
Mul$class Classifica$on

Alan Ri0er
(many slides from Greg Durrett, Vivek Srikumar, Stanford CS231n)

This Lecture

‣ Mul$class fundamentals

‣ Mul$class logis$c regression

‣ Mul$class SVM

‣ Feature extrac$on

‣ Op$miza$on

Mul$class Fundamentals

Text Classifica$on

~20 classes

Sports

Health

Image Classifica$on

‣ Thousands of classes (ImageNet)

Car

Dog

En$ty Linking

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

?
?

En$ty Linking

‣ 4,500,000 classes (all ar$cles in Wikipedia)

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

?
?

Reading Comprehension

‣ Mul$ple choice ques$ons, 4 classes (but classes change per example)

Richardson (2013)

Binary Classifica$on

‣ Binary classifica$on: one weight vector defines posi$ve and nega$ve
classes

+++ +
+ +
++

- - -
-

--
--

-

Mul$class Classifica$on

1 1
1 1

1 12
2

22

33 3
3

Mul$class Classifica$on

1 1
1 1

1 12
2

22

33 3
3

‣ Can we just use binary classifiers here?

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

1 1
1 1

1 12
2

22

33 3
3

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

1 1
1 1

1 12
2

22

33 3
3

‣ How do we reconcile mul$ple posi$ve predic$ons? Highest score?

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

‣ Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others
(with these features)

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

1 1
1 1

1 12
2

22

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

1 1
1 1

1 1

33 3
3

1 1
1 1

1 12
2

22

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

1 1
1 1

1 1

33 3
3

1 1
1 1

1 12
2

22

‣ Again, how to reconcile?

Mul$class Classifica$on

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classifica$on: one weight
vector defines both classes

Mul$class Classifica$on

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classifica$on: one weight
vector defines both classes

‣ Mul$class classifica$on: different
weights and/or features per class

Mul$class Classifica$on

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classifica$on: one weight
vector defines both classes

‣ Mul$class classifica$on: different
weights and/or features per class

Mul$class Classifica$on

Mul$class Classifica$on
‣ Formally: instead of two labels, we have an output space containing

a number of possible classes
Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

Mul$class Classifica$on

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

Mul$class Classifica$on

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

features depend on choice
of label now! note: this
isn’t the gold label

Mul$class Classifica$on

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

‣ Mul$ple feature vectors, one weight vector

features depend on choice
of label now! note: this
isn’t the gold label

Mul$class Classifica$on

‣ Decision rule:

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ Mul$ple feature vectors, one weight vector

features depend on choice
of label now! note: this
isn’t the gold label

Mul$class Classifica$on

‣ Decision rule:

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ The single weight vector approach will generalize to structured output
spaces, whereas per-class weight vectors won’t

‣ Mul$ple feature vectors, one weight vector

features depend on choice
of label now! note: this
isn’t the gold label

Feature Extrac$on

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball]
‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]
‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

f(x, y =) =Health

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]f(x, y =) =Health

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]f(x, y =) =Health

feature vector blocks for each label

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

feature vector blocks for each label

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

feature vector blocks for each label

‣ Base feature func$on:

I[contains drug & label = Health]

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

‣ Equivalent to having three weight vectors in this case

feature vector blocks for each label

‣ Base feature func$on:

I[contains drug & label = Health]

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

=

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

argmax

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)

Another example: POS tagging
blocks

Another example: POS tagging
blocksthe router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ],
 I[prev_word=router & tag = VBZ]
 I[next_word=the & tag = VBZ]
 I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ],
 I[prev_word=router & tag = VBZ]
 I[next_word=the & tag = VBZ]
 I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

not saying that the is
tagged as VBZ! saying that
the follows the VBZ word

the router the packets

Mul$class Logis$c Regression

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

‣ Compare to binary:

sum over output
space to normalize

P (y = 1|x) = exp(w>f(x))

1 + exp(w>f(x))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

‣ Compare to binary:

nega$ve class implicitly had
f(x, y=0) = the zero vector

sum over output
space to normalize

P (y = 1|x) = exp(w>f(x))

1 + exp(w>f(x))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Softmax
function

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Why? Interpret raw classifier scores as probabili/es

Softmax
function

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Why? Interpret raw classifier scores as probabili/es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

