Lecture 8: RNNs

Alan Ritter

(many slides from Greg Durrett)

Recall: Training Tips

Recall: Training Tips

- Parameter initialization is critical to get good gradients, some useful heuristics (e.g., Xavier initializer)

Recall: Training Tips

- Parameter initialization is critical to get good gradients, some useful heuristics (e.g., Xavier initializer)
- Dropout is an effective regularizer

Recall: Training Tips

- Parameter initialization is critical to get good gradients, some useful heuristics (e.g., Xavier initializer)
- Dropout is an effective regularizer
- Think about your optimizer: Adam or tuned SGD work well

Recall: Word Vectors

- the bresidents said that the downturn was over

[Finch and Chater 92, Shuetze 93, many others]

Recall: Word Vectors

- the bresident said that the downturn was over *

president	the __of
president	the __ said \downarrow
governor	the __ of
governor	the __ appointed
said	sources __ *
said	president __ that
reported	sources __ *

[Finch and Chater 92, Shuetze 93, many others]

Recall: Continuous Bag-of-Words

- Predict word from context
the dog bit the man
Mikolov et al. (2013)

Recall: Continuous Bag-of-Words

- Predict word from context
the dog bit the:man

Recall: Continuous Bag-of-Words

- Predict word from context
the dog bit the:man

Mikolov et al. (2013)

Recall: Continuous Bag-of-Words

- Predict word from context
the dog bit the: man

Recall: Continuous Bag-of-Words

- Predict word from context
the dog bit the:man
Mikolov et al. (2013)

Recall: Continuous Bag-of-Words

- Predict word from context

Mikolov et al. (2013)

Analogies

Analogies

Analogies

(king - man) + woman = queen

Analogies

(king - man) + woman = queen

Analogies

(king - man) + woman = queen

Analogies

(king - man) + woman = queen
$k i n g+(w o m a n-m a n)=$ queen

Analogies

(king - man) + woman = queen
$k i n g+($ woman - man $)=$ queen

- Why would this be?

Analogies

(king - man) + woman = queen
$k i n g+($ woman - man $)=$ queen

- Why would this be?

Analogies

$$
\begin{aligned}
& (\text { king }- \text { man })+\text { woman }=\text { queen } \\
& \text { king }+(\text { woman }- \text { man })=\text { queen }
\end{aligned}
$$

- Why would this be?
- woman - man captures the difference in the contexts that these occur in

Analogies

(king - man) + woman $=$ queen
king + (woman - man) = queen

- Why would this be?
- woman - man captures the difference in the contexts that these occur in
- Dominant change: more "he" with man and "she" with woman - similar to difference between king and queen

Analogies

Method	Google Add / Mul	MSR Add Mul
	$.553 / .679$	$.306 / .535$
SVD	$.554 / .591$	$.408 / .468$
SGNS	$.676 / .688$	$.618 / .645$
GloVe	$.569 / .596$	$.533 / .580$

Analogies

Method	Google Add / Mul	MSR Add $/$ Mul
	$.553 / .679$	$.306 / .535$
SVD	$.554 / .591$	$.408 / .468$
SGNS	$.676 / .688$	$.618 / .645$
GloVe	$.569 / .596$	$.533 / .580$

- These methods can perform well on analogies on two different datasets using two different methods

Analogies

Method	Google Add $/$ Mul	MSR Add $/$ Mul
	$.553 / .679$	$.306 / .535$
SVD	$.554 / .591$	$.408 / .468$
SGNS	$.676 / .688$	$.618 / .645$
GloVe	$.569 / .596$	$.533 / .580$

- These methods can perform well on analogies on two different datasets using two different methods

Maximizing for b : Add $=\underset{\text { king man woman }}{\cos \left(b, a_{2}-a_{1}+b_{1}\right)} \quad$ Mul $=\frac{\cos \left(b_{2}, a_{2}\right) \cos \left(b_{2}, b_{1}\right)}{\cos \left(b_{2}, a_{1}\right)+\epsilon}$
Levy et al. (2015)

Using Word Embeddings

Using Word Embeddings

- Approach 1: learn embeddings directly from data in your neural model, no pretraining
- Often works pretty well

