanese, Russian = hard (grammatically different, lots of morphology...)

MT Examples

src	In einem Interview sagte Bloom jedoch
ref	However, in an interview, Bloom has sa
best	In an interview, however, Bloom said the
base	However, in an interview, Bloom said t

- best = with attention, base = no attention
- phrase-based doesn't do this

, dass er und Kerr sich noch immer lieben .

said that he and *Kerr* still love each other.

that he and *Kerr* still love .

that he and **Tina** were still $\langle unk \rangle$.

NMT systems can hallucinate words, especially when not using attention

Luong et al. (2015)

MT Examples

src	Wegen der von Berlin und der Europäis
	Verbindung mit der Zwangsjacke, in die
	ten an der gemeinsamen Währung genötig
	Europa sei zu weit gegangen
ref	The austerity imposed by Berlin and the
	imposed on national economies through ad
	to think Project Europe has gone too far .
best	Because of the strict austerity measures
	connection with the straitjacket in which
	the common currency, many people believ
base	Because of the pressure imposed by the E
	with the strict austerity imposed on the
	many people believe that the European pro

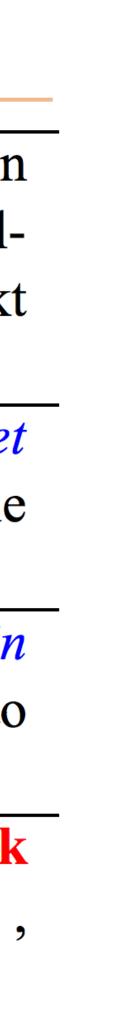
best = with attention, base = no attention

schen Zentralbank verhängten strengen Sparpolitik in e die jeweilige nationale Wirtschaft durch das Festhalgt wird, sind viele Menschen der Ansicht, das Projekt

European Central Bank, coupled with the straitjacket dherence to the common currency, has led many people

imposed by Berlin and the European Central Bank in the respective national economy is forced to adhere to eve that the European project has gone too far. uropean Central Bank and the Federal Central Bank e national economy in the face of the single currency, oject has gone too far.

Luong et al. (2015)



do the same?

Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large monolingual corpus T' to train a language model. Can neural MT

- do the same?
- Approach 1: force the system to generate T' as targets from null inputs

Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large monolingual corpus T' to train a language model. Can neural MT

- do the same?
- Approach 1: force the system to generate T' as targets from null inputs

Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large monolingual corpus T' to train a language model. Can neural MT

- do the same?
- Approach 1: force the system to generate T' as targets from null inputs

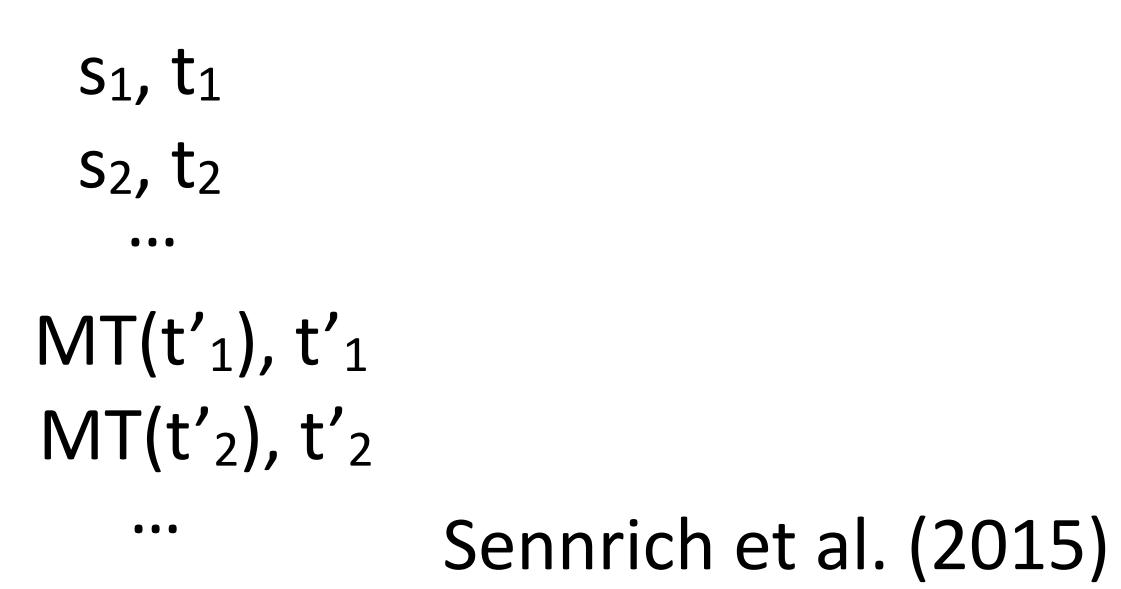
Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large monolingual corpus T' to train a language model. Can neural MT

> Approach 2: generate synthetic sources with a T->S machine translation system (backtranslation)

- do the same?
- Approach 1: force the system to generate T' as targets from null inputs

Classical MT methods used a bilingual corpus of sentences B = (S, T) and a large monolingual corpus T' to train a language model. Can neural MT

> Approach 2: generate synthetic sources with a T->S machine translation system (backtranslation)



name	training		BLEU			
	data	instances	tst2011	tst2012	tst2013	tst2014
baseline (Gülçehre et al., 2015)			18.4	18.8	19.9	18.7
deep fusion (Gülçehre et al., 2015)			20.2	20.2	21.3	20.6
baseline	parallel	7.2m	18.6	18.2	18.4	18.3
parallel _{synth}	parallel/parallel _{synth}	6m/6m	19.9	20.4	20.1	20.0
Gigaword _{mono}	parallel/Gigaword _{mono}	7.6m/7.6m	18.8	19.6	19.4	18.2
Gigaword _{synth}	parallel/Gigaword _{synth}	8.4m/8.4m	21.2	21.1	21.8	20.4

- Gigaword: large monolingual English corpus
- parallel_{synth}: backtranslate training data; makes additional noisy source sentences which could be useful

Tokenization

Handling Rare Words

- Words are a difficult unit to work with: copying can be cumbersome, word vocabularies get very large
- Character-level models don't work well
- Compromise solution: use thousands of "word pieces" (which may be full words but may also be parts of words)

Input: _the _eco tax _port i co _in _Po nt - de - Bu is ...

Output: _le _port ique _éco taxe _de _Pont - de - Bui s

Can achieve transliteration with this, subword structure makes some translations easier to achieve Sennrich et al. (2016)

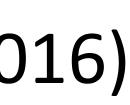
Byte Pair Encoding (BPE)

- Count bigram character for i in range(num_merges): pairs = get_stats(vocab) cooccurrences in dictionary best = max(pairs, key=pairs.get) vocab = merge_vocab(best, vocab)

- Vocabulary stats are weighted over a large corpus
- Doing 30k merges => vocabulary of around 30,000 word pieces. Includes many whole words and there were no re_ fueling stations anywhere
 - one of the city 's more un_ princi_ pled real estate agents

Start with every individual byte (basically character) as its own symbol

- Merge the most frequent pair of adjacent characters



Alternative to BPE while voc size < target voc size: Build a language model over your corpus perplexity

- Issues: what LM to use? How to make this tractable?
- SentencePiece library from Google: unigram LM
- Result: way of segmenting input appropriate for translation

- Merge pieces that lead to highest improvement in language model

Schuster and Nakajima (2012), Wu et al. (2016), Kudo and Richardson (2018)

Comparison

	Original:	furiously				
(a)	BPE:	_fur	iously			
	Unigram LM:	_fur	ious	ly		
	Original:		letely p	•	r	
(c)	BPE:		ple t	ely		
	Unigram LM:		ly			

- BPE produces less linguistically plausible units than word pieces (unigram LM)
- Some evidence that unigram LM works better in pre-trained transformer models

Original: tricycles $_t$ | ric | y | **BPE:** (b)cles **Unigram LM:** _tri | cycle | s rous suggestions _prep | ost | erous | _suggest | ions _pre | post | er | ous | _suggestion | s

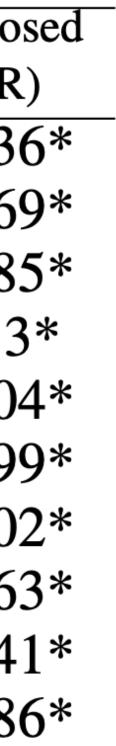
Bostrom and Durrett (2020)

Subwords (_ means spaces)	Vocabulary id sequence	Domain (size)	Corpus	Language pair	Baseline (BPE)	Propos (SR)
_Hell/o/_world _H/ello/_world _He/llo/_world _/He/l/l/o/_world _H/el/l/o/_/world	13586 137 255 320 7363 255 579 10115 255 7 18085 356 356 137 255 320 585 356 137 7 12295	Web (5k)	IWSLT15	$en \rightarrow vi$ $vi \rightarrow en$ $en \rightarrow zh$ $zh \rightarrow en$	13.86 7.83 9.71 5.93	17.36 11.69 13.85 8.13
 Change subword sampling on-the- fly during training 			IWSLT17 WMT14	$en \rightarrow fr$ $fr \rightarrow en$ $en \rightarrow de$ $de \rightarrow en$ $en \rightarrow cs$ $cs \rightarrow en$	16.09 14.77 22.71 26.42 19.53 25.94	20.04 19.99 26.02 29.63 21.41 27.86

