Lecture 4: Sequence Models I

Alan Ritter

This Lecture

- Sequence modeling
- HMMs for POS tagging
- HMM parameter estimation
- Viterbi, forward-backward

Guest Lecture on Oct 11

Chenhao Tan
University of Chicago
9th floor Coda Atrium

(https://chenhaot.com/)

Meet TAs at II:45am (Oct II) in the Coda Lobby

No class at the regular time

Linguistic Structures

- Language is tree-structured

Linguistic Structures

- Language is tree-structured

I ate the spaghetti with chopsticks

Linguistic Structures

- Language is tree-structured

I ate the spaghetti with chopsticks
I ate the spaghetti with meatballs

Linguistic Structures

- Language is tree-structured

I ate the spaghetti with chopsticks I ate the spaghetti with meatballs

Linguistic Structures

- Language is tree-structured

Linguistic Structures

- Language is tree-structured

- Understanding syntax fundamentally requires trees - the sentences have the same shallow analysis

Linguistic Structures

- Language is tree-structured

- Understanding syntax fundamentally requires trees - the sentences have the same shallow analysis

PRP VBZ DT NN IN NNS PRP VBZ DT NN IN NNS
I ate the spaghetti with chopsticks I ate the spaghetti with meatballs

Linguistic Structures

- Language is sequentially structured: interpreted in an online way

Linguistic Structures

- Language is sequentially structured: interpreted in an online way

"Put the apple on the towel in the box."

Linguistic Structures

- Language is sequentially structured: interpreted in an online way

"Put the apple on the towel in the box."

"Put the apple on the towel in the box."

"Put the apple that's on the towel in the box."

POS Tagging

- What tags are out there?

Ghana 's ambassador should have set up the big meeting in DC yesterday .

POS Tagging

Open class (lexical) words					
Nouns		Verbs Main see registered	Adjectives yellow		
Proper IBM Italy	Common		Adverbs slowly		
	cat / cats snow		Numbers $122,312$ one	... more	
Closed class (functional)		Auxiliary can had			
Determiners the some			Prepositions to with		
Conjunctions and or			Particles	off up	
Pronouns	he its				more

POS Tagging

POS Tagging

Fed raises interest rates 0.5 percent

POS Tagging

Fed raises interest rates 0.5 percent

POS Tagging

VBD VBN
NNP
Fed raises interest rates 0.5 percent

POS Tagging

VBD
VBN VBZ
NNP NNS
Fed raises interest rates 0.5 percent

POS Tagging

```
VBD VB
VBN VBZ VBP
NNP NNS NN
Fed raises interest rates 0.5 percent
```


POS Tagging

```
VBD VB
VBN VBZ VBP VBZ
NNP NNS NN NNS
Fed raises interest rates 0.5 percent
```


POS Tagging

```
VBD VB
VBN VBZ VBP VBZ
NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent
```


POS Tagging

VBD	VB		
VBN VBZ	VBP	VBZ	
NNP NNS	NN	NNS CD	NN
Fed raises interest rates 0.5 percent			

Fed raises interest rates 0.5 percent

POS Tagging

VBD	VB		
VBN VBZ	VBP	VBZ	
NNP NNS	NN	NNS CD NN	
Fed raises interest rates 0.5 percent			

increase interest rates 0.5\%

VBD VB
VBN VBZ VBP VBZ
NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent

POS Tagging

VBD	VB		
VBN VBZ	VBP	VBZ	
NNP NNS	NN	NNS CD NN	
Fed raises interest rates 0.5 percent			

Fed raises interest rates 0.5 percent

- Other paths are also plausible but even more semantically weird...

POS Tagging

VBD	VB		
VBN VBZ	VBP	VBZ	
NNP NNS	NN	NNS CD NN	
Fed raises interest rates 0.5 percent			

Fed raises interest rates 0.5 percent

- Other paths are also plausible but even more semantically weird...
- What governs the correct choice? Word + context

POS Tagging

VBD	VB		
VBN VBZ	VBP	VBZ	
NNP NNS	NN	NNS CD NN	
Fed raises interest rates 0.5 percent			

Fed raises interest rates 0.5 percent

- Other paths are also plausible but even more semantically weird...
- What governs the correct choice? Word + context
- Word identity: most words have <=2 tags, many have one (percent, the)
- Context: nouns start sentences, nouns follow verbs, etc.

POS Tagging

CC	conjunction, coordinating	and both but either or
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one
DT	determiner	a all an every no that the
EX	existential there	there
FW	foreign word	gemeinschaft hund ich jeux
IN	preposition or conjunction, subordinating	among whether out on by if
JJ	adjective or numeral, ordinal	third ill-mannered regrettable
JJR	adjective, comparative	braver cheaper taller
JJS	adjective, superlative	bravest cheapest tallest
MD	modal auxiliary	can may might will would
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool
NNPS	noun, proper, plural	Americans Materials States
NNS	noun, common, plural	undergraduates bric-a-brac averages
POS	genitive marker	's
PRP	pronoun, personal	hers himself it we them
PRPS	pronoun, possessive	her his mine my our ours their thy your
RB	adverb	occasionally maddeningly adventurously
RBR	adverb, comparative	further gloomier heavier less-perfectly
RBS	adverb, superlative	best biggest nearest worst
RP	particle	aboard away back by on open through
TO	"to" as preposition or infinitive marker	to
UH	interjection	huh howdy uh whammo shucks heck
VB	verb, base form	ask bring fire see take
VBD	verb, past tense	pleaded swiped registered saw
VBG	verb, present participle or gerund	stirring focusing approaching erasing
VBN	verb, past participle	dilapidated imitated reunifed unsettled
VBP	verb, present tense, not 3rd person singular	twist appear comprise mold postpone
VBZ	verb, present tense, 3rd person singular	bases reconstructs marks uses
WDT	WH-determiner	that what whatever which whichever
WP	WH-pronoun	that what whatever which who whom
WP\$	WH-pronoun, possessive	whose
WRB	Wh-adverb	however whenever where why

What is this good for?

