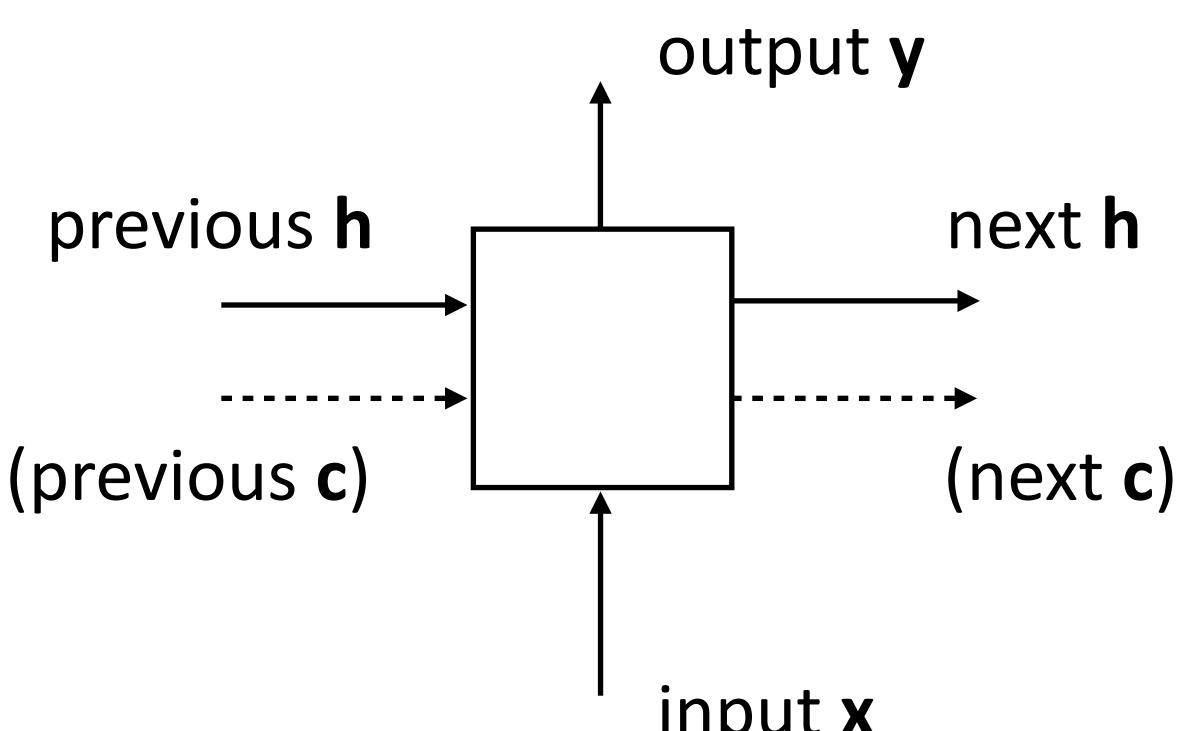
Lecture 9: CNNs, Neural CRFs

Alan Ritter

(many slides from Greg Durrett)

Recall: RNNs

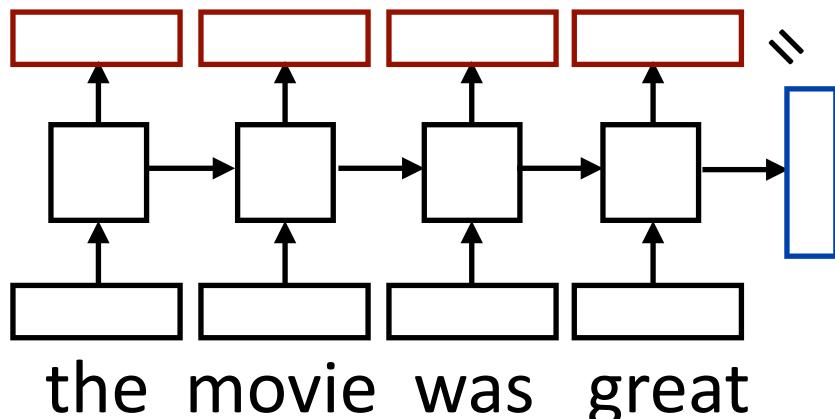
hidden state and produces output y (all vector-valued)



Cell that takes some input x, has some hidden state h, and updates that

input **x**

Recall: RNN Abstraction



- Encoding of the sentence can pass this a decoder or make a classification decision about the sentence
- Encoding of each word can pass this to another layer to make a prediction (can also pool these to get a different sentence encoding) RNN can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

What can LSTMs model?