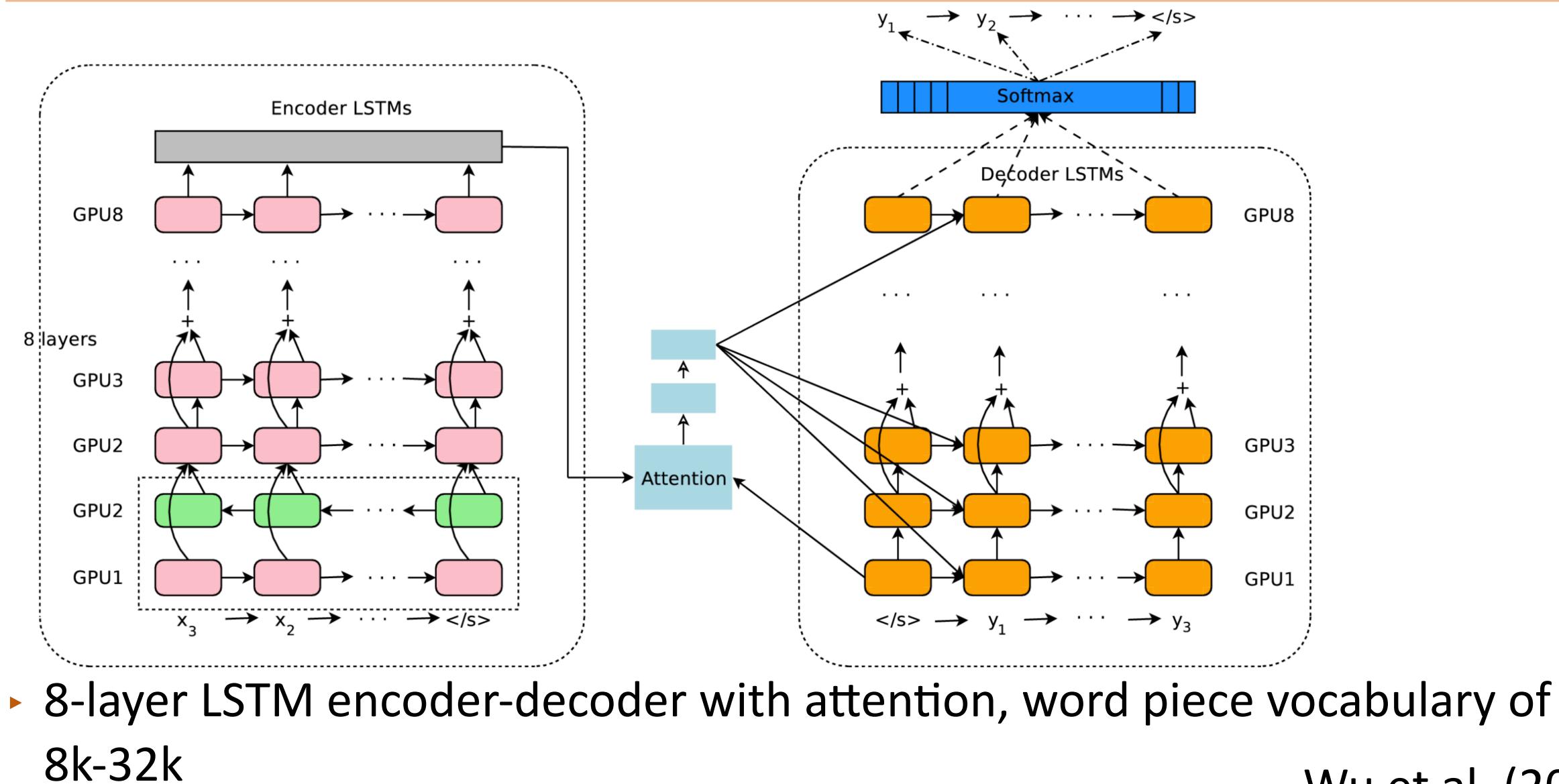
Subword Regularization

Subword regularization (SR) improves results over a static scheme (BPE)

Kudo (2018)



Google NMT



Google's NMT System

Google's NMT System



English-French:

- Google's phrase-based system: 37.0 BLEU Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU Google's 32k word pieces: 38.95 BLEU

Google's NMT System



English-French:

Google's phrase-based system: 37.0 BLEU Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU Google's 32k word pieces: 38.95 BLEU

English-German:

Google's phrase-based system: 20.7 BLEU Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU Google's 32k word pieces: 24.2 BLEU

Google's NMT System

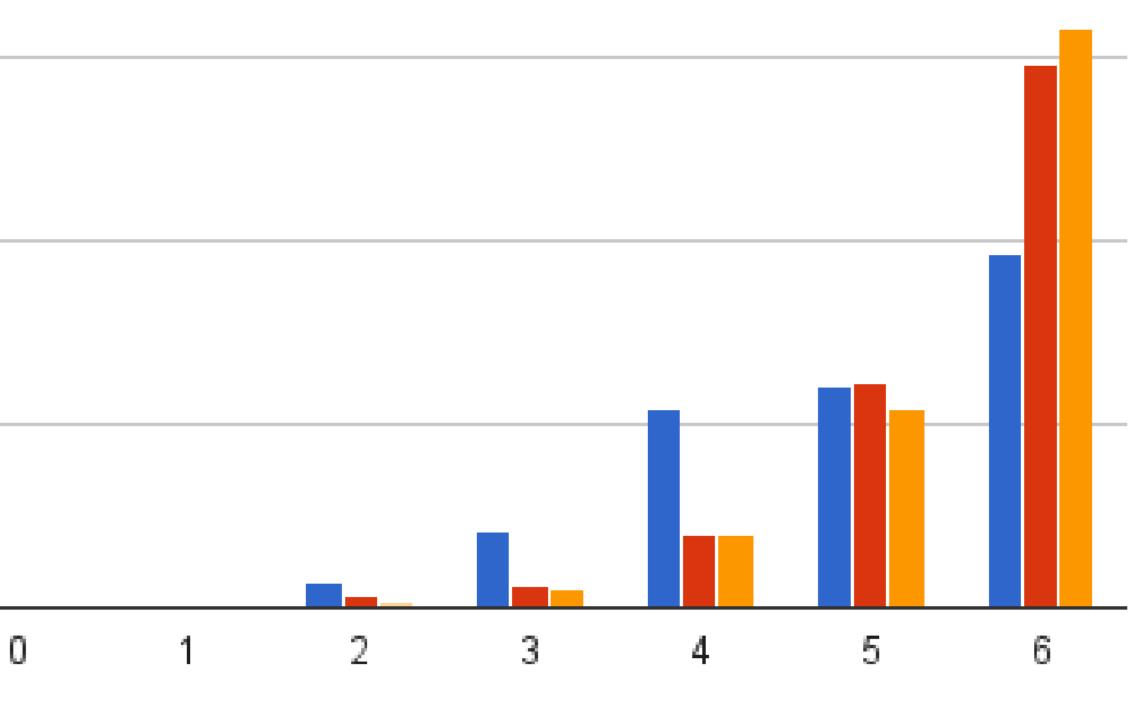
Human Evaluation (En-Es)

200

100

0

Similar to human-level 400 performance on English-Spanish 300 Count (total 500)



PBMT - GNMT - Human

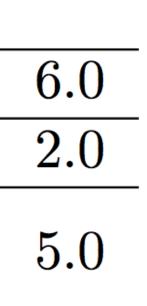


Source	She was spotted three days later by a
PBMT	Elle a été repéré trois jours plus tard p
GNMT	Elle a été repérée trois jours plus tard
Human	Elle a été repérée trois jours plus tard
IIuman	coincée dans la carrière

Google's NMT System

dog walker trapped in the quarry par un promeneur de chien piégé dans la carrière l par un traîneau à chiens piégé dans la carrière.

l par une personne qui promenait son chien

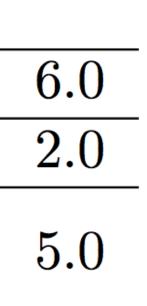


Source	She was spotted three days later by a
PBMT	Elle a été repéré trois jours plus tard p
GNMT	Elle a été repérée trois jours plus tard
Human	Elle a été repérée trois jours plus tard coincée dans la carrière

Google's NMT System

dog walker trapped in the quarry par un promeneur de chien piégé dans la carrière l par un traîneau à chiens piégé dans la carrière.

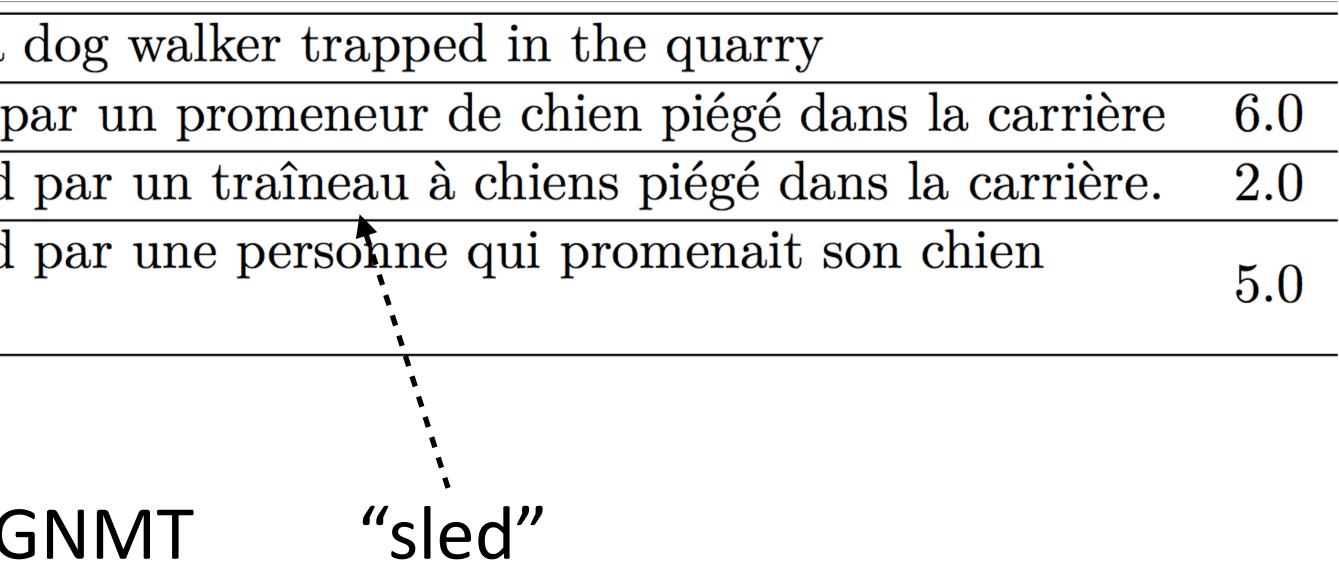
l par une personne qui promenait son chien