What is this good for?

- Text-to-speech: record, lead

What is this good for?

- Text-to-speech: record, lead
- Preprocessing step for syntactic parsers

What is this good for?

- Text-to-speech: record, lead
- Preprocessing step for syntactic parsers
- Domain-independent disambiguation for other tasks

What is this good for?

- Text-to-speech: record, lead
- Preprocessing step for syntactic parsers
- Domain-independent disambiguation for other tasks
- (Very) shallow information extraction

Sequence Models

Sequence Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

Sequence Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- POS tagging: \boldsymbol{x} is a sequence of words, \boldsymbol{y} is a sequence of tags

Sequence Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- POS tagging: \boldsymbol{x} is a sequence of words, \boldsymbol{y} is a sequence of tags
- Today: generative models $\mathrm{P}(\boldsymbol{x}, \boldsymbol{y})$; discriminative models next time

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- Model the sequence of y as a Markov process (dynamics model)

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- Model the sequence of y as a Markov process (dynamics model)
- Markov property: future is conditionally independent of the past given the present

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- Model the sequence of y as a Markov process (dynamics model)
- Markov property: future is conditionally independent of the past given the present

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- Model the sequence of y as a Markov process (dynamics model)
- Markov property: future is conditionally independent of the past given the present
$y_{1} \rightarrow y_{2} \rightarrow y_{3} \quad P\left(y_{3} \mid y_{1}, y_{2}\right)=P\left(y_{3} \mid y_{2}\right)$
- Lots of mathematical theory about how Markov chains behave

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$
- Model the sequence of y as a Markov process (dynamics model)
- Markov property: future is conditionally independent of the past given the present
$y_{1} \rightarrow y_{2} \rightarrow y_{3} \quad P\left(y_{3} \mid y_{1}, y_{2}\right)=P\left(y_{3} \mid y_{2}\right)$
- Lots of mathematical theory about how Markov chains behave
- If y are tags, this roughly corresponds to assuming that the next tag only depends on the current tag, not anything before

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

Hidden Markov Models

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

$$
P(\mathbf{y}, \mathbf{x})=P\left(y_{1}\right) \prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

$$
P(\mathbf{y}, \mathbf{x})=\underbrace{P\left(y_{1}\right)}_{\begin{array}{c}
\text { Initial } \\
\text { distribution }
\end{array}} \prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

$$
P(\mathbf{y}, \mathbf{x})=\underbrace{P\left(y_{1}\right)}_{\begin{array}{c}
\text { Initial } \\
\text { distribution } \\
\text { probabilities }
\end{array}} \underbrace{\prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right)}_{\text {Transition }} \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

$$
P(\mathbf{y}, \mathbf{x})=\underbrace{P\left(y_{1}\right)}_{\begin{array}{c}
\text { Initial } \\
\text { distribution }
\end{array}} \underbrace{\prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right)}_{\begin{array}{c}
\text { Transition } \\
\text { probabilities }
\end{array}} \underbrace{\prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)}_{\begin{array}{c}
\text { Emission } \\
\text { probabilities }
\end{array}}
$$

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

- Observation (x) depends only on current state (y)

$$
P(\mathbf{y}, \mathbf{x})=\underbrace{P\left(y_{1}\right)}_{\begin{array}{c}
\text { Initial } \\
\text { distribution } \\
\text { Transition }
\end{array}} \underbrace{\prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right)}_{\begin{array}{c}
\text { Emission } \\
\text { probabilities } \\
\text { probabilities }
\end{array}}
$$

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

$$
P(\mathbf{y}, \mathbf{x})=\underbrace{P\left(y_{1}\right)}_{\begin{array}{c}
\text { Initial } \\
\text { distribution } \\
\text { Transition } \\
\text { probabilities }
\end{array}} \underbrace{\prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right)}_{\begin{array}{c}
\text { Emission } \\
\text { probabilities }
\end{array}}
$$

- Observation (x) depends only on current state (y)
- Multinomials: tag xtag transitions, tag x word emissions

Hidden Markov Models

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

$$
P(\mathbf{y}, \mathbf{x})=\underbrace{P\left(y_{1}\right)}_{\begin{array}{c}
\text { Initial } \\
\text { distribution } \\
\text { Transition }
\end{array}} \underbrace{\prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right)}_{\begin{array}{c}
\text { Emission } \\
\text { probabilities } \\
\text { probabilities }
\end{array}}
$$

- Observation (x) depends only on current state (y)
- Multinomials: tag xtag transitions, tag x word emissions
- $\mathrm{P}(x \mid y)$ is a distribution over all words in the vocabulary
- not a distribution over features (but could be!)

Transitions in POS Tagging

- Dynamics model $P\left(y_{1}\right) \prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right)$
VBD
VBN VBZ
VB
VBP
NNP NNS NN NNS CD NN.

NNP - proper noun, singular
VBZ - verb, 3rd ps. sing. present
NN - noun, singular or mass
Fed raises interest rates 0.5 percent .

Transitions in POS Tagging

- Dynamics model $P\left(y_{1}\right) \prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right)$
VBD
VBN VBZ
VB
NNP NNS VN VBZ \quad NNS CD NN .