- Sentiment
 - Encode one sentence, predict
- Language models
 - Move left-to-right, per-token prediction
- Translation
 - Encode sentence + then decode, use token predictions for attention weights (next lecture)

What can LSTMs model?

- Sentiment
 - Encode one sentence, predict
- Language models
 - Move left-to-right, per-token prediction
- Translation
 - Encode sentence + then decode, use token predictions for attention weights (next lecture)
- Textual entailment

What can LSTMs model?

- Sentiment
 - Encode one sentence, predict
- Language models
 - Move left-to-right, per-token prediction
- Translation
 - Encode sentence + then decode, use token predictions for attention weights (next lecture)
- Textual entailment
 - Encode two sentences, predict

Premise

A boy plays in the snow

Hypothesis

A boy is outside

Premise

A boy plays in the snow

Hypothesis

A boy is outside

entails

entails

Premise

A boy plays in the snow

A man inspects the uniform of a figure

Hypothesis

A boy is outside

The man is sleeping

Premise

A boy plays in the snow

A man inspects the uniform of a figure

Hypothesis

entails A boy is outside

contradicts

The man is sleeping

Premise

A boy plays in the snow

A man inspects the uniform of a figure

An older and younger man smiling

Hypothesis

entails

A boy is outside

contradicts

The man is sleeping Two men are smiling and laughing at cats playing

Premise

A boy plays in the snow

A man inspects the uniform of a figure

An older and younger man smiling

Hypothesis

A boy is outside entails

contradicts

neutral

The man is sleeping Two men are smiling and laughing at cats playing

Premise

A boy plays in the snow

A man inspects the uniform of a figure

An older and younger man smiling

Long history of this task: "Recognizing Textual Entailment" challenge in 2006 (Dagan, Glickman, Magnini)

Hypothesis

A boy is outside entails

contradicts The man is sleeping Two men are smiling and neutral laughing at cats playing

Premise

A boy plays in the snow

A man inspects the uniform of a figure

An older and younger man smiling

- 2006 (Dagan, Glickman, Magnini)
- knowledge, temporal reasoning, etc.)

Hypothesis

A boy is outside entails

contradicts The man is sleeping Two men are smiling and neutral laughing at cats playing