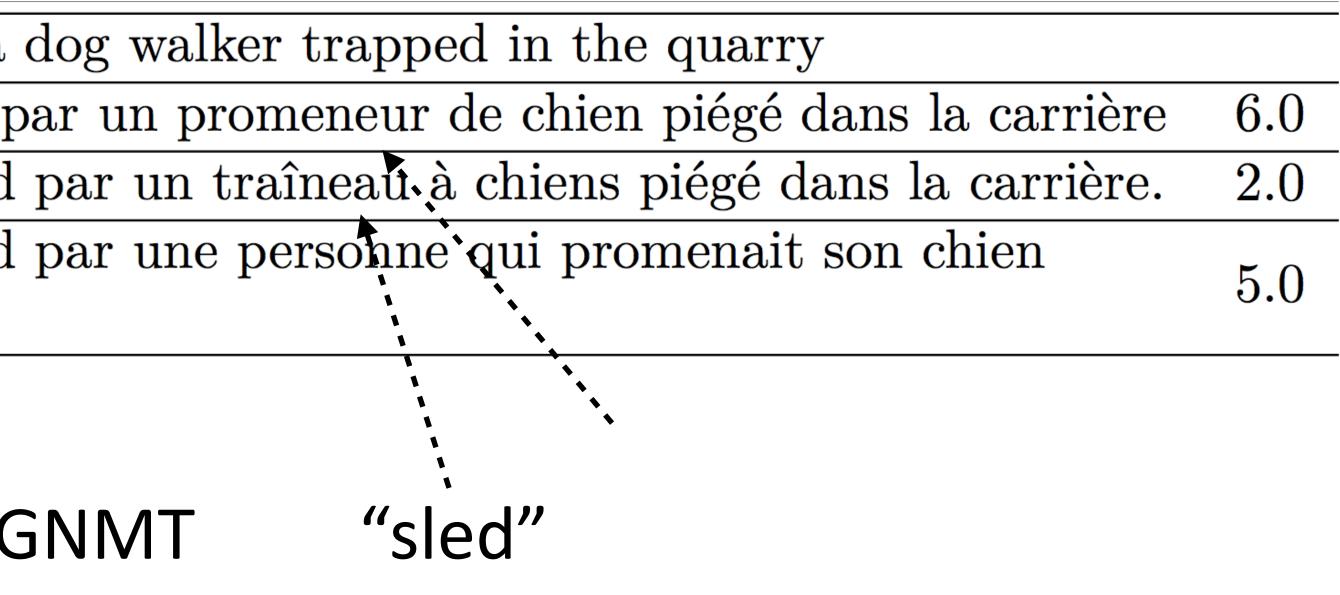
Source	She was spotted three days later by a
PBMT	Elle a été repéré trois jours plus tard p
GNMT	Elle a été repérée trois jours plus tard
Human	Elle a été repérée trois jours plus tard coincée dans la carrière

Google's NMT System



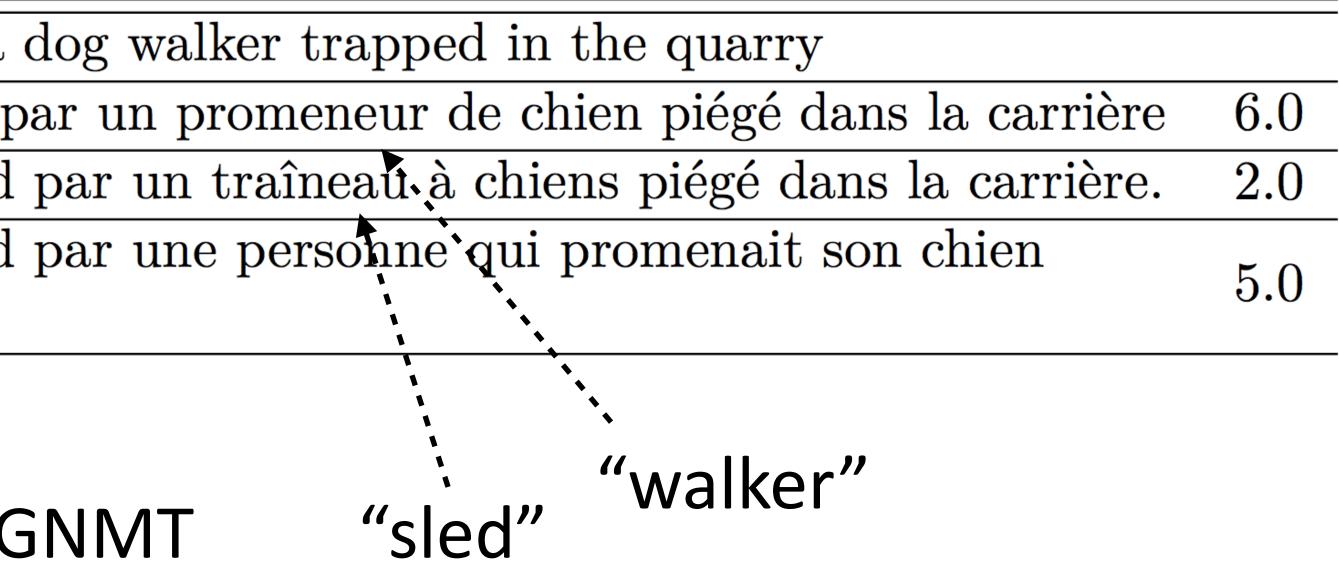
Source	She was spotted three days later by a
PBMT	Elle a été repéré trois jours plus tard p
GNMT	Elle a été repérée trois jours plus tard
Human	Elle a été repérée trois jours plus tard coincée dans la carrière

Google's NMT System



Source	She was spotted three days later by a
PBMT	Elle a été repéré trois jours plus tard p
GNMT	Elle a été repérée trois jours plus tard
Human	Elle a été repérée trois jours plus tard coincée dans la carrière

Google's NMT System

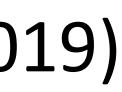


		BL	EU
ID	system	100k	3.2M
1	phrase-based SMT	15.87 ± 0.19	26.60 ± 0.00
2	NMT baseline	0.00 ± 0.00	25.70 ± 0.33
3	2 + "mainstream improvements" (dropout, tied embeddings, layer normalization, bideep RNN, label smoothing)	7.20 ± 0.62	31.93 ± 0.05
4	3 + reduce BPE vocabulary (14k \rightarrow 2k symbols)	12.10 ± 0.16	_
5	4 + reduce batch size (4k \rightarrow 1k tokens)	12.40 ± 0.08	31.97 ± 0.26
6	5 + lexical model	13.03 ± 0.49	31.80 ± 0.22
7	5 + aggressive (word) dropout	15.87 ± 0.09	33.60 ± 0.14
8	7 + other hyperparameter tuning (learning rate, model depth, label smoothing rate)	$\textbf{16.57} \pm 0.26$	32.80 ± 0.08
9	8 + lexical model	16.10 ± 0.29	33.30 ± 0.08

Synthetic small data setting: German -> English

Frontiers in MT: Small Data

Sennrich and Zhang (2019)



Frontiers in MT: Low-Resource

- Particular interest in deploying N parallel data
- BPE allows us to transfer models even without training on a specific language
- Pre-trained models can help further

Particular interest in deploying MT systems for languages with little or no

Burmese, Indonesian, Turkish BLEU

Transfer	My→En ∃	Id→En ′	Γr→En
baseline (no transfer)	4.0	20.6	19.0
transfer, train	17.8	27.4	20.3
transfer, train, reset emb, train	13.3	25.0	20.0
transfer, train, reset inner, train	3.6	18.0	19.1

Table 3: Investigating the model's capability to restore its quality if we reset the parameters. We use $En \rightarrow De$ as the parent.

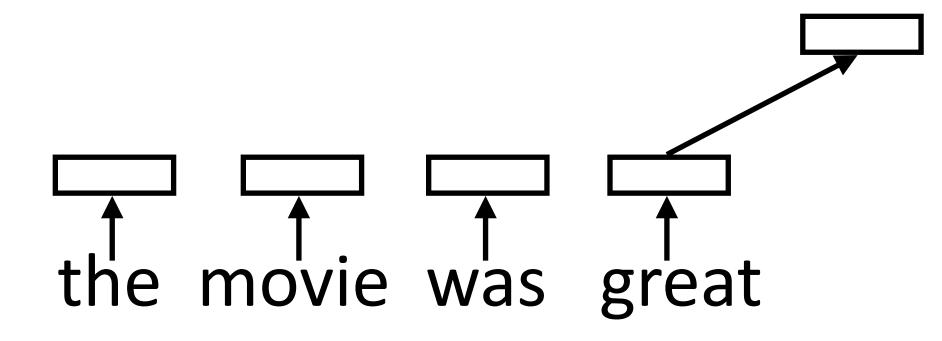
Aji et al. (2020)

Transformers for MT

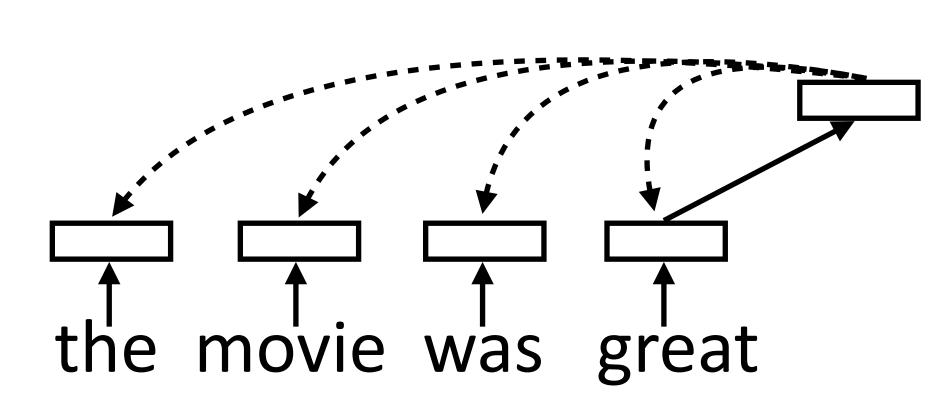
Each word forms a "query" which then computes attention over each word

the movie was great

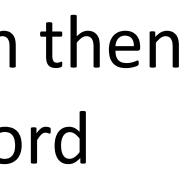
Each word forms a "query" which then computes attention over each word