NNP - proper noun, singular
VBZ - verb, 3rd ps. sing. present
NN - noun, singular or mass
Fed raises interest rates 0.5 percent .
${ }^{\bullet} P\left(y_{1}=\mathrm{NNP}\right)$ likely because start of sentence

Transitions in POS Tagging

$\begin{array}{llll}\text { - Dynamics model } & P\left(y_{1}\right) \prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right) \\ \text { VBD } & \text { VB } & \\ \text { VBN VBZ } & \text { VBP } & \text { VBZ } \\ \text { NNP NNS NN NNS CD NN . }\end{array}$

NNP - proper noun, singular
VBZ - verb, 3rd ps. sing. present
NN - noun, singular or mass Fed raises interest rates 0.5 percent .

- $P\left(y_{1}=\mathrm{NNP}\right)$ likely because start of sentence
- $P\left(y_{2}=\mathrm{VBZ} \mid y_{1}=\mathrm{NNP}\right)$ likely because verb often follows noun

Transitions in POS Tagging

$\begin{array}{lll}\text { - Dynamics model } & P\left(y_{1}\right) \prod_{i=2}^{n} P\left(y_{i} \mid y_{i-1}\right) \\ \text { VBD } & \text { VB } & \\ \text { VBN VBZ } & \text { VBP } & \text { VBZ } \\ \text { NNP NNS NN NNS CD NN. }\end{array}$

NNP - proper noun, singular
VBZ - verb, 3rd ps. sing. present
NN - noun, singular or mass Fed raises interest rates 0.5 percent .

- $P\left(y_{1}=\mathrm{NNP}\right)$ likely because start of sentence
${ }^{-} P\left(y_{2}=\mathrm{VBZ} \mid y_{1}=\mathrm{NNP}\right)$ likely because verb often follows noun
- $P\left(y_{3}=\mathrm{NN} \mid y_{2}=\mathrm{VBZ}\right)$ direct object follows verb, other verb rarely follows past tense verb (main verbs can follow modals though!)

Estimating Transitions

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

Estimating Transitions

NNP VBZ
 Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data

Estimating Transitions

NNP VBZ
 Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- P(tag | NN)

Estimating Transitions

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- $P($ tag $\mid N N)=(0.5 ., 0.5$ NNS $)$

Estimating Transitions

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- $P($ tag $\mid N N)=(0.5 ., 0.5$ NNS $)$
- How to smooth?

Estimating Transitions

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- P(tag | NN) = (0.5 ., 0.5 NNS)
- How to smooth?
- One method: smooth with unigram distribution over tags

Estimating Transitions

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- $P($ tag $\mid N N)=(0.5 ., 0.5$ NNS $)$
- How to smooth?
- One method: smooth with unigram distribution over tags

$$
P\left(\operatorname{tag} \mid \operatorname{tag}_{-1}\right)=(1-\lambda) \hat{P}\left(\operatorname{tag} \mid \operatorname{tag}_{-1}\right)+\lambda \hat{P}(\operatorname{tag})
$$

Estimating Transitions

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

- Similar to Naive Bayes estimation: maximum likelihood solution = normalized counts (with smoothing) read off supervised data
- P(tag | NN) = (0.5 ., 0.5 NNS)
- How to smooth?
- One method: smooth with unigram distribution over tags

$$
\begin{gathered}
\left.P\left(\operatorname{tag} \operatorname{tag}_{-1}\right)=(1-\lambda) \hat{P}(\operatorname{tag}) \operatorname{tag}_{-1}\right)+\lambda \hat{P}(\operatorname{tag}) \\
\hat{P}=\text { empirical distribution (read off from data) }
\end{gathered}
$$

Emissions in POS Tagging

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

Emissions in POS Tagging

NNP VBZ
 Fed raises interest rates 0.5 percent .

- Emissions $\mathrm{P}(x \mid y)$ capture the distribution of words occurring with a given tag

Emissions in POS Tagging

NNP VBZ NN NNS CD NN .

Fed raises interest rates 0.5 percent .

- Emissions $\mathrm{P}(x \mid y)$ capture the distribution of words occurring with a given tag
- $P($ word $\mid N N)=(0.05$ person, 0.04 official, 0.03 interest, 0.03 percent ...)

Emissions in POS Tagging

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

- Emissions $\mathrm{P}(x \mid y)$ capture the distribution of words occurring with a given tag
- $\mathrm{P}($ word $\mid \mathrm{NN})=(0.05$ person, 0.04 official, 0.03 interest, 0.03 percent ...)
- When you compute the posterior for a given word's tags, the distribution favors tags that are more likely to generate that word

Emissions in POS Tagging

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percent .

- Emissions $\mathrm{P}(x \mid y)$ capture the distribution of words occurring with a given tag
- $\mathrm{P}($ word $\mid \mathrm{NN})=(0.05$ person, 0.04 official, 0.03 interest, 0.03 percent ...)
- When you compute the posterior for a given word's tags, the distribution favors tags that are more likely to generate that word
- How should we smooth this?

Estimating Emissions

NNP VBZ NN NNS CD NN
Fed raises interest rates 0.5 percent

Estimating Emissions

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- $\mathrm{P}($ word | NN $)=(0.5$ interest, 0.5 percent $)$ - hard to smooth!