Using Word Embeddings

- Approach 1: learn embeddings directly from data in your neural model, no pretraining
- Often works pretty well
- Approach 2: pretrain using GloVe, keep fixed
- Faster because no need to update these parameters
- Need to make sure GloVe vocabulary contains all the words you need

Using Word Embeddings

- Approach 1: learn embeddings directly from data in your neural model, no pretraining
- Often works pretty well
- Approach 2: pretrain using GloVe, keep fixed
- Faster because no need to update these parameters
- Need to make sure GloVe vocabulary contains all the words you need
- Approach 3: initialize using GloVe, fine-tune
- Not as commonly used anymore

This Lecture

- Recurrent neural networks
- Vanishing gradient problem
- LSTMs / GRUs
- Applications / visualizations

RNN Basics

RNN Motivation

- Feedforward NNs can't handle variable length input: each position in the feature vector has fixed semantics
the movie was great

RNN Motivation

- Feedforward NNs can't handle variable length input: each position in the feature vector has fixed semantics

RNN Motivation

- Feedforward NNs can't handle variable length input: each position in the feature vector has fixed semantics

RNN Motivation

- Feedforward NNs can't handle variable length input: each position in the feature vector has fixed semantics

- These don't look related (great is in two different orthogonal subspaces)

RNN Motivation

- Feedforward NNs can't handle variable length input: each position in the feature vector has fixed semantics

- These don't look related (great is in two different orthogonal subspaces)
- Instead, we need to:

RNN Motivation

- Feedforward NNs can't handle variable length input: each position in the feature vector has fixed semantics

- These don't look related (great is in two different orthogonal subspaces)
- Instead, we need to:

1) Process each word in a uniform way

RNN Motivation

- Feedforward NNs can't handle variable length input: each position in the feature vector has fixed semantics

- These don't look related (great is in two different orthogonal subspaces)
- Instead, we need to:

1) Process each word in a uniform way
2) ...while still exploiting the context that that token occurs in

RNN Abstraction

- Cell that takes some input \mathbf{x}, has some hidden state \mathbf{h}, and updates that hidden state and produces output \mathbf{y} (all vector-valued)

RNN Abstraction

- Cell that takes some input \mathbf{x}, has some hidden state \mathbf{h}, and updates that hidden state and produces output \mathbf{y} (all vector-valued)

RNN Uses

- Transducer: make some prediction for each element in a sequence

RNN Uses

- Transducer: make some prediction for each element in a sequence

- Acceptor/encoder: encode a sequence into a fixed-sized vector and use that for some purpose

RNN Uses

- Transducer: make some prediction for each element in a sequence

- Acceptor/encoder: encode a sequence into a fixed-sized vector and use that for some purpose

RNN Uses

- Transducer: make some prediction for each element in a sequence

- Acceptor/encoder: encode a sequence into a fixed-sized vector and use that for some purpose

Elman Networks

output \mathbf{y}_{t}

Elman (1990)

Elman Networks

output \mathbf{y}_{t}

$$
\mathbf{h}_{t}=\tanh \left(W \mathbf{x}_{t}+V \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)
$$

- Updates hidden state based on input and current hidden state

Elman Networks

output $\mathbf{y t}_{\mathrm{t}}$

input \mathbf{x}_{t}

$$
\mathbf{h}_{t}=\tanh \left(W \mathbf{x}_{t}+V \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)
$$

- Updates hidden state based on input and current hidden state

$$
\mathbf{y}_{t}=\tanh \left(U \mathbf{h}_{\mathbf{t}}+\mathbf{b}_{y}\right)
$$

- Computes output from hidden state

Elman Networks

output $\mathbf{y t}_{\mathrm{t}}$

input \mathbf{x}_{t}

$$
\mathbf{h}_{t}=\tanh \left(W \mathbf{x}_{t}+V \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)
$$

- Updates hidden state based on input and current hidden state

$$
\mathbf{y}_{t}=\tanh \left(U \mathbf{h}_{\mathbf{t}}+\mathbf{b}_{y}\right)
$$

- Computes output from hidden state
- Long history! (invented in the late 1980s)