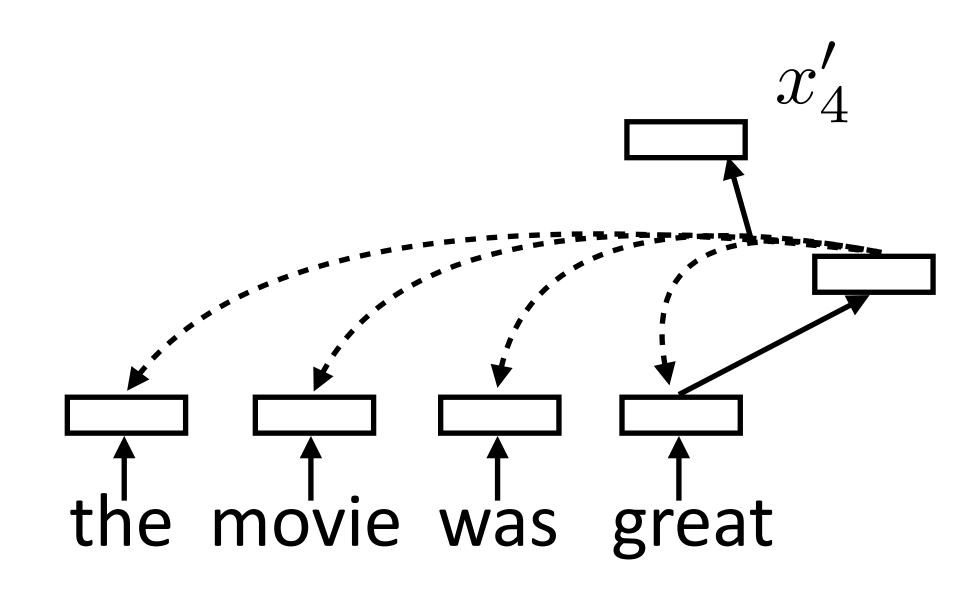


Each word forms a "query" which then computes attention over each word



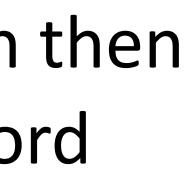
Each word forms a "query" which then computes attention over each word

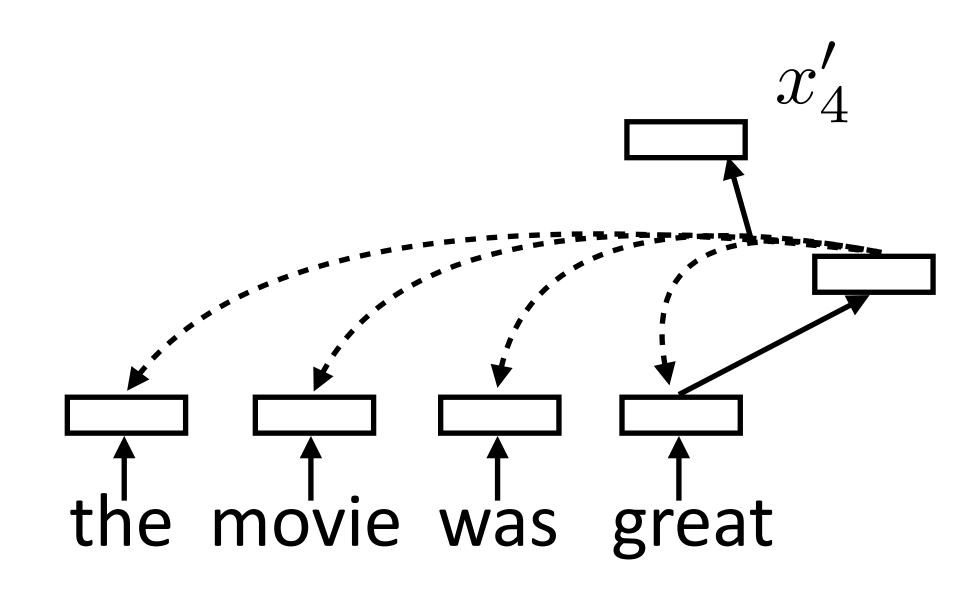




Each word forms a "query" which then computes attention over each word

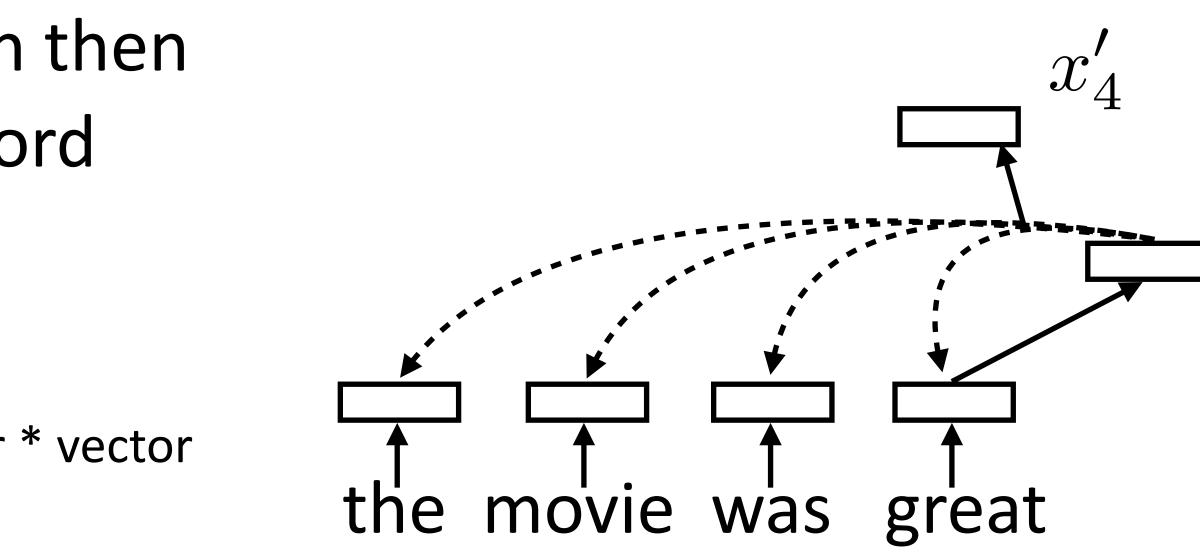
 $\alpha_{i,j} = \operatorname{softmax}(x_i^{\top} x_j)$ scalar





Each word forms a "query" which then computes attention over each word

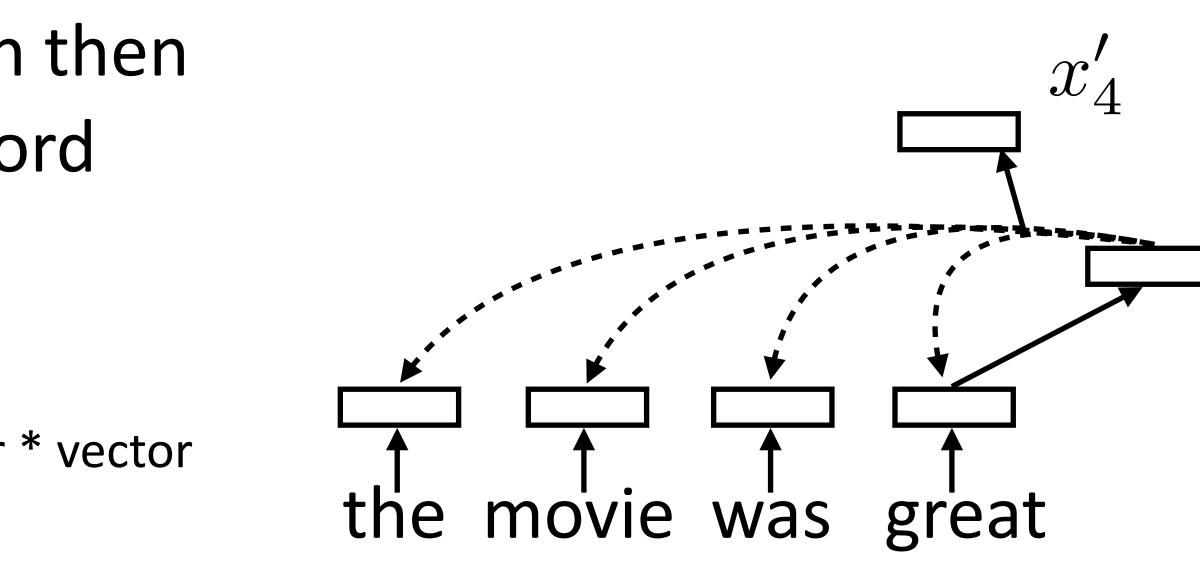
$$lpha_{i,j} = \operatorname{softmax}(x_i^{ op} x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar



Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = \operatorname{softmax}(x_i^{ op} x_j)$$
 scalar $x_i' = \sum_{i=1}^n lpha_{i,j} x_j$ vector = sum of scalar

Multiple "heads" analogous to different convolutional filters. Use



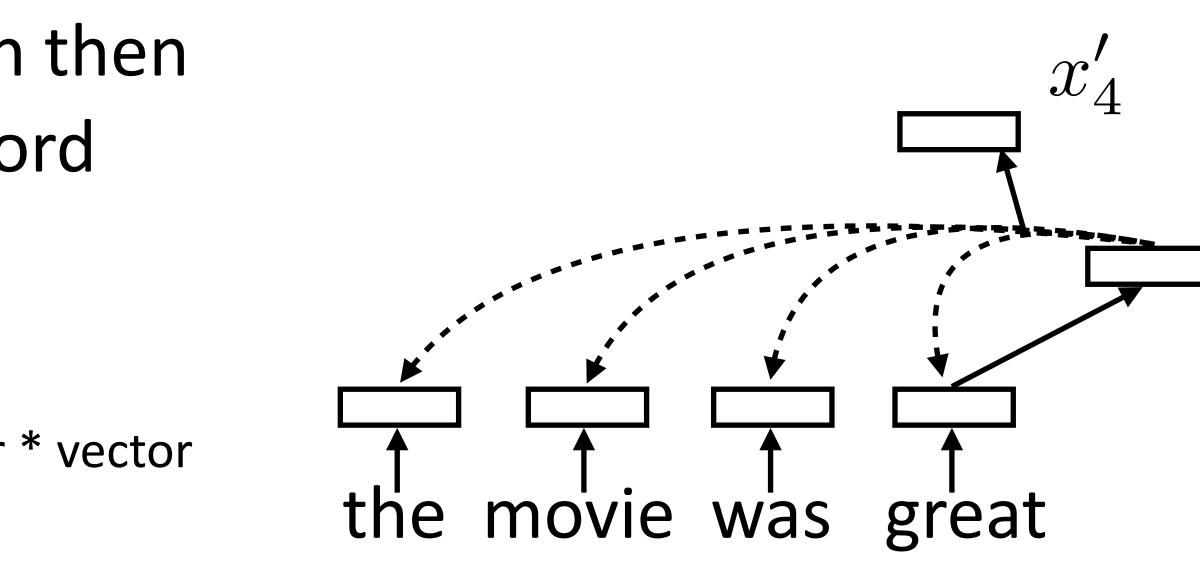
parameters W_k and V_k to get different attention values + transform vectors

Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = ext{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar

Multiple "heads" analogous to different convolutional filters. Use

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j)$$



parameters W_k and V_k to get different attention values + transform vectors

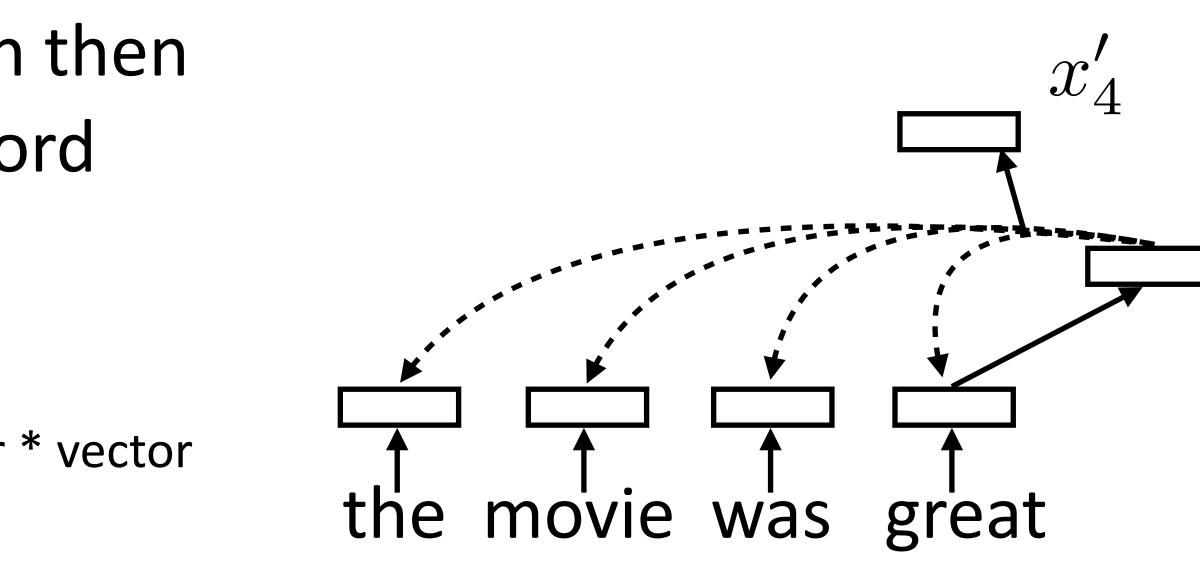
Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = ext{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar

Multiple "heads" analogous to different convolutional filters. Use

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

Vaswani et al. (20)



parameters W_k and V_k to get different attention values + transform vectors

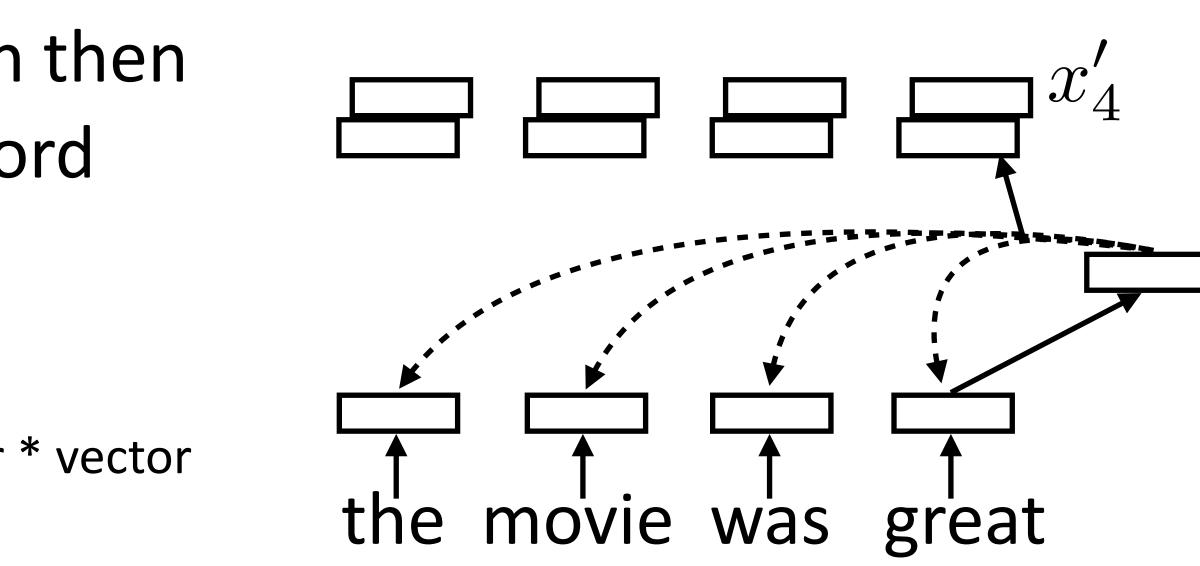
Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = ext{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar

Multiple "heads" analogous to different convolutional filters. Use

$$\alpha_{k,i,j} = \operatorname{softmax}(x_i^\top W_k x_j) \quad x'_{k,i} = \sum_{j=1}^n \alpha_{k,i,j} V_k x_j$$

Vaswani et al. (20)



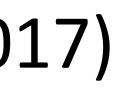
parameters W_k and V_k to get different attention values + transform vectors

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let X = [sent len, embedding dim] be the input sentence
- Query $Q = W^Q X$: these are like the **decoder hidden state** in attention
- Keys $K = W^{K}X$: these control what gets attended to, along with the query
- Values $V = W^{V}X$: these vectors get summed up to form the output

Attention(Q, K, V)

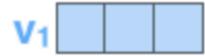
$$) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
 dim of keys