Estimating Emissions

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- P(word | NN) = (0.5 interest, 0.5 percent) - hard to smooth!
- Can interpolate with distribution looking at word shape P(word shape \| tag) (e.g., P(capitalized word of len >=8 | tag))

Estimating Emissions

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- P(word | NN $)=(0.5$ interest, 0.5 percent $)$ - hard to smooth!
- Can interpolate with distribution looking at word shape P(word shape \| tag) (e.g., P(capitalized word of len >= 8| tag))
- Alternative: use Bayes' rule

Estimating Emissions

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- $\mathrm{P}($ word | NN $)=(0.5$ interest, 0.5 percent $)$ - hard to smooth!
- Can interpolate with distribution looking at word shape P(word shape \| tag) (e.g., P(capitalized word of len >=8 | tag))
- Alternative: use Bayes' rule

$$
P(\text { word } \mid \mathrm{tag})=\frac{P(\mathrm{tag} \mid \text { word }) P(\text { word })}{P(\mathrm{tag})}
$$

Estimating Emissions

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- $\mathrm{P}($ word | NN $)=(0.5$ interest, 0.5 percent $)$ - hard to smooth!
- Can interpolate with distribution looking at word shape P(word shape \| tag) (e.g., P(capitalized word of len >=8|tag))
- Alternative: use Bayes' rule

$$
P(\text { word } \mid \operatorname{tag})=\frac{P(\operatorname{tag} \mid \text { word }) P(\text { word })}{P(\operatorname{tag})}
$$

- Fancy techniques from language modeling, e.g. look at type fertility
- P (tag |word) is flatter for some kinds of words than for others)

Estimating Emissions

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- P(word | NN $)=(0.5$ interest, 0.5 percent $)$ - hard to smooth!
- Can interpolate with distribution looking at word shape P(word shape | tag) (e.g., P(capitalized word of len >=8|tag))
- Alternative: use Bayes' rule

$$
P(\text { word } \mid \operatorname{tag})=\frac{P(\operatorname{tag} \mid \text { word }) P(\text { word })}{P(\operatorname{tag})}
$$

- Fancy techniques from language modeling, e.g. look at type fertility
- P(tag|word) is flatter for some kinds of words than for others)
- P(word|tag) can be a log-linear model - we'll see this in a few lectures

Inference in HMMs

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

Inference in HMMs

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

Inference in HMMs

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

Inference in HMMs

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

- Exponentially many possible \boldsymbol{y} here!

Inference in HMMs

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

- Exponentially many possible \boldsymbol{y} here!
- Solution: dynamic programming (possible because of Markov structure!)

Inference in HMMs

- Input $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \quad$ Output $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$

- Inference problem: $\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x})=\operatorname{argmax}_{\mathbf{y}} \frac{P(\mathbf{y}, \mathbf{x})}{P(\mathbf{x})}$
- Exponentially many possible \boldsymbol{y} here!
- Solution: dynamic programming (possible because of Markov structure!)
- Many neural sequence models depend on entire previous tag sequence, need to use approximations like beam search

Viterbi Algorithm

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

slide credit: Vivek Srikumar

Viterbi Algorithm

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

The only terms that depend on y_{1}

slide credit: Vivek Srikumar

Viterbi Algorithm

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

$$
\begin{aligned}
& \max _{y_{1}, y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& =\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& \quad=\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \text { score }_{1}\left(y_{1}\right)
\end{aligned}
$$

Abstract away the score for all decisions till here into score

$$
\operatorname{score}_{1}(s)=P(s) P\left(x_{1} \mid s\right)
$$

Viterbi Algorithm

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

$$
\begin{array}{r}
\max _{y_{1}, y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
\quad=\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
\quad=\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \text { score }_{1}\left(y_{1}\right) \\
\text { best (partial) score for }
\end{array}
$$

Abstract away the score for all decisions till here into score

$$
\operatorname{score}_{1}(s)=P(s) P\left(x_{1} \mid s\right)
$$

Viterbi Algorithm

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

slide credit: Vivek Srikumar

Viterbi Algorithm

$$
P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right)
$$

$$
\begin{aligned}
& \max _{y_{1}, y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& =\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& =\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \operatorname{score}_{1}\left(y_{1}\right) \\
& =\max _{y_{3}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{2}} P\left(y_{3} \mid y_{2}\right) P\left(x_{3} \mid y_{3}\right) \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \operatorname{score}_{1}\left(y_{1}\right) \\
& \max _{y_{3}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{2}} P\left(y_{3} \mid y_{2}\right) P\left(x_{3} \mid y_{3}\right) \operatorname{score}_{2}\left(y_{2}\right)
\end{aligned}
$$

Viterbi Algorithm

Viterbi Algorithm

- "Think about" all possible immediate prior state values. Everything before that has already been accounted for by earlier stages.

Viterbi Algorithm

$$
\begin{aligned}
& \quad P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right) \\
& \max _{y_{1}, y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& =\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& =\max _{y_{3}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \operatorname{score}_{1}\left(y_{1}\right) \\
& =\max _{y_{3}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{2}} P\left(y_{3} \mid y_{2}\right) P\left(x_{3} \mid y_{3}\right) \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \max _{y_{2}} P\left(y_{3} \mid y_{2}\right) P\left(x_{3} \mid y_{3}\right) \operatorname{score}_{1}\left(y_{1}\right) \\
& \vdots \\
& =\max _{y_{n}}\left(y_{2}\right)
\end{aligned}
$$

Abstract away the score for all decisions till here into score

Viterbi Algorithm

$$
\begin{aligned}
& \quad P\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots y_{n}\right)=P\left(y_{1}\right) \prod_{i=1}^{n-1} P\left(y_{i+1} \mid y_{i}\right) \prod_{i=1}^{n} P\left(x_{i} \mid y_{i}\right) \\
& \max _{y_{1}, y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& =\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \\
& =\max _{y_{2}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \operatorname{score}_{1}\left(y_{1}\right) \\
& =\max _{y_{3}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{2}} P\left(y_{3} \mid y_{2}\right) P\left(x_{3} \mid y_{3}\right) \max _{y_{1}} P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \operatorname{score}_{1}\left(y_{1}\right) \\
& =\max _{y_{3}, \cdots, y_{n}} P\left(y_{n} \mid y_{n-1}\right) P\left(x_{n} \mid y_{n}\right) \cdots \max _{y_{2}} P\left(y_{3} \mid y_{2}\right) P\left(x_{3} \mid y_{3}\right) \operatorname{score}_{2}\left(y_{2}\right) \\
& \quad \vdots \\
& =\max _{y_{n}} \operatorname{score}_{n}\left(y_{n}\right) \\
& \quad \operatorname{score}_{1}(s)=P(s) P\left(x_{1} \mid s\right) \\
& \operatorname{score}_{i}(s)=\max _{y_{i-1}} P\left(s \mid y_{i-1}\right) P\left(x_{i} \mid s\right) \text { score }_{i-1}\left(y_{i-1}\right) \quad \text { slide credit: Vivek Srikumar }
\end{aligned}
$$