Elman (1990)

Training Elman Networks

the movie was great

Training Elman Networks

- "Backpropagation through time": build the network as one big computation graph, some parameters are shared

Training Elman Networks

- "Backpropagation through time": build the network as one big computation graph, some parameters are shared
- RNN potentially needs to learn how to "remember" information for a long time!
it was my favorite movie of 2016, though it wasn't without problems -> +

Training Elman Networks

- "Backpropagation through time": build the network as one big computation graph, some parameters are shared
- RNN potentially needs to learn how to "remember" information for a long time!
it was my favorite movie of 2016, though it wasn't without problems -> +
- "Correct" parameter update is to do a better job of remembering the sentiment of favorite

Vanishing Gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanishing Gradient

Vanishing Gradient

LSTMs/GRUs

Gated Connections

- Designed to fix "vanishing gradient" problem using gates

$$
\mathbf{h}_{t}=\mathbf{h}_{t-1} \odot \mathbf{f}+\operatorname{func}\left(\mathbf{x}_{t}\right) \quad \mathbf{h}_{t}=\tanh \left(W \mathbf{x}_{t}+V \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)
$$

gated

Gated Connections

- Designed to fix "vanishing gradient" problem using gates

$$
\mathbf{h}_{t}=\mathbf{h}_{t-1} \odot \mathbf{f}+\operatorname{func}\left(\mathbf{x}_{t}\right) \quad \mathbf{h}_{t}=\tanh \left(W \mathbf{x}_{t}+V \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)
$$

gated

- Vector-valued "forget gate" f computed based on input and previous hidden state

$$
\mathbf{f}=\sigma\left(W^{x f} \mathbf{x}_{t}+W^{h f} \mathbf{h}_{t-1}\right)
$$

- Sigmoid: elements of \mathbf{f} are in (0,1)

Gated Connections

- Designed to fix "vanishing gradient" problem using gates

$$
\mathbf{h}_{t}=\mathbf{h}_{t-1} \odot \mathbf{f}+\operatorname{func}\left(\mathbf{x}_{t}\right) \quad \mathbf{h}_{t}=\tanh \left(W \mathbf{x}_{t}+V \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)
$$

gated

Elman

- Vector-valued "forget gate" f computed based on input and previous hidden state $\mathbf{f}=\sigma\left(W^{x f} \mathbf{x}_{t}+W^{h f} \mathbf{h}_{t-1}\right)$
- Sigmoid: elements of \mathbf{f} are in (0, 1)

Gated Connections

- Designed to fix "vanishing gradient" problem using gates

$$
\mathbf{h}_{t}=\mathbf{h}_{t-1} \odot \mathbf{f}+\operatorname{func}\left(\mathbf{x}_{t}\right) \quad \mathbf{h}_{t}=\tanh \left(W \mathbf{x}_{t}+V \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)
$$

gated

Elman

- Vector-valued "forget gate" f computed based on input and previous hidden state $\mathbf{f}=\sigma\left(W^{x f} \mathbf{x}_{t}+W^{h f} \mathbf{h}_{t-1}\right)$
- Sigmoid: elements of \mathbf{f} are in (0, 1)
- If $f \approx 1$, we simply sum up a function of all inputs - gradient doesn't vanish!

$\mathbf{h}_{t-1} \mathbf{f} \quad \mathbf{h}_{t}$

LSTMs

- "Cell" \mathbf{c} in addition to hidden state \mathbf{h}

$$
\mathbf{c}_{t}=\mathbf{c}_{t-1} \odot \mathbf{f}+\operatorname{func}\left(\mathbf{x}_{t}, \mathbf{h}_{t-1}\right)
$$

LSTMs

- "Cell" cin addition to hidden state \mathbf{h}

$$
\mathbf{c}_{t}=\mathbf{c}_{t-1} \odot \mathbf{f}+\operatorname{func}\left(\mathbf{x}_{t}, \mathbf{h}_{t-1}\right)
$$