Multi-Head Self Attention



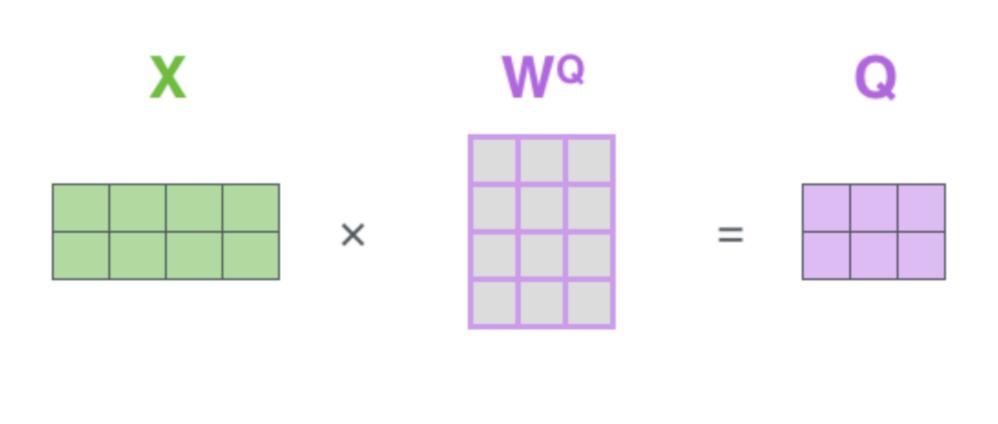
Values



Alammar, The Illustrated Transformer

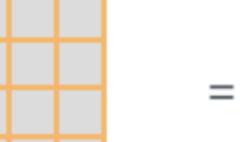
Wv

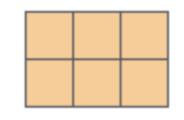
Multi-Head Self Attention



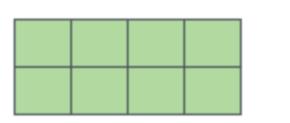
×

 \times

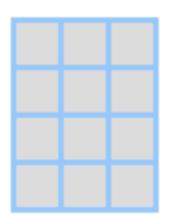


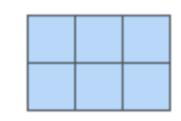


Х

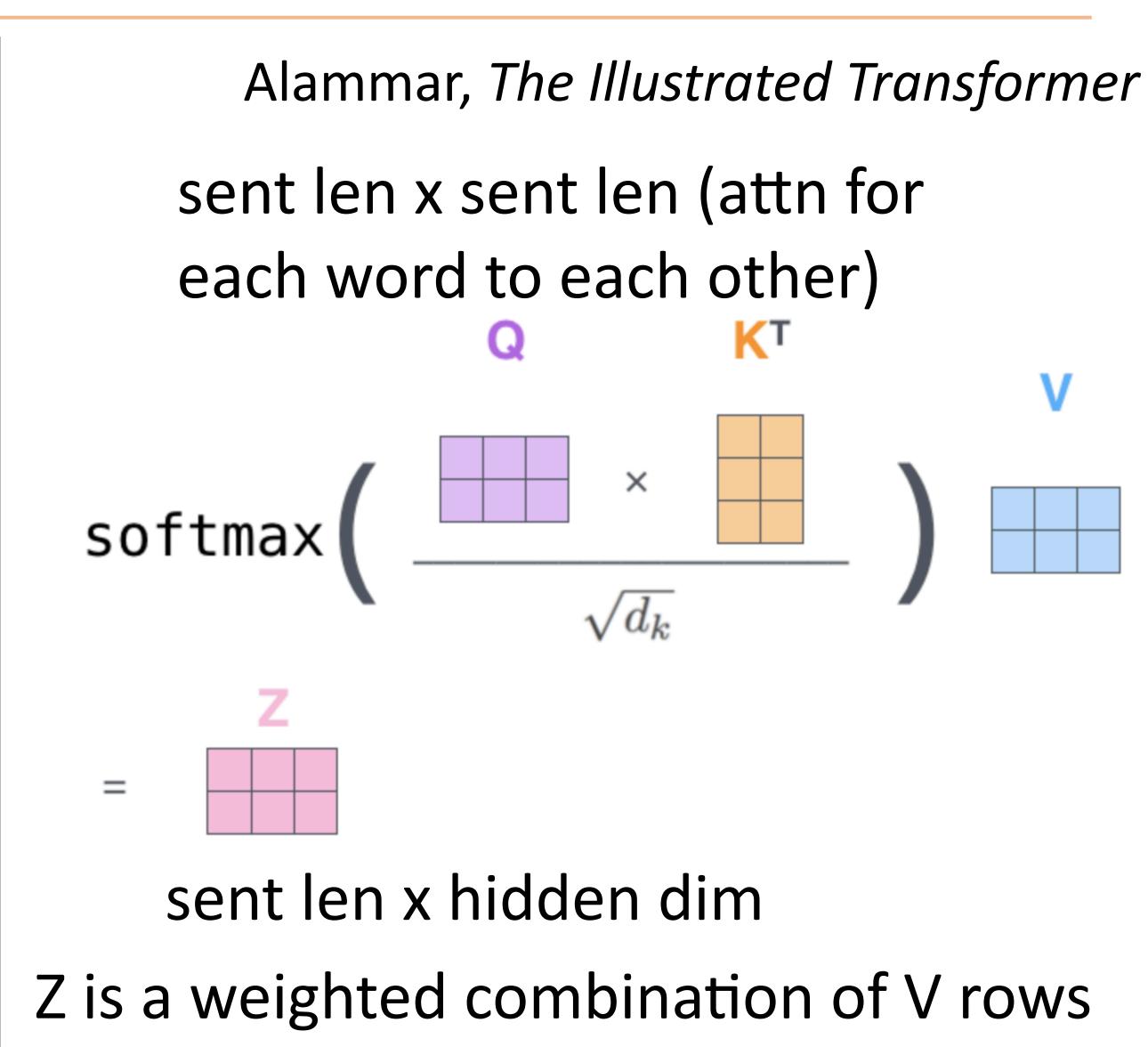


W٧





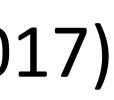
=

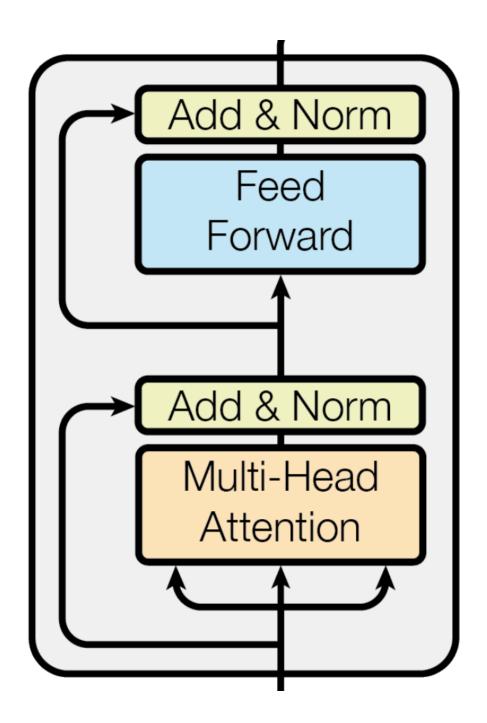


Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

- n = sentence length, d = hidden dim, k = kernel size, r = restricted neighborhood size
- Quadratic complexity, but O(1) sequential operations (not linear like in RNNs) and O(1) "path" for words to inform each other





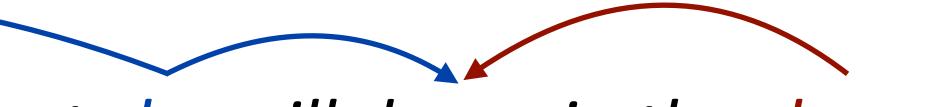
- Alternate multi-head self-attention layers and feedforward layers
- Residual connections let the model "skip" each layer — these are particularly useful for training deep networks

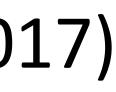
The ballerina is very excited that she will dance in the show.

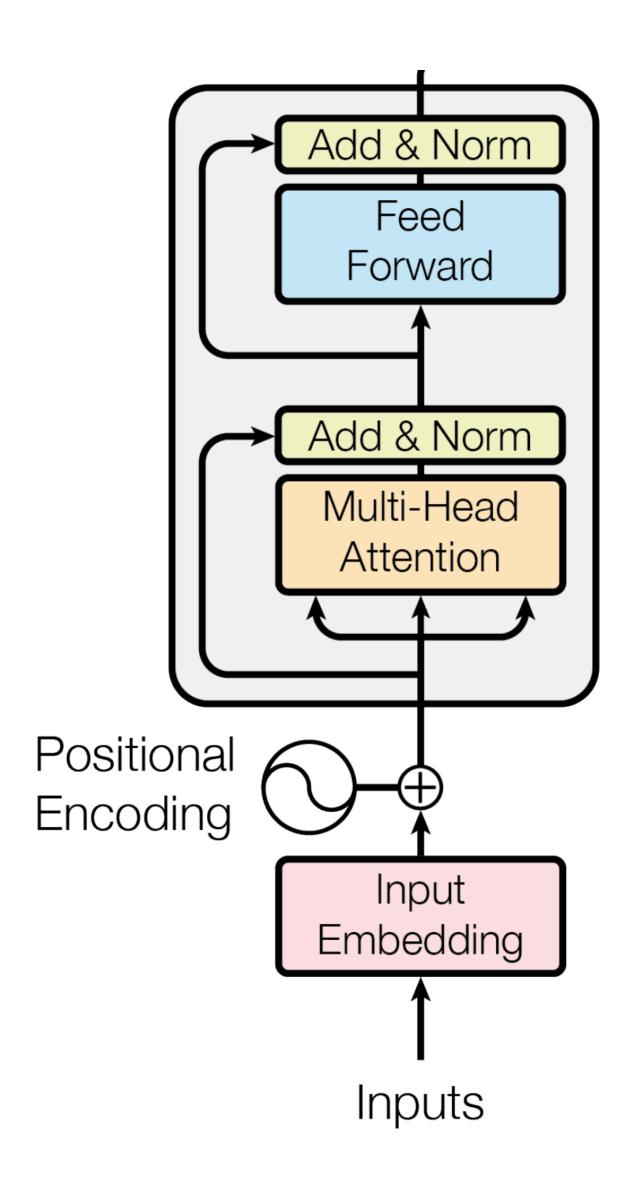
If this is in a longer context, we want words to attend locally

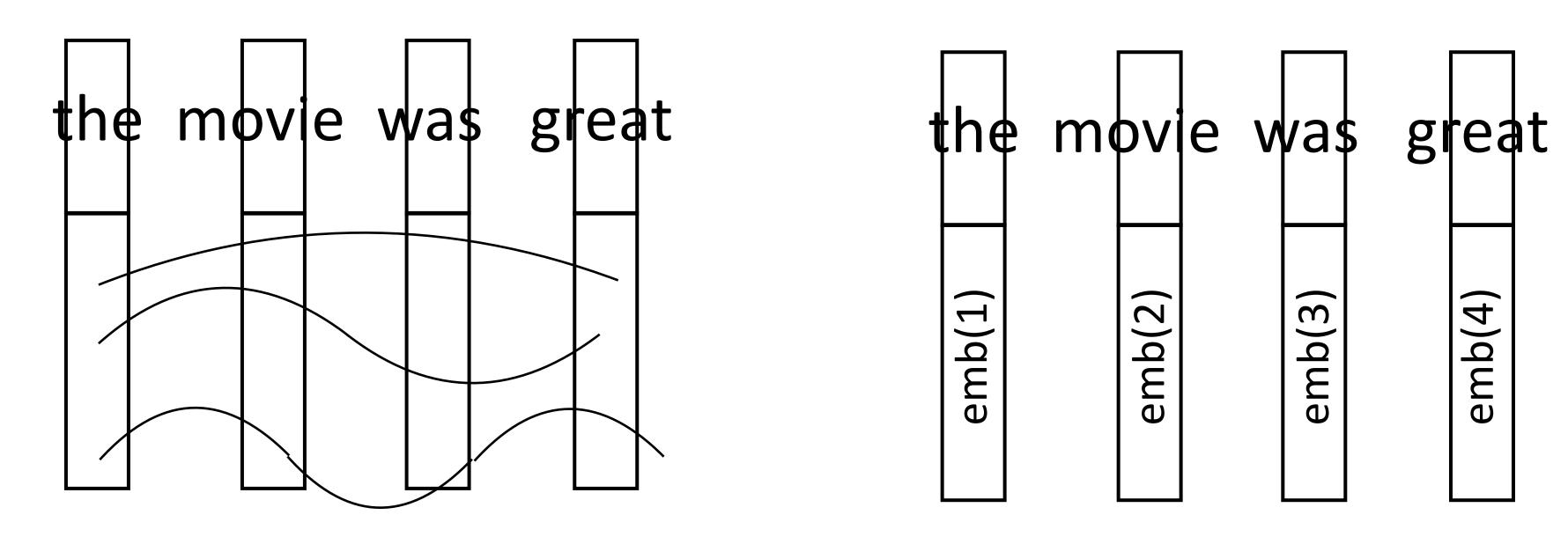
But transformers have no notion of position by default