Viterbi Algorithm

1. Initial: For each state s, calculate

$$
\operatorname{score}_{1}(s)=P(s) P\left(x_{1} \mid s\right)=\pi_{s} B_{x_{1}, s}
$$

2. Recurrence: For $\mathrm{i}=2$ to n , for every state s , calculate

$$
\begin{aligned}
\operatorname{score}_{i}(s) & =\max _{y_{i-1}} P\left(s \mid y_{i-1}\right) P\left(x_{i} \mid s\right) \operatorname{score}_{i-1}\left(y_{i-1}\right) \\
& =\max _{y_{i-1}} A_{y_{i-1}, s} B_{s, x_{i}} \operatorname{score}_{i-1}\left(y_{i-1}\right)
\end{aligned}
$$

3. Final state: calculate

$$
\max _{\mathbf{y}} P(\mathbf{y}, \mathbf{x} \mid \pi, A, B)=\max _{s} \operatorname{score}_{n}(s)
$$

π : Initial probabilities
A: Transitions
B: Emissions

This only calculates the max. To get final answer (argmax),

- keep track of which state corresponds to the max at each step
- build the answer using these back pointers

Forward-Backward Algorithm

Forward-Backward Algorithm

- In addition to finding the best path, we may want to compute marginal probabilities of paths $P\left(y_{i}=s \mid \mathbf{x}\right)$

Forward-Backward Algorithm

- In addition to finding the best path, we may want to compute marginal probabilities of paths $P\left(y_{i}=s \mid \mathbf{x}\right)$

$$
P\left(y_{i}=s \mid \mathbf{x}\right)=\sum_{y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n}} P(\mathbf{y} \mid \mathbf{x})
$$

Forward-Backward Algorithm

- In addition to finding the best path, we may want to compute marginal probabilities of paths $P\left(y_{i}=s \mid \mathbf{x}\right)$

$$
P\left(y_{i}=s \mid \mathbf{x}\right)=\sum_{y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n}} P(\mathbf{y} \mid \mathbf{x})
$$

- What did Viterbi compute? $P\left(\mathbf{y}_{\max } \mid \mathbf{x}\right)=\max _{y_{1}, \ldots, y_{n}} P(\mathbf{y} \mid \mathbf{x})$

Forward-Backward Algorithm

- In addition to finding the best path, we may want to compute marginal probabilities of paths $P\left(y_{i}=s \mid \mathbf{x}\right)$

$$
P\left(y_{i}=s \mid \mathbf{x}\right)=\sum_{y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n}} P(\mathbf{y} \mid \mathbf{x})
$$

- What did Viterbi compute? $P\left(\mathbf{y}_{\max } \mid \mathbf{x}\right)=\max _{y_{1}, \ldots, y_{n}} P(\mathbf{y} \mid \mathbf{x})$
- Can compute marginals with dynamic programming as well using an algorithm called forward-backward

Forward-Backward Algorithm

Forward-Backward Algorithm

Forward-Backward Algorithm

$$
P\left(y_{3}=2 \mid \mathbf{x}\right)=
$$

sum of all paths through state 2 at time 3 sum of all paths

Forward-Backward Algorithm

$$
P\left(y_{3}=2 \mid \mathbf{x}\right)=
$$

sum of all paths through state 2 at time 3 sum of all paths

Forward-Backward Algorithm

$$
P\left(y_{3}=2 \mid \mathbf{x}\right)=
$$

sum of all paths through state 2 at time 3 sum of all paths

Forward-Backward Algorithm

$$
P\left(y_{3}=2 \mid \mathbf{x}\right)=
$$

sum of all paths through state 2 at time 3 sum of all paths

Forward-Backward Algorithm

$P\left(y_{3}=2 \mid \mathbf{x}\right)=$

sum of all paths through state 2 at time 3 sum of all paths

Forward-Backward Algorithm

$P\left(y_{3}=2 \mid \mathbf{x}\right)=$

sum of all paths through state 2 at time 3 sum of all paths

Forward-Backward Algorithm

$$
P\left(y_{3}=2 \mid \mathbf{x}\right)=
$$

sum of all paths through state 2 at time 3 sum of all paths

- Easiest and most flexible to do one pass to compute and one to compute

Forward-Backward Algorithm

Forward-Backward Algorithm

- Initial:

Forward-Backward Algorithm

Forward-Backward Algorithm

- Initial:

$$
\alpha_{1}(s)=P(s) P\left(x_{1} \mid s\right)
$$

- Recurrence:

Forward-Backward Algorithm

- Initial:

$$
\alpha_{1}(s)=P(s) P\left(x_{1} \mid s\right)
$$

- Recurrence:

$$
\alpha_{t}\left(s_{t}\right)=\sum_{s_{t-1}} \alpha_{t-1}\left(s_{t-1}\right) P\left(s_{t} \mid s_{t-1}\right) P\left(x_{t} \mid s_{t}\right)
$$

Forward-Backward Algorithm

- Initial:

$$
\alpha_{1}(s)=P(s) P\left(x_{1} \mid s\right)
$$

- Recurrence:

$$
\alpha_{t}\left(s_{t}\right)=\sum_{s_{t-1}} \alpha_{t-1}\left(s_{t-1}\right) P\left(s_{t} \mid s_{t-1}\right) P\left(x_{t} \mid s_{t}\right)
$$

- Same as Viterbi but summing instead of maxing!

