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‣ 4,500,000 classes (all ar$cles in Wikipedia)
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Reading Comprehension

‣ Mul$ple choice ques$ons, 4 classes (but classes change per example)

Richardson (2013)



Binary Classifica$on

‣ Binary classifica$on: one weight vector defines posi$ve and nega$ve 
classes
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‣ Can we just use binary classifiers here?
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‣ How do we reconcile mul$ple posi$ve predic$ons? Highest score?
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Mul$class Classifica$on
‣ Not all classes may even be separable using this approach
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1 1
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3 3
3 3

‣ Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others 
(with these features)
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‣ Again, how to reconcile?
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‣ Binary classifica$on: one weight 
vector defines both classes

‣ Mul$class classifica$on: different 
weights and/or features per class
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Mul$class Classifica$on

‣ Decision rule: 

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space      containing 
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output 
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ The single weight vector approach will generalize to structured output 
spaces, whereas per-class weight vectors won’t

‣ Mul$ple feature vectors, one weight vector

features depend on choice 
of label now! note: this 
isn’t the gold label
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Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y = ) =Health

f(x, y = ) =Sports

‣ Equivalent to having three weight vectors in this case

feature vector blocks for each label

‣ Base feature func$on:

I[contains drug & label = Health]
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Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

argmax

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y = ) =Health

f(x, y = ) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)
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Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ], 
                       I[prev_word=router & tag = VBZ] 
                       I[next_word=the & tag = VBZ] 
                       I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case, 
blocks) highlighted

‣ Extract features with respect to this word:

not saying that the is 
tagged as VBZ! saying that 
the follows the VBZ word

the router  the packets
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Logis$c Regression: Summary

‣ Model:

‣ Learning: gradient ascent on the discrimina$ve log-likelihood

‣ Inference:

“towards gold feature value, away from expecta$on of feature value”

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)
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Score comparison 
is more explicit 
now

slack variables > 0 iff 
example is support vector
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‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`( , ) =HealthSports

HealthScience`( , ) =

3

1
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2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every 
label + loss? No!

‣       = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint 
is Sports; what is      ?

8j8y 2 Y w>f(xj , y
⇤
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‣ Perceptron would make 
no update here
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‣ Plug in the gold y and you get 0, so slack is always nonnega$ve!



Compu$ng the Subgradient

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j



Compu$ng the Subgradient

‣ If            , the example is not a support vector, gradient is zero⇠j = 0

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j



Compu$ng the Subgradient

‣ If            , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise, 

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j )� w>f(xj , y
⇤
j )



Compu$ng the Subgradient

‣ If            , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise, 
@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j )

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j )� w>f(xj , y
⇤
j )



Compu$ng the Subgradient

‣ If            , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise, 

(update looks backwards — 
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j )

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j )� w>f(xj , y
⇤
j )



Compu$ng the Subgradient

‣ If            , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise, 

(update looks backwards — 
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j )

‣ Perceptron-like, but we update away from *loss-augmented* predic$on
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Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j

‣ (Unregularized) gradients:

‣ SVM: 

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

‣ SVM: max over    s to compute gradient. LR: need to sum over    s`(y, y⇤) `(y, y⇤)
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Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Inference: just maxes and simple expecta$ons so far, but will get harder

‣ Training: gradient descent?

‣ Objec$ve:
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large
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‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w  w + ↵g, g =

@

@w
L

‣ What if loss changes quickly in one direc$on and slowly in 
another direc$on?
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large
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Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

w  w + ↵g, g =
@

@w
L
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation
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‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op$mizes quadra$c instantly
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Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op$mizes quadra$c instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w  w + ↵g, g =
@

@w
L

w  w +

✓
@2

@w2
L
◆�1

g



AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters 
that get updated frequently
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large
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AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters 
that get updated frequently

(smoothed) sum of squared 
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

‣ Other techniques for op$mizing deep models — more later!
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Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize 
likelihood

‣ …but not always: a linear model or neural network can be trained to 
minimize any differen$able loss func$on 

‣ Inference governs what learning: need to be able to compute 
expecta$ons to use logis$c regression