Long history of this task: "Recognizing Textual Entailment" challenge in

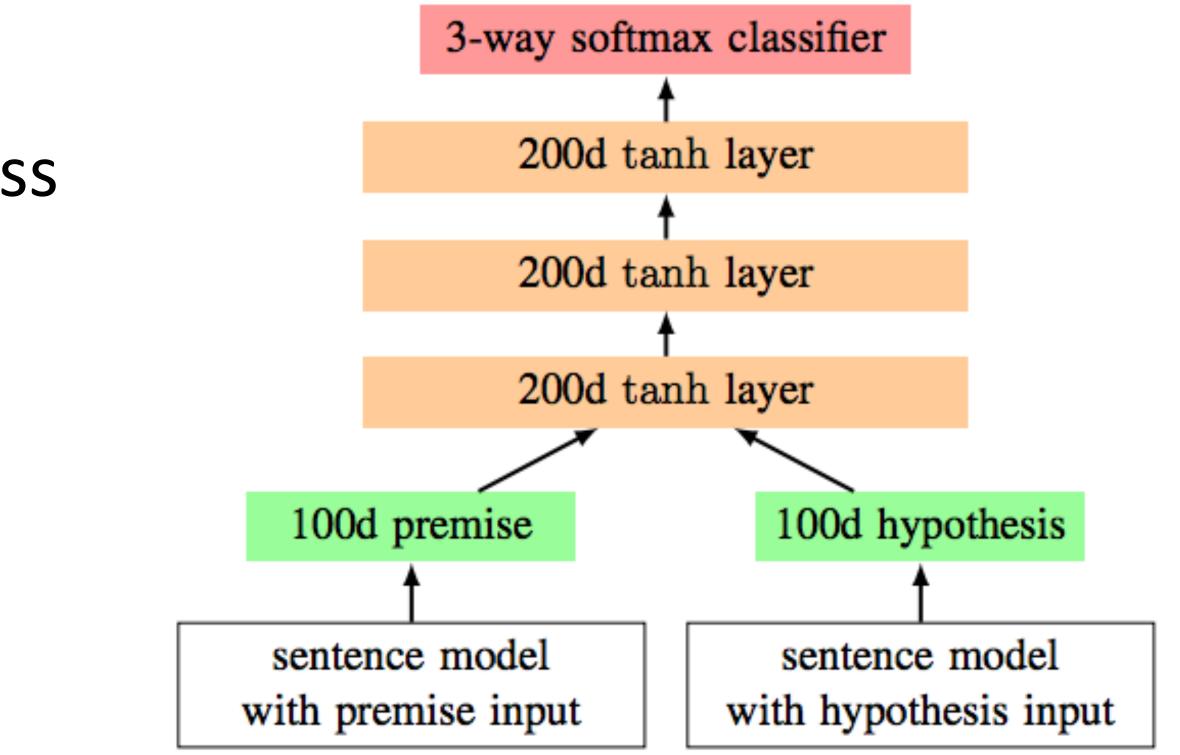
Early datasets: small (hundreds of pairs), very ambitious (lots of world

- contradictory statements
- >500,000 sentence pairs

Show people captions for (unseen) images and solicit entailed / neural /

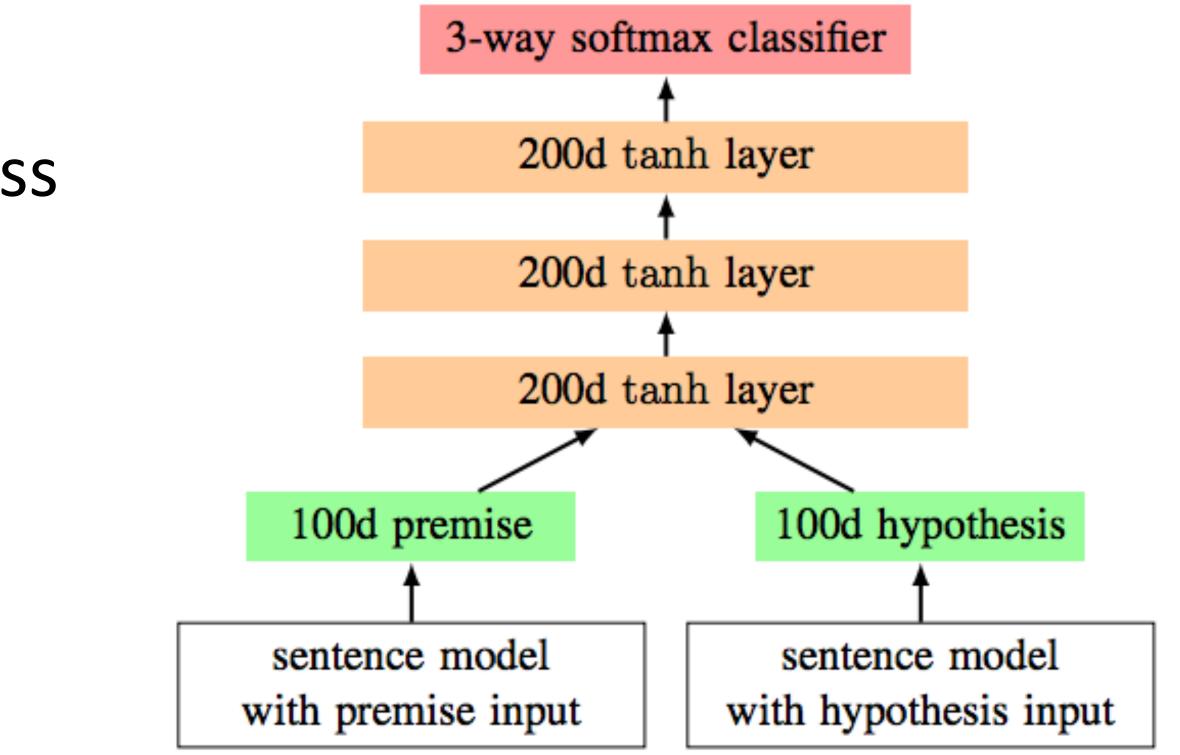
- contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process