Forward-Backward Algorithm

- Initial:

$$
\alpha_{1}(s)=P(s) P\left(x_{1} \mid s\right)
$$

- Recurrence:

$$
\alpha_{t}\left(s_{t}\right)=\sum_{s_{t-1}} \alpha_{t-1}\left(s_{t-1}\right) P\left(s_{t} \mid s_{t-1}\right) P\left(x_{t} \mid s_{t}\right)
$$

- Same as Viterbi but summing instead of maxing!
- These quantities get very small! Store everything as log probabilities

Forward-Backward Algorithm

- Initial:

$$
\beta_{n}(s)=1
$$

- Recurrence:
$\beta_{t}\left(s_{t}\right)=\sum_{s_{t+1}} \beta_{t+1}\left(s_{t+1}\right) P\left(s_{t+1} \mid s_{t}\right) P\left(x_{t+1} \mid s_{t+1}\right)$
- Big differences: count emission for the next timestep (not current one)

Forward-Backward Algorithm

$$
\begin{aligned}
& \alpha_{1}(s)=P(s) P\left(x_{1} \mid s\right) \\
& \alpha_{t}\left(s_{t}\right)=\sum_{s_{t-1}} \alpha_{t-1}\left(s_{t-1}\right) P\left(s_{t} \mid s_{t-1}\right) P\left(x_{t} \mid s_{t}\right) \\
& \beta_{n}(s)=1 \\
& \beta_{t}\left(s_{t}\right)=\sum_{s_{t+1}} \beta_{t+1}\left(s_{t+1}\right) P\left(s_{t+1} \mid s_{t}\right) P\left(x_{t+1} \mid s_{t+1}\right)
\end{aligned}
$$

- Big differences: count emission for the next timestep (not current one)

Forward-Backward Algorithm

Forward-Backward Algorithm

$$
\begin{aligned}
\alpha_{1}(s) & =P(s) P\left(x_{1} \mid s\right) \\
\alpha_{t}\left(s_{t}\right) & =\sum_{s_{t-1}} \alpha_{t-1}\left(s_{t-1}\right) P\left(s_{t} \mid s_{t-1}\right) P\left(x_{t} \mid s_{t}\right) \\
\beta_{n}(s) & =1 \\
\beta_{t}\left(s_{t}\right) & =\sum_{s_{t+1}} \beta_{t+1}\left(s_{t+1}\right) P\left(s_{t+1} \mid s_{t}\right) P\left(x_{t+1} \mid s_{t+1}\right) \\
P\left(s_{3}\right. & =2 \mid \mathbf{x})=\frac{\alpha_{3}(2) \beta_{3}(2)}{\sum_{i} \alpha_{3}(i) \beta_{3}(i)}=
\end{aligned}
$$

Forward-Backward Algorithm

$$
\begin{aligned}
& \alpha_{1}(s)=P(s) P\left(x_{1} \mid s\right) \\
& \alpha_{t}\left(s_{t}\right)=\sum_{s_{t-1}} \alpha_{t-1}\left(s_{t-1}\right) P\left(s_{t} \mid s_{t-1}\right) P\left(x_{t} \mid s_{t}\right) \\
& \beta_{n}(s)=1 \\
& \beta_{t}\left(s_{t}\right)=\sum_{s_{t+1}} \beta_{t+1}\left(s_{t+1}\right) P\left(s_{t+1} \mid s_{t}\right) P\left(x_{t+1} \mid s_{t+1}\right) \\
& P\left(s_{3}=2 \mid \mathbf{x}\right)=\frac{\alpha_{3}(2) \beta_{3}(2)}{\sum_{i} \alpha_{3}(i) \beta_{3}(i)}=\square
\end{aligned}
$$

- What is the denominator here?

Forward-Backward Algorithm

$$
\begin{aligned}
\alpha_{1}(s) & =P(s) P\left(x_{1} \mid s\right) \\
\alpha_{t}\left(s_{t}\right) & =\sum_{s_{t-1}} \alpha_{t-1}\left(s_{t-1}\right) P\left(s_{t} \mid s_{t-1}\right) P\left(x_{t} \mid s_{t}\right) \\
\beta_{n}(s) & =1 \\
\beta_{t}\left(s_{t}\right) & =\sum_{s_{t+1}} \beta_{t+1}\left(s_{t+1}\right) P\left(s_{t+1} \mid s_{t}\right) P\left(x_{t+1} \mid s_{t+1}\right) \\
P\left(s_{3}\right. & =2 \mid \mathbf{x})=\frac{\alpha_{3}(2) \beta_{3}(2)}{\sum_{i} \alpha_{3}(i) \beta_{3}(i)}=
\end{aligned}
$$

- What is the denominator here? $P(\mathrm{x})$

HMM POS Tagging

HMM POS Tagging

- Baseline: assign each word its most frequent tag: ~90\% accuracy

HMM POS Tagging

- Baseline: assign each word its most frequent tag: ~90\% accuracy
- Trigram HMM: ~95\% accuracy / 55\% on unknown words

