
Lecture 4: Sequence Models I

Alan Ri7er
(many slides from Greg Durrett, Dan Klein, Vivek Srikumar, Chris Manning, Yoav Artzi)



This Lecture

‣ Sequence modeling

‣ HMMs for POS tagging

‣ Viterbi, forward-backward

‣ HMM parameter esGmaGon
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‣ Language is tree-structured

I ate the spaghe* with chops/cks I ate the spaghe* with meatballs

‣ Understanding syntax fundamentally requires trees — the sentences 
have the same shallow analysis

I    ate  the spaghe* with chops/cks I     ate  the spaghe* with meatballs
PRP VBZ  DT       NN        IN        NNS  PRP VBZ  DT       NN        IN        NNS  
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LinguisGc Structures
‣ Language is sequenGally structured: interpreted in an online way

Tanenhaus et al. (1995)



POS Tagging

Ghana ’s ambassador should have set up the big mee/ng in DC yesterday .

‣ What tags are out there?

NNP  POS NN                    MD  VB   VBN   RP DT JJ         NN    IN NNP NN       .



POS Tagging

Slide credit: Dan Klein
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Fed raises interest rates 0.5 percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

I’m 0.5% interested 
in the Fed’s raises!

I hereby 
increase interest 
rates 0.5%

Fed raises interest rates 0.5 percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ Other paths are also plausible but even more semanGcally weird…
‣ What governs the correct choice? Word + context
‣ Word idenGty: most words have <=2 tags, many have one (percent, the) 
‣ Context: nouns start sentences, nouns follow verbs, etc.
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What is this good for?

‣ Text-to-speech: record, lead

‣ Preprocessing step for syntacGc parsers

‣ Domain-independent disambiguaGon for other tasks

‣ (Very) shallow informaGon extracGon
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Sequence Models

‣ Input x = (x1, ..., xn) y = (y1, ..., yn)Output 

‣ POS tagging: x is a sequence of words, y is a sequence of tags

‣ Today: generaGve models P(x, y); discriminaGve models next Gme
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y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

‣ Model the sequence of y as a Markov process (dynamics model)

y1 y2

‣ Markov property: future is condiGonally independent of the past given 
the present

‣ If y are tags, this roughly corresponds to assuming that the next tag 
only depends on the current tag, not anything before

y3 P (y3|y1, y2) = P (y3|y2)

‣ Lots of mathemaGcal theory about how Markov chains behave
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y1 y2 yn

x1 x2 xn

…

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

Fed     raises percent…

NNP VBZ NN…
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y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY
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Hidden Markov Models

y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

IniGal 
distribuGon

TransiGon 
probabiliGes

Emission 
probabiliGes

} }} ‣ P(x|y) is a distribuGon over 
all words in the vocabulary 
— not a distribuGon over 
features (but could be!)

‣ MulGnomials: tag x tag 
transiGons, tag x word 
emissions

‣ ObservaGon (x) depends 
only on current state (y)

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)
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TransiGons in POS Tagging

‣ Dynamics model

Fed raises interest rates 0.5 percent .

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣                            likely because start of sentence

‣                                                 likely because verb ojen follows noun

‣                                           direct object follows verb, other verb rarely 
follows past tense verb (main verbs can follow modals though!)

P (y1 = NNP)

P (y2 = VBZ|y1 = NNP)

P (y3 = NN|y2 = VBZ)

P (y1)
nY

i=2

P (yi|yi�1)  NNP - proper noun, singular 
 VBZ  - verb, 3rd ps. sing. present 
 NN   - noun, singular or mass.
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EsGmaGng TransiGons

‣ Similar to Naive Bayes esGmaGon: maximum likelihood soluGon = 
normalized counts (with smoothing) read off supervised data

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN

‣ How to smooth?

‣ One method: smooth with unigram distribuGon over tags

‣ P(tag | NN)

P (tag|tag�1) = (1� �)P̂ (tag|tag�1) + �P̂ (tag)

= empirical distribuGon (read off from data)P̂

.

= (0.5 ., 0.5 NNS)
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‣ Emissions P(x | y) capture the distribuGon of words occurring with a 
given tag

Emissions in POS Tagging

‣ P(word | NN) = (0.05 person, 0.04 official, 0.03 interest, 0.03 percent …)

‣ When you compute the posterior for a given word’s tags, the distribuGon 
favors tags that are more likely to generate that word

‣ How should we smooth this?

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN .
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EsGmaGng Emissions

‣ P(word | NN) = (0.5 interest, 0.5 percent) — hard to smooth!