1.00
0.00
0.00

correct (gold)
probabili$es

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

1.00
0.00
0.00

correct (gold)
probabili$es

too many drug trials,
too few pa5ents

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

1.00
0.00
0.00

correct (gold)
probabili$es

too many drug trials,
too few pa5ents

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

log(0.21) = - 1.56

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

‣ Training: maximize L(x, y) =
nX

j=1

logP (y⇤j |xj)

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

‣ Training: maximize

=
nX

j=1

w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

!
L(x, y) =

nX

j=1

logP (y⇤j |xj)

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

gold feature value

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

gold feature value

model’s expecta$on of
feature value

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0]gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3]
update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]

update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]

new Pw(y|x) = [0.89, 0.10, 0.01]

update :w>f(x, y) + `(y, y⇤)

Logis$c Regression: Summary

‣ Model: Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Logis$c Regression: Summary

‣ Model:

‣ Inference:

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)

Logis$c Regression: Summary

‣ Model:

‣ Learning: gradient ascent on the discrimina$ve log-likelihood

‣ Inference:

“towards gold feature value, away from expecta$on of feature value”

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)

Mul$class SVM

Sox Margin SVM

Sox Margin SVM

Minimize �kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Sox Margin SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Sox Margin SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Image credit: Lang Van Tran

Mul$class SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Mul$class SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Mul$class SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

slack variables > 0 iff
example is support vector

Mul$class SVM

Correct predic$on now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

slack variables > 0 iff
example is support vector

Mul$class SVM

Correct predic$on now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Score comparison
is more explicit
now

slack variables > 0 iff
example is support vector

Mul$class SVM

Correct predic$on now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

The 1 that was here is
replaced by a loss
func$on

Score comparison
is more explicit
now

slack variables > 0 iff
example is support vector

Training (loss-augmented)

Training (loss-augmented)

‣ Are all decisions equally costly?

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few pa5ents

Health

SportsSports

Science

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSportsPredicted : bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`(,) =HealthSports 3

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`(,) =HealthSports

HealthScience`(,) =

3

1

Mul$class SVM
8j8y 2 Y w>f(xj , y

⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Mul$class SVM

Health Science Sports Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0
1.8+1

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

⇠j

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

⇠j

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

‣ Perceptron would make
no update here

⇠j

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

‣ Plug in the gold y and you get 0, so slack is always nonnega$ve!

Compu$ng the Subgradient

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,
@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

(update looks backwards —
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

(update looks backwards —
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

‣ Perceptron-like, but we update away from *loss-augmented* predic$on

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM: f(x, y⇤)� f(x, ymax) (loss-augmented max)

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM:

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM:

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

‣ SVM: max over s to compute gradient. LR: need to sum over s`(y, y⇤) `(y, y⇤)

Op$miza$on

Recap
‣ Four elements of a machine learning method:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Objec$ve:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Inference: just maxes and simple expecta$ons so far, but will get harder

‣ Objec$ve:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Inference: just maxes and simple expecta$ons so far, but will get harder

‣ Training: gradient descent?

‣ Objec$ve:

Op$miza$on

Op$miza$on

‣ Stochas$c gradient *ascent*

Op$miza$on

‣ Stochas$c gradient *ascent*
w w + ↵g, g =

@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201820

Optimization

W_1

W_2

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201821

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

‣ What if loss changes quickly in one direc$on and slowly in
another direc$on?

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201821

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

‣ What if loss changes quickly in one direc$on and slowly in
another direc$on?

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

‣ What if loss changes quickly in one direc$on and slowly in
another direc$on?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201822

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Op$miza$on

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201825

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ What if the loss func$on has a local minima or saddle point?

Op$miza$on

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201825

Optimization: Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

‣ What if the loss func$on has a local minima or saddle point?

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

w w + ↵g, g =
@

@w
L

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201854

First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201855

Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient
‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op$mizes quadra$c instantly

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op$mizes quadra$c instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201837

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 201821

Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

‣ Other techniques for op$mizing deep models — more later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

Summary

Summary
‣ Design tradeoffs need to reflect interac$ons:

Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize
likelihood

Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize
likelihood

‣ …but not always: a linear model or neural network can be trained to
minimize any differen$able loss func$on

Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize
likelihood

‣ …but not always: a linear model or neural network can be trained to
minimize any differen$able loss func$on

‣ Inference governs what learning: need to be able to compute
expecta$ons to use logis$c regression