Trigram Taggers

NNP VBZ NN NNS CD NN
Fed raises interest rates 0.5 percent

Trigram Taggers

NNP VBZ NN NNS CD NN
 Fed raises interest rates 0.5 percent

- Trigram model: $y_{1}=(\langle S\rangle, N N P), y_{2}=(N N P, V B Z), \ldots$

Trigram Taggers

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- Trigram model: $y_{1}=(\langle S\rangle, N N P), y_{2}=(N N P, V B Z), \ldots$
- P((VBZ, NN) | (NNP, VBZ)) - more context! Noun-verb-noun S-V-O

Trigram Taggers

NNP VBZ NN NNS CD NN

Fed raises interest rates 0.5 percent

- Trigram model: $y_{1}=(\langle S\rangle, N N P), y_{2}=(N N P, V B Z), \ldots$
- P((VBZ, NN) | (NNP, VBZ)) - more context! Noun-verb-noun S-V-O
- Tradeoff between model capacity and data size - trigrams are a "sweet spot" for POS tagging

HMM POS Tagging

- Baseline: assign each word its most frequent tag: ~90\% accuracy
- Trigram HMM: ~95\% accuracy / 55\% on unknown words

HMM POS Tagging

- Baseline: assign each word its most frequent tag: ~90\% accuracy
- Trigram HMM: ~95\% accuracy / 55\% on unknown words
- TnT tagger (Brants 1998, tuned HMM): 96.2\% accuracy / 86.0\% on unks

HMM POS Tagging

- Baseline: assign each word its most frequent tag: ~90\% accuracy
- Trigram HMM: ~95\% accuracy / 55\% on unknown words
- TnT tagger (Brants 1998, tuned HMM): 96.2\% accuracy / 86.0\% on unks
- State-of-the-art (BiLSTM-CRFs): 97.5\% / 89\%+

Errors

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0	$\mathbf{1 7 7}$	$\mathbf{5 6}$	0	$\mathbf{6 1}$	2	5	10	15	$\mathbf{1 0 8}$	0	488
NN	244	0	$\mathbf{1 0 3}$	0	12	1	1	29	5	6	19	525
NNP	$\mathbf{1 0 7}$	$\mathbf{1 0 6}$	0	$\mathbf{1 3 2}$	5	0	7	5	1	2	0	427
NNPS	1	0	$\mathbf{1 1 0}$	0	0	0	0	0	0	0	0	142
RB	$\mathbf{7 2}$	21	7	0	0	16	$\mathbf{1 3 8}$	1	0	0	0	295
RP	0	0	0	0	39	0	$\mathbf{6 5}$	0	0	0	0	104
IN	11	0	1	0	$\mathbf{1 6 9}$	103	0	1	0	0	0	323
VB	17	$\mathbf{6 4}$	9	0	2	0	1	0	4	7	$\mathbf{8 5}$	189
VBD	10	5	3	0	0	0	0	3	0	$\mathbf{1 4 3}$	2	166
VBN	$\mathbf{1 0 1}$	3	3	0	0	0	0	3	$\mathbf{1 0 8}$	0	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

Errors

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0	$\mathbf{1 7 7}$	$\mathbf{5 6}$	0	$\mathbf{6 1}$	2	5	10	15	$\mathbf{1 0 8}$	0	488
NN	244	0	$\mathbf{1 0 3}$	0	12	1	1	29	5	6	19	525
NNP	107	$\mathbf{1 0 6}$	0	$\mathbf{1 3 2}$	5	0	7	5	1	2	0	427
NNPS	1	0	$\mathbf{1 1 0}$	0	0	0	0	0	0	0	0	142
RB	$\mathbf{7 2}$	21	7	0	0	16	$\mathbf{1 3 8}$	1	0	0	0	295
RP	0	0	0	0	39	0	$\mathbf{6 5}$	0	0	0	0	104
IN	11	0	1	0	$\mathbf{1 6 9}$	103	0	1	0	0	0	323
VB	17	$\mathbf{6 4}$	9	0	2	0	1	0	4	7	$\mathbf{8 5}$	189
VBD	10	5	3	0	0	0	0	3	0	$\mathbf{1 4 3}$	2	166
VBN	101	3	3	0	0	0	0	3	$\mathbf{1 0 8}$	0	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

JJ/NN NN

official knowledge

Errors

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0	$\mathbf{1 7 7}$	$\mathbf{5 6}$	0	$\mathbf{6 1}$	2	5	10	15	$\mathbf{1 0 8}$	0	488
NN	244	0	$\mathbf{1 0 3}$	0	12	1	1	29	5	6	19	525
NNP	107	106	0	$\mathbf{1 3 2}$	5	0	7	5	1	2	0	427
NNPS	1	0	$\mathbf{1 1 0}$	0	0	0	0	0	0	0	0	142
RB	$\mathbf{7 2}$	21	7	0	0	16	138	1	0	0	0	295
RP	0	0	0	0	39	0	$\mathbf{6 5}$	0	0	0	0	104
IN	11	0	1	0	169	103	0	1	0	0	0	323
VB	17	$\mathbf{6 4}$	9	0	2	0	1	0	4	7	$\mathbf{8 5}$	189
VBD	10	5	3	0	0	0	0	3	0	143	2	166
VBN	101	3	3	0	0	0	0	3	108	0	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

JJ/NN NN

official knowledge
(NN NN: tax cut, art gallery, ...)