- Vector-valued forget gate \mathbf{f} depends on the \mathbf{h} hidden state

$$
\mathbf{f}=\sigma\left(W^{x f} \mathbf{x}_{t}+W^{h f} \mathbf{h}_{t-1}\right)
$$

LSTMs

- "Cell" \mathbf{c} in addition to hidden state \mathbf{h}

$$
\mathbf{c}_{t}=\mathbf{c}_{t-1} \odot \mathbf{f}+\operatorname{func}\left(\mathbf{x}_{t}, \mathbf{h}_{t-1}\right)
$$

- Vector-valued forget gate \mathbf{f} depends on the \mathbf{h} hidden state

$$
\mathbf{f}=\sigma\left(W^{x f} \mathbf{x}_{t}+W^{h f} \mathbf{h}_{t-1}\right)
$$

- Basic communication flow: x -> c -> h -> output, each step of this process is gated in addition to gates from previous timesteps

LSTMs

LSTMs

LSTMs

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{j}}=\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
& \mathbf{f}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x f}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h} \mathbf{f}}\right) \\
& \mathbf{g}=\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x g}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h g}}\right) \\
& \mathbf{i}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h i}}\right)
\end{aligned}
$$

$$
\mathbf{h}_{\mathbf{j}}=\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o}
$$

$$
\mathbf{o}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x o}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h o}}\right)
$$

- $\mathbf{f}, \mathbf{i}, \mathbf{o}$ are gates that control information flow
- \mathbf{g} reflects the main computation of the cell

LSTMs

$$
\begin{aligned}
\mathbf{c}_{\mathbf{j}} & =\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
\mathbf{f} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x f}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h f}}\right) \\
\mathbf{g} & =\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x g}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h g}}\right) \\
\mathbf{i} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x i}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h i}}\right) \\
\mathbf{h}_{\mathbf{j}} & =\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o} \\
\mathbf{o} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x o}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h o}}\right)
\end{aligned}
$$

LSTMs

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{j}}=\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
& \mathbf{f}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x f}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h f}}\right) \\
& \mathbf{g}=\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h g}}\right) \\
& \mathbf{i}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x i}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h i}}\right) \\
& \mathbf{h}_{\mathbf{j}}=\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o} \\
& \mathbf{o}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x o}}+\mathbf{h}_{\mathbf{j}-1} \mathbf{W}^{\mathbf{h o}}\right)
\end{aligned}
$$

- Can we ignore the old value of c for this timestep?

LSTMs

$$
\begin{aligned}
\mathbf{c}_{\mathbf{j}} & =\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
\mathbf{f} & =\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x f}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h f}}\right)
\end{aligned}
$$

$$
\mathbf{g}=\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x g}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h} \mathbf{g}}\right)
$$

$$
\mathbf{i}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x i}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h} \mathbf{i}}\right)
$$

$$
\mathbf{h}_{\mathbf{j}}=\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o}
$$

$$
\mathbf{o}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x o}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h o}}\right)
$$

- Can we ignore the old value of \mathbf{c} for this timestep?
- Can an LSTM sum up its inputs \mathbf{x} ?

LSTMs

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{j}}=\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
& \mathbf{f}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x f}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h f}}\right)
\end{aligned}
$$

$$
\mathbf{g}=\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x g}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h} \mathbf{g}}\right)
$$

$$
\mathbf{i}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x i}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h} \mathbf{i}}\right)
$$

$$
\mathbf{h}_{\mathbf{j}}=\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o}
$$

$$
\mathbf{o}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x o}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h o}}\right)
$$

- Can we ignore the old value of \mathbf{c} for this timestep?
- Can an LSTM sum up its inputs \mathbf{x} ?
- Can we ignore a particular input x?