Transformers: Position Sensitivity







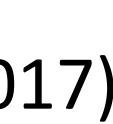


- a one-hot vector

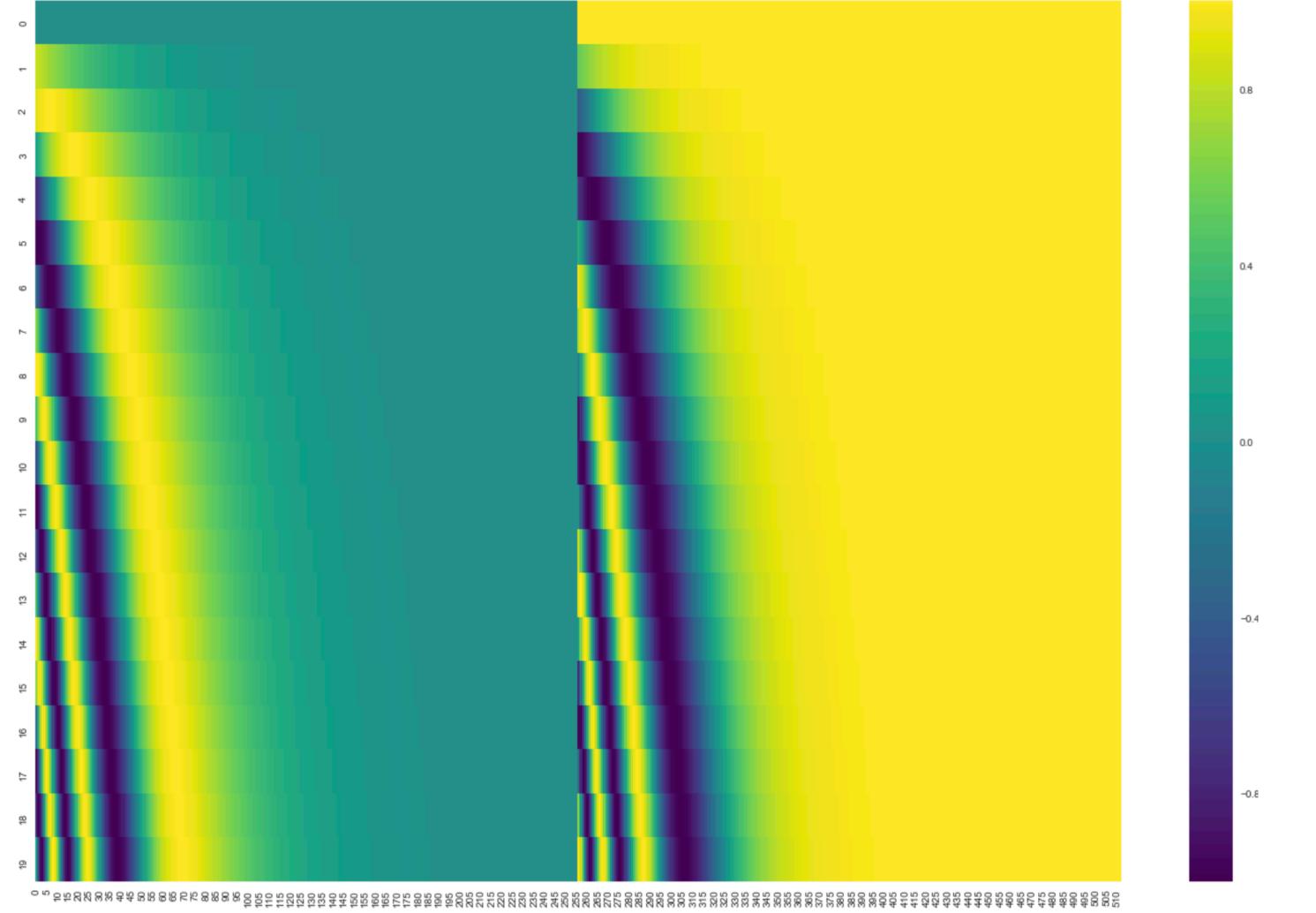
Transformers: Position Sensitivity

Augment word embedding with position embeddings, each dim is a sine/cosine wave of a different frequency. Closer points = higher dot products

Works essentially as well as just encoding position as Vaswani et al. (2017)



Transformers

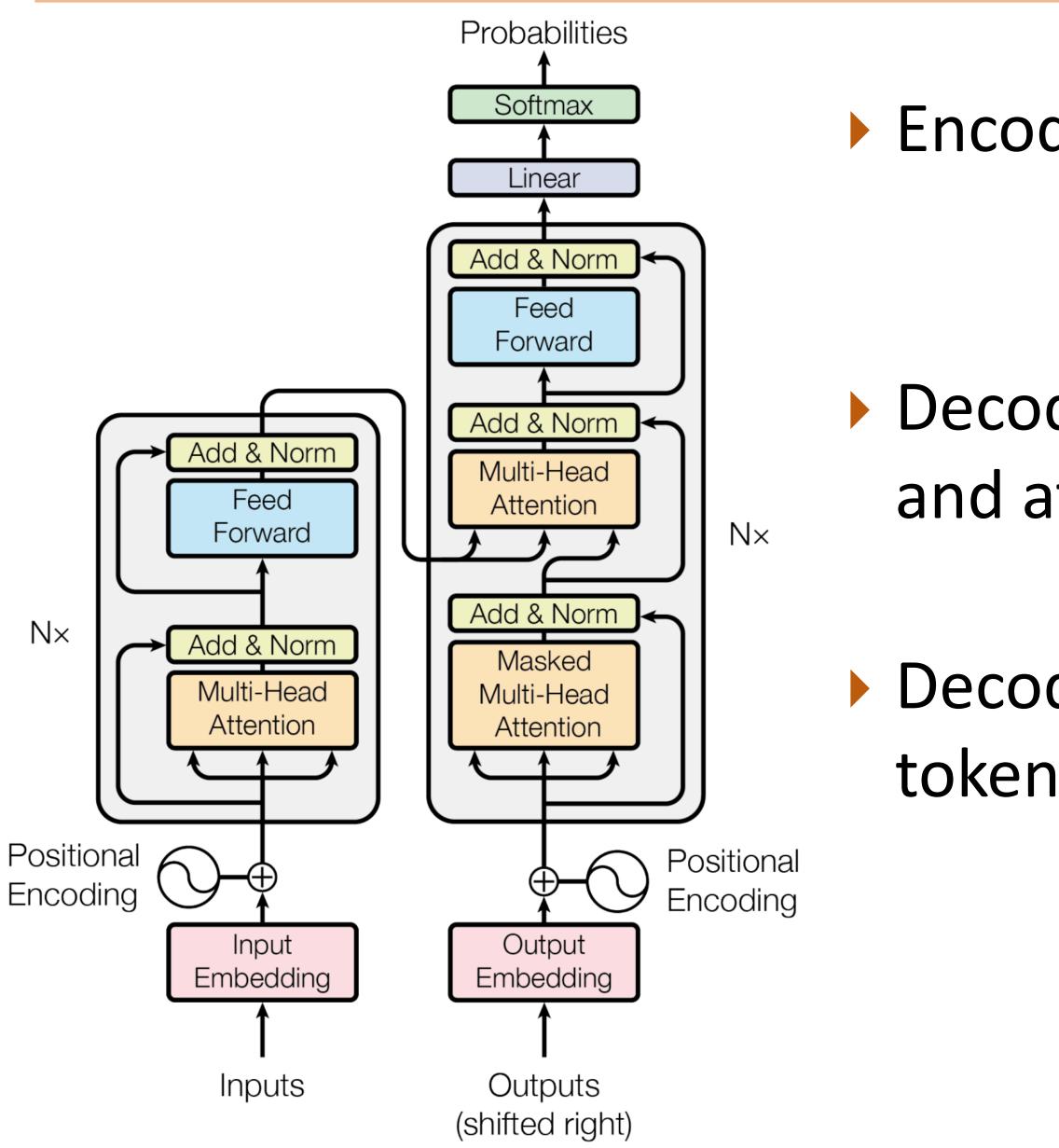


Words

Alammar, The Illustrated Transformer

Embedding dim

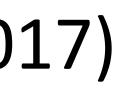
Transformers: Complete Model

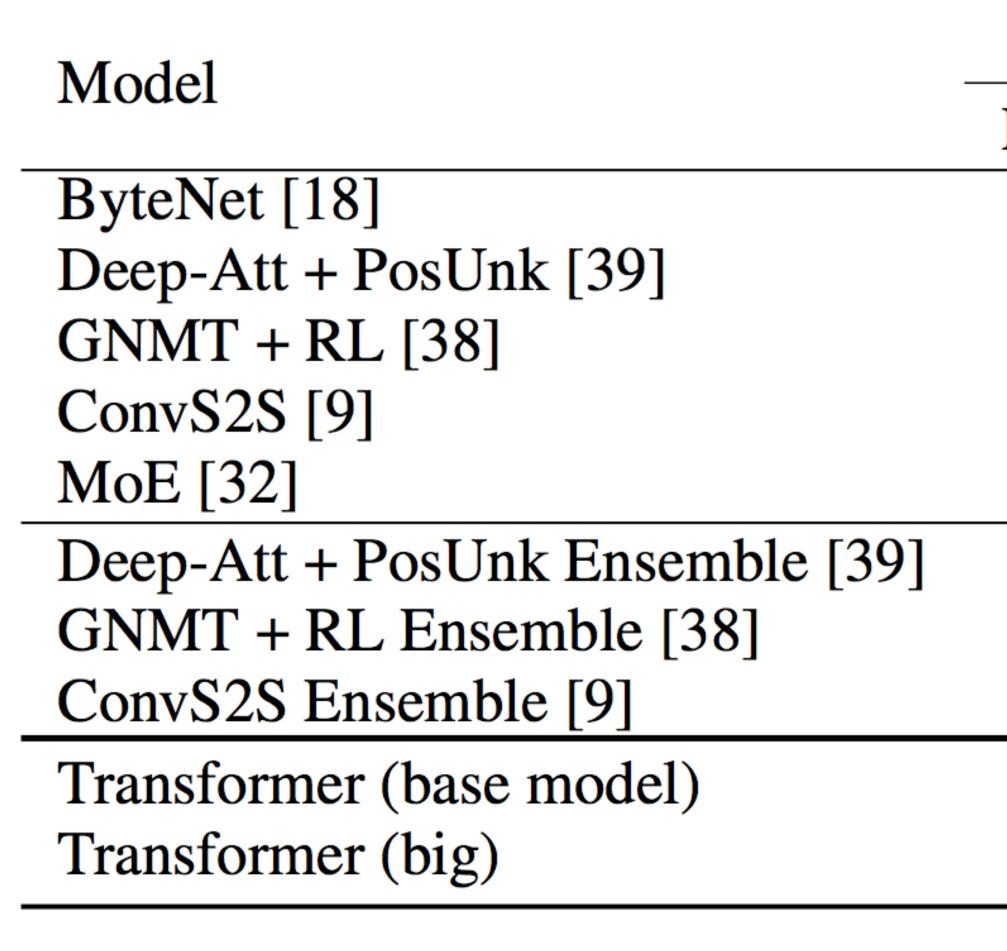


Encoder and decoder are both transformers

Decoder alternates attention over the output and attention over the input as well