‣ Fancy techniques from language modeling, e.g. look at type ferGlity 
— P(tag|word) is fla7er for some kinds of words than for others)

Fed raises interest rates 0.5 percent
NNP VBZ NN NNS CD NN

P (word|tag) = P (tag|word)P (word)

P (tag)

‣ AlternaGve: use Bayes’ rule

‣ Can interpolate with distribuGon looking at word shape 
P(word shape | tag) (e.g., P(capitalized word of len >= 8 | tag))

‣ P(word|tag) can be a log-linear model — we’ll see this in a few lectures
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Inference in HMMs

‣ Inference problem:

‣ ExponenGally many possible y here!

‣ SoluGon: dynamic programming (possible because of Markov structure!)

‣ Many neural sequence models depend on enGre previous tag 
sequence, need to use approximaGons like beam search

‣ Input x = (x1, ..., xn) y = (y1, ..., yn)Output 

y1 y2 yn

x1 x2 xn

… P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

argmaxyP (y|x) = argmaxy
P (y,x)

P (x)
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best (parGal) score for  
a sequence ending in state s
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Viterbi Algorithm

slide credit: Dan Klein

‣ “Think about” all possible immediate 
prior state values. Everything before 
that has already been accounted for by 
earlier stages.
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Forward-Backward Algorithm
‣ In addiGon to finding the best path, we may want to compute 

marginal probabiliGes of paths P (yi = s|x)

P (yi = s|x) =
X

y1,...,yi�1,yi+1,...,yn

P (y|x)

‣ What did Viterbi compute? P (ymax|x) = max
y1,...,yn

P (y|x)

‣ Can compute marginals with dynamic programming as well using an 
algorithm called forward-backward
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slide credit: Dan Klein

P (y3 = 2|x) =
sum of all paths through state 2 at time 3

sum of all paths

=

‣ Easiest and most flexible to do one 
pass to compute        and one to 
compute 
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↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

‣ IniGal:

‣ Recurrence:

‣ Same as Viterbi but summing 
instead of maxing!

‣ These quanGGes get very small! 
Store everything as log probabiliGes
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Forward-Backward Algorithm
↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

�n(s) = 1

�t(st) =
X

st+1

�t+1(st+1)P (st+1|st)P (xt+1|st+1)

P (s3 = 2|x) = ↵3(2)�3(2)P
i ↵3(i)�3(i)

‣ What is the denominator here? P (x)

=
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Trigram Taggers

‣ Trigram model: y1 = (<S>, NNP), y2 = (NNP, VBZ), …

‣ P((VBZ, NN) | (NNP, VBZ)) — more context! Noun-verb-noun S-V-O

Fed raises interest rates 0.5 percent
NNP VBZ NN NNS CD NN

‣ Tradeoff between model capacity and data size — trigrams are a 
“sweet spot” for POS tagging
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HMM POS Tagging

‣ Baseline: assign each word its most frequent tag: ~90% accuracy

‣ Trigram HMM: ~95% accuracy / 55% on unknown words

‣ TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks

Slide credit: Dan Klein

‣ State-of-the-art (BiLSTM-CRFs): 97.5% / 89%+
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official knowledge made  up  the story
JJ/NN       NN VBD  RP/IN DT  NN

Slide credit: Dan Klein / Toutanova + Manning (2000)(NN NN: tax cut, art gallery, …)



Errors

official knowledge made  up  the story recently  sold  shares
JJ/NN       NN VBD  RP/IN DT  NN RB    VBD/VBN  NNS

Slide credit: Dan Klein / Toutanova + Manning (2000)(NN NN: tax cut, art gallery, …)
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Remaining Errors

‣ Underspecified / unclear, gold standard inconsistent / wrong: 58%

‣ Lexicon gap (word not seen with that tag in training) 4.5%
‣ Unknown word: 4.5%

‣ Could get right: 16% (many of these involve parsing!)
‣ Difficult linguisGcs: 20%

They      set       up absurd situa/ons, detached from reality
VBD / VBP? (past or present?)

a $ 10 million fourth-quarter charge against discon/nued opera/ons
adjecGve or verbal parGciple? JJ / VBN?

Manning 2011 “Part-of-Speech Tagging from 97% to 100%: Is It Time for Some LinguisGcs?”



Other Languages

Petrov et al. 2012
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Next Time

‣ CRFs: feature-based discriminaGve models

‣ Structured SVM for sequences

‣ Named enGty recogniGon