LSTMs

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{j}}=\mathbf{c}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{f}+\mathbf{g} \odot \mathbf{i} \\
& \mathbf{f}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x f}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h f}}\right)
\end{aligned}
$$

$$
\mathbf{g}=\tanh \left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x g}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h} \mathbf{g}}\right)
$$

$$
\mathbf{i}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x i}}+\mathbf{h}_{\mathbf{j}-\mathbf{1}} \mathbf{W}^{\mathbf{h} \mathbf{i}}\right)
$$

$$
\mathbf{h}_{\mathbf{j}}=\tanh \left(\mathbf{c}_{\mathbf{j}}\right) \odot \mathbf{o}
$$

$$
\mathbf{o}=\sigma\left(\mathbf{x}_{\mathbf{j}} \mathbf{W}^{\mathbf{x o}}+\mathbf{h}_{\mathbf{j}-1} \mathbf{W}^{\mathbf{h o}}\right)
$$

- Can we ignore the old value of \mathbf{c} for this timestep?
- Can an LSTM sum up its inputs \mathbf{x} ?
- Can we ignore a particular input x?
- Can we output something without changing c?

LSTMs

- Ignoring recurrent state entirely:
- Lets us get feedforward layer over token

LSTMs

- Ignoring recurrent state entirely:
- Lets us get feedforward layer over token
- Ignoring input:
- Lets us discard stopwords

LSTMs

- Ignoring recurrent state entirely:
- Lets us get feedforward layer over token
- Ignoring input:
- Lets us discard stopwords
- Summing inputs:
- Lets us compute a bag-of-words representation

LSTMs

LSTMs

- Gradient still diminishes, but in a controlled way and generally by less usually initialize forget gate $=1$ to remember everything to start

GRUs

- LSTM: more complex and slower, may work a bit better

GRUs

- LSTM: more complex and slower, may work a bit better

- GRU: faster, a bit simpler

GRUs

- LSTM: more complex and slower, may work a bit better

- GRU: faster, a bit simpler
- Two gates: \mathbf{z} (forget, mixes \mathbf{s} and h) and \mathbf{r} (mixes \mathbf{h} and \mathbf{x})

What do RNNs produce?

- Encoding of the sentence - can pass this a decoder or make a classification decision about the sentence

What do RNNs produce?

- Encoding of the sentence - can pass this a decoder or make a classification decision about the sentence
- Encoding of each word - can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding)

What do RNNs produce?

- Encoding of the sentence - can pass this a decoder or make a classification decision about the sentence
- Encoding of each word - can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding)
- RNN can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Multilayer Bidirectional RNN

Multilayer Bidirectional RNN

Multilayer Bidirectional RNN

Multilayer Bidirectional RNN

- Sentence classification based on concatenation of both final outputs

Multilayer Bidirectional RNN

- Sentence classification based on concatenation of both final outputs
- Token classification based on concatenation of both directions' token representations

Training RNNs

Training RNNs

Training RNNs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)

Training RNNs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)
- Backpropagate through entire network

Training RNNs

- Loss = negative log likelihood of probability of gold label (or use SVM or other loss)
- Backpropagate through entire network
- Example: sentiment analysis

Training RNNs

Training RNNs

Training RNNs

- Loss = negative log likelihood of probability of gold predictions, summed over the tags

Training RNNs

- Loss = negative log likelihood of probability of gold predictions, summed over the tags
- Loss terms filter back through network

Training RNNs

- Loss = negative log likelihood of probability of gold predictions, summed over the tags
- Loss terms filter back through network

Training RNNs

- Loss = negative log likelihood of probability of gold predictions, summed over the tags
- Loss terms filter back through network
- Example: language modeling (predict next word given context)

Applications

What can LSTMs model?

What can LSTMs model?

- Sentiment
- Encode one sentence, predict
- Language models
- Move left-to-right, per-token prediction

What can LSTMs model?

- Sentiment
- Encode one sentence, predict
- Language models
- Move left-to-right, per-token prediction
- Translation

What can LSTMs model?

- Sentiment
- Encode one sentence, predict
- Language models
- Move left-to-right, per-token prediction
- Translation
- Encode sentence + then decode, use token predictions for attention weights (later in the course)

Visualizing LSTMs

Karpathy et al. (2015)

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells (components of c) to understand them

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells (components of c) to understand them

Karpathy et al. (2015)

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells (components of c) to understand them
- Counter: know when to generate \n

Karpathy et al. (2015)

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track

Kutuzov, shrugging his shoulders, replied with his subtle penetrating smile: "I meant merely to say what I said."