Errors

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0	$\mathbf{1 7 7}$	$\mathbf{5 6}$	0	$\mathbf{6 1}$	2	5	10	15	$\mathbf{1 0 8}$	0	488
NN	244	0	103	0	12	1	1	29	5	6	19	525
NNP	107	106	0	132	5	0	7	5	1	2	0	427
NNPS	1	0	$\mathbf{1 1 0}$	0	0	0	0	0	0	0	0	142
RB	$\mathbf{7 2}$	21	7	0	0	16	138	1	0	0	0	295
RP	0	0	0	0	39	0	$\mathbf{6 5}$	0	0	0	0	104
IN	11	0	1	0	$\mathbf{1 6 9}$	103	0	1	0	0	0	323
VB	17	$\mathbf{6 4}$	9	0	2	0	1	0	4	7	$\mathbf{8 5}$	189
VBD	10	5	3	0	0	0	0	3	0	143	2	166
VBN	101	3	3	0	0	0	0	3	108	0	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

$\mathrm{JJ} / \mathrm{NN} \mathrm{NN}$	VBD RP/IN DT NN
official knowledge	made up the story

(NN NN: tax cut, art gallery, ...)

Errors

(NN NN: tax cut, art gallery, ...)

Remaining Errors

Manning 2011 "Part-of-Speech Tagging from 97\% to 100\%: Is It Time for Some Linguistics?"

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%

Manning 2011 "Part-of-Speech Tagging from 97\% to 100\%: Is It Time for Some Linguistics?"

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- Unknown word: 4.5\%

Manning 2011 "Part-of-Speech Tagging from 97\% to 100\%: Is It Time for Some Linguistics?"

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- Unknown word: 4.5\%
- Could get right: 16\% (many of these involve parsing!)

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5\%
- Unknown word: 4.5\%
- Could get right: 16\% (many of these involve parsing!)
- Difficult linguistics: 20\%

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- Unknown word: 4.5\%
- Could get right: 16% (many of these involve parsing!)
- Difficult linguistics: 20\%

$$
\begin{aligned}
& \text { VBD / VBP? (past or present?) } \\
& \text { They set up absurd situations, detached from reality }
\end{aligned}
$$

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- Unknown word: 4.5\%
- Could get right: 16\% (many of these involve parsing!)
- Difficult linguistics: 20\%

VBD / VBP? (past or present?)
They set up absurd situations, detached from reality

- Underspecified / unclear, gold standard inconsistent / wrong: 58\%

Manning 2011 "Part-of-Speech Tagging from 97\% to 100\%: Is It Time for Some Linguistics?"

Remaining Errors

- Lexicon gap (word not seen with that tag in training) 4.5%
- Unknown word: 4.5\%
- Could get right: 16\% (many of these involve parsing!)
- Difficult linguistics: 20\%

VBD / VBP? (past or present?)
They set up absurd situations, detached from reality

- Underspecified / unclear, gold standard inconsistent / wrong: 58\% adjective or verbal participle? JJ / VBN?
a \$ 10 million fourth-quarter charge against discontinued operations
Manning 2011 "Part-of-Speech Tagging from 97\% to 100\%: Is It Time for Some Linguistics?"

Other Languages

Language	Source	\# Tags	O/O	U/U	O/U
Arabic	PADT/CoNLL07 (Hajič et al., 2004)	21	96.1	96.9	97.0
Basque	Basque3LB/CoNLL07 (Aduriz et al., 2003)	64	89.3	93.7	93.7
Bulgarian	BTB/CoNLL06 (Simov et al., 2002)	54	95.7	97.5	97.8
Catalan	CESS-ECE/CoNLL07 (Martí et al., 2007)	54	98.5	98.2	98.8
Chinese	Penn ChineseTreebank 6.0 (Palmer et al., 2007)	34	91.7	93.4	94.1
Chinese	Sinica/CoNLL07 (Chen et al., 2003)	294	87.5	91.8	92.6
Czech	PDT/CoNLL07 (Böhmová et al., 2003)	63	99.1	99.1	99.1
Danish	DDT/CoNLL06 (Kromann et al., 2003)	25	96.2	96.4	96.9
Dutch	Alpino/CoNLL06 (Van der Beek et al., 2002)	12	93.0	95.0	95.0
English	PennTreebank (Marcus et al., 1993)	45	96.7	96.8	97.7
French	FrenchTreebank (Abeillé et al., 2003)	30	96.6	96.7	97.3
German	Tiger/CoNLL06 (Brants et al., 2002)	54	97.9	98.1	98.8
German	Negra (Skut et al., 1997)	54	96.9	97.9	98.6
Greek	GDT/CoNLL07 (Prokopidis et al., 2005)	38	97.2	97.5	97.8
Hungarian	Szeged/CoNLL07 (Csendes et al., 2005)	43	94.5	95.6	95.8
Italian	ISST/CoNLL07 (Montemagni et al., 2003)	28	94.9	95.8	95.8
Japanese	Verbmobil/CoNLL06 (Kawata and Bartels, 2000)	80	98.3	98.0	99.1
Japanese	Kyoto4.0 (Kurohashi and Nagao, 1997)	42	97.4	98.7	99.3
Korean	Sejong (http://www.sejong.or.kr)	187	96.5	97.5	98.4
Portuguese	Floresta Sintá(c)tica/CoNLL06 (Afonso et al., 2002)	22	96.9	96.8	97.4
Russian	SynTagRus-RNC (Boguslavsky et al., 2002)	11	96.8	96.8	96.8
Slovene	SDT/CoNLL06 (Džeroski et al., 2006)	29	94.7	94.6	95.3
Spanish	Ancora-Cast3LB/CoNLL06 (Civit and Martí, 2004)	47	96.3	96.3	96.9
Swedish	Talbanken05/CoNLL06 (Nivre et al., 2006)	41	93.6	94.7	95.1
Turkish	METU-Sabanci/CoNLL07 (Oflazer et al., 2003)	31	87.5	89.1	90.2

Next Time

Next Time

- CRFs: feature-based discriminative models

Next Time

- CRFs: feature-based discriminative models
- Structured SVM for sequences

Next Time

- CRFs: feature-based discriminative models
- Structured SVM for sequences
- Named entity recognition