Decoder consumes the previous generated tokens but has no recurrent state

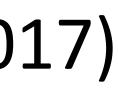




Big = 6 layers, 1000 dim for each token, 16 heads, base = 6 layers + other params halved

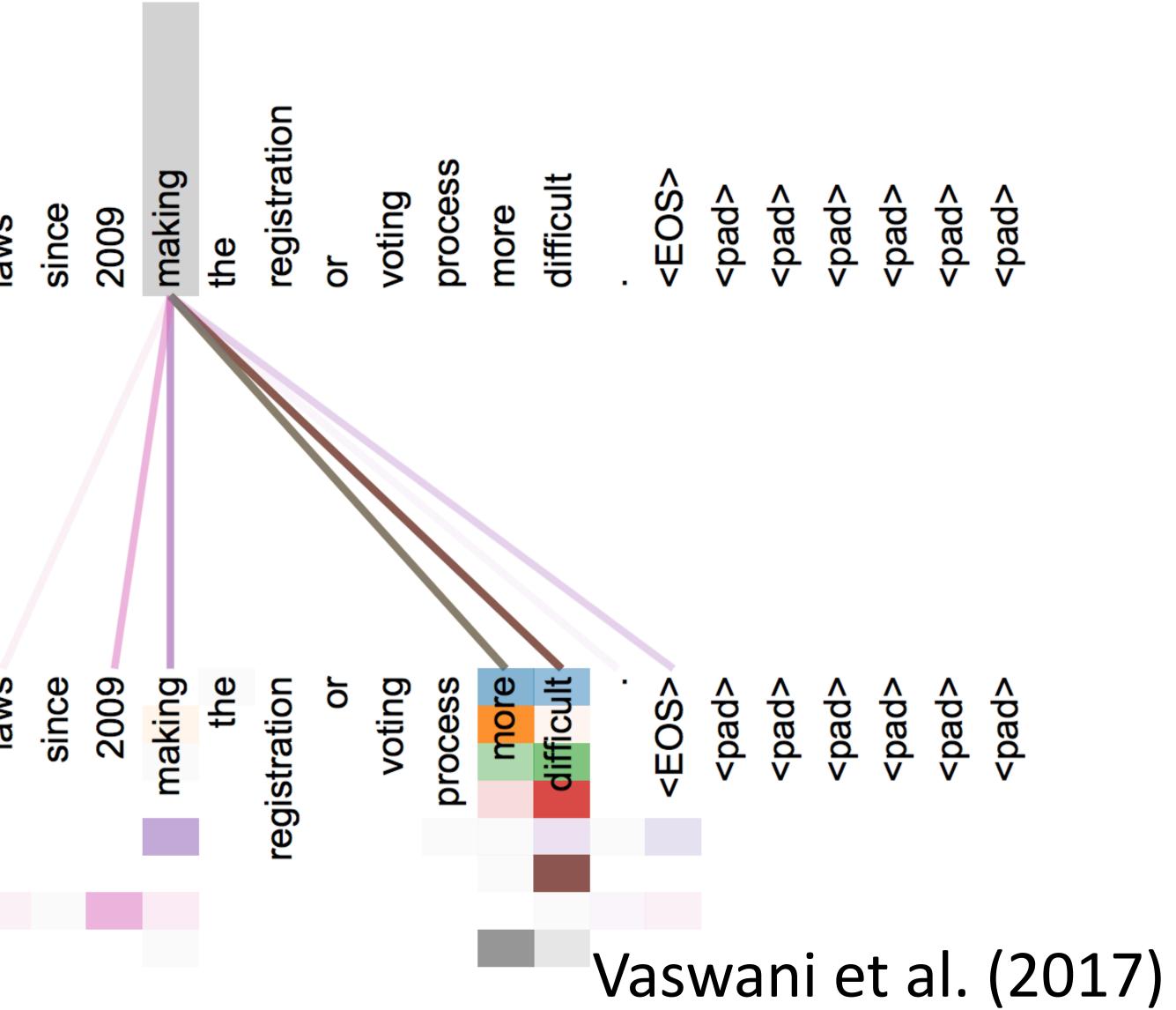
Transformers

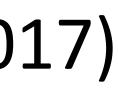
BLEU						
EN-DE EN-FR						
23.75						
	39.2					
24.6	39.92					
25.16	40.46					
26.03	40.56					
	40.4					
26.30	41.16					
26.36	41.29					
27.3	38.1					
28.4	41.8					

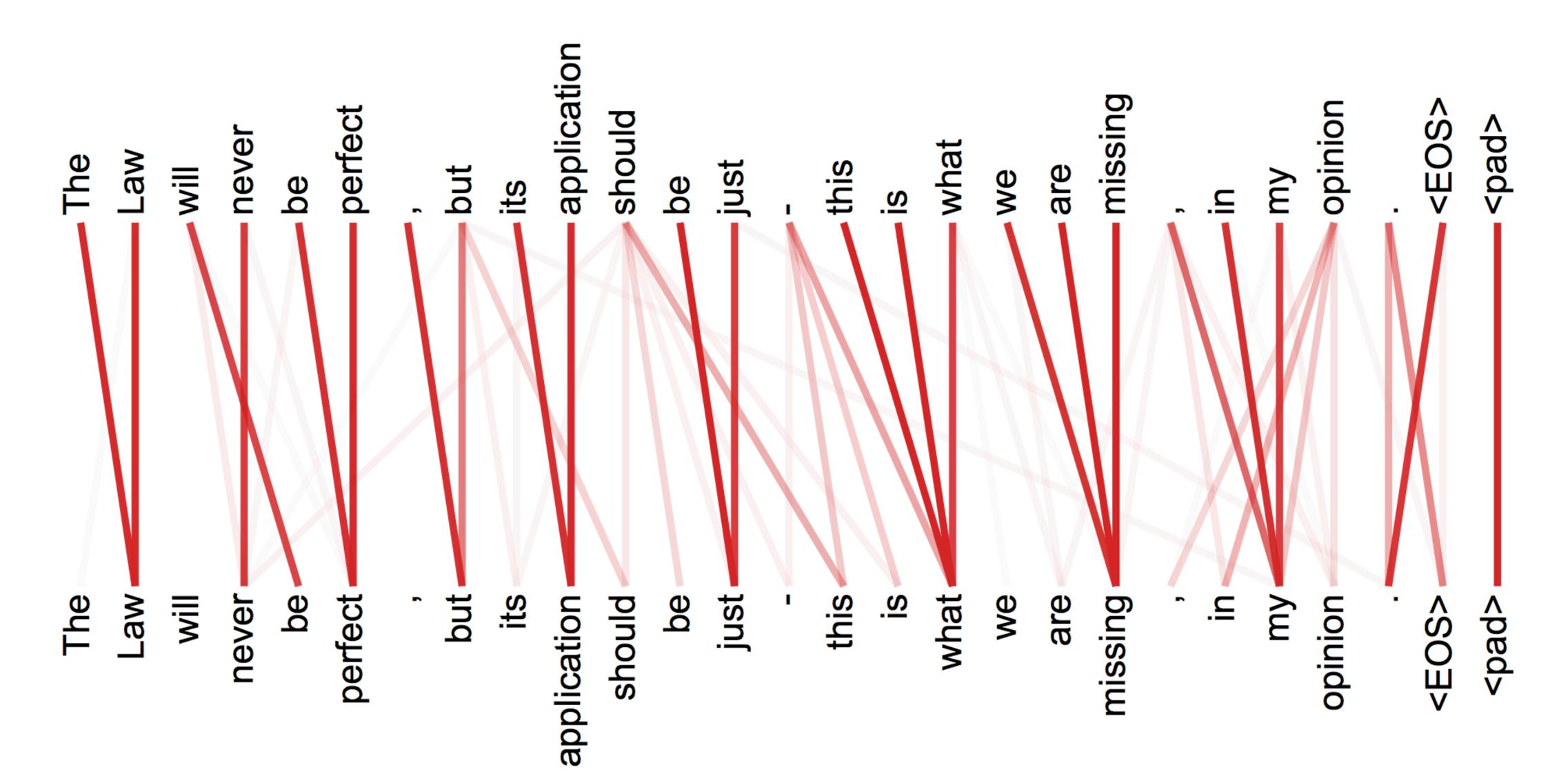


Visualization

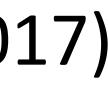
lt	<u>s</u>	S	this	spirit	that	a	majority	of	American	governments	have	passed	new	laws
ł	<u>s</u>	. <u>C</u>	this	spirit	that	σ	majority	of	American	governments	have	passed	new	laws







Visualization



Transformer Implementation

http://nlp.seas.harvard.edu/annotated-transformer/

Apr 3, 2018

from IPython.display import Image Image(filename='images/aiayn.png')

Ashish Vaswani*	Noa
Google Brain	Go
avaswani@google.com	noam

Llion Jones* Google Research llion@google.com

Members

PI Code Publications

The Annotated Transformer

Attention Is All You Need

Jakob Uszkoreit* am Shazeer* Niki Parmar* oogle Brain Google Research Google Research nikip@google.com @google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu usz@google.com

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* [‡] illia.polosukhin@gmail.com

- Can build MT systems with LSTM encoder-decoders, CNNs, or transformers
- Word piece / byte pair models are really effective and easy to use
- State of the art systems are getting pretty good, but lots of challenges remain, especially for low-resource settings
- Next time: pre-trained transformer models (BERT), applied to other tasks