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track
- Binary switch: tells us if we're in a quote or not

Karpathy et al. (2015)

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track

```
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
int i; (classes[class]) {
    for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
    if (mask[í] & classes [class][i])
}
return 1;
}
```


Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track
- Stack: activation based on indentation

```
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
if (classes[class]) {
for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
    if (mask[i] & classes[class][i])
}
return 1;
|
```


Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track

Karpathy et al. (2015)

Visualizing LSTMs

- Train character LSTM language model (predict next character based on history) over two datasets: War and Peace and Linux kernel source code
- Visualize activations of specific cells to see what they track
- Uninterpretable: probably doing double-duty, or only makes sense in the context of another activation

Karpathy et al. (2015)

What can LSTMs model?

- Sentiment
- Encode one sentence, predict
- Language models
- Move left-to-right, per-token prediction
- Translation
- Encode sentence + then decode, use token predictions for attention weights (next lecture)

What can LSTMs model?

- Sentiment
- Encode one sentence, predict
- Language models
- Move left-to-right, per-token prediction
- Translation
- Encode sentence + then decode, use token predictions for attention weights (next lecture)
- Textual entailment

What can LSTMs model?

- Sentiment
- Encode one sentence, predict
- Language models
- Move left-to-right, per-token prediction
- Translation
- Encode sentence + then decode, use token predictions for attention weights (next lecture)
- Textual entailment
- Encode two sentences, predict

Natural Language Inference

Premise

Hypothesis

A boy plays in the snow
A boy is outside

Natural Language Inference

Premise

A boy plays in the snow
entails
A boy is outside

Natural Language Inference

Premise

A boy plays in the snow
entails
A boy is outside

The man is sleeping

Natural Language Inference

Premise

A boy plays in the snow

A man inspects the uniform of a figure contradicts

Hypothesis
entails
A boy is outside

The man is sleeping

Natural Language Inference

Premise

A boy plays in the snow

A man inspects the uniform of a figure contradicts

An older and younger man smiling

Hypothesis
entails
A boy is outside

The man is sleeping
Two men are smiling and laughing at cats playing

Natural Language Inference

Premise

A boy plays in the snow

A man inspects the uniform of a figure contradicts

An older and younger man smiling
entails
neutral

Hypothesis

A boy is outside

The man is sleeping
Two men are smiling and laughing at cats playing

Natural Language Inference

Premise

entails
contradicts
neutral

Hypothesis
A boy is outside

The man is sleeping
Two men are smiling and laughing at cats playing

- Long history of this task: "Recognizing Textual Entailment" challenge in 2006 (Dagan, Glickman, Magnini)

Natural Language Inference

Premise

entails
contradicts
neutral

Hypothesis

A boy is outside

The man is sleeping
Two men are smiling and laughing at cats playing

- Long history of this task: "Recognizing Textual Entailment" challenge in 2006 (Dagan, Glickman, Magnini)
- Early datasets: small (hundreds of pairs), very ambitious (lots of world knowledge, temporal reasoning, etc.)

SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs

SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process

SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process

100D LSTM: 78\% accuracy

Bowman et al. (2015)

SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process

100D LSTM: 78\% accuracy
300D LSTM: 80\% accuracy
(Bowman et al., 2016)

Bowman et al. (2015)

SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process

100D LSTM: 78\% accuracy
300D LSTM: 80\% accuracy
(Bowman et al., 2016)
300D BiLSTM: 83\% accuracy
(Liu et al., 2016)

Bowman et al. (2015)

SNLI Dataset

- Show people captions for (unseen) images and solicit entailed / neural / contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process

100D LSTM: 78\% accuracy
300D LSTM: 80\% accuracy
(Bowman et al., 2016)
300D BiLSTM: 83\% accuracy
(Liu et al., 2016)

- Later: better models for this

Takeaways

- RNNs can transduce inputs (produce one output for each input) or compress the whole input into a vector
- Useful for a range of tasks with sequential input: sentiment analysis, language modeling, natural language inference, machine translation
- Next time: CNNs and neural CRFs