Show people captions for (unseen) images and solicit entailed / neural /



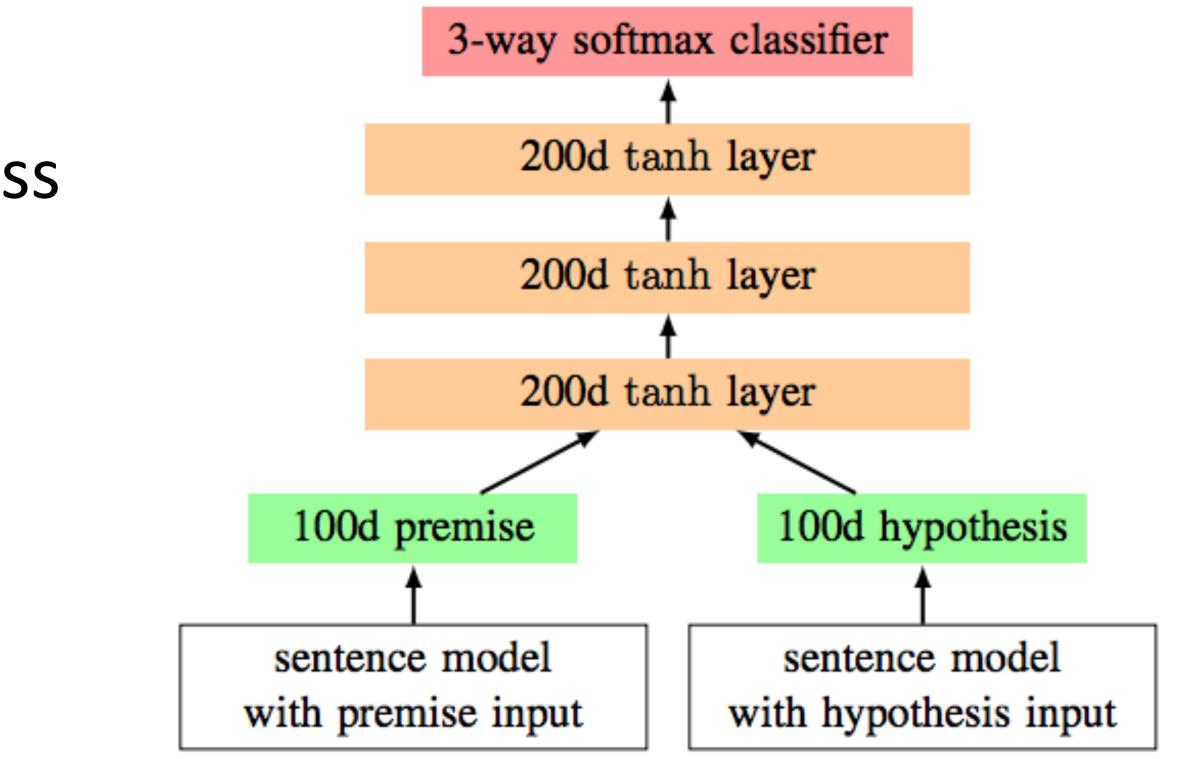
- contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process 100D LSTM: 78% accuracy

Show people captions for (unseen) images and solicit entailed / neural /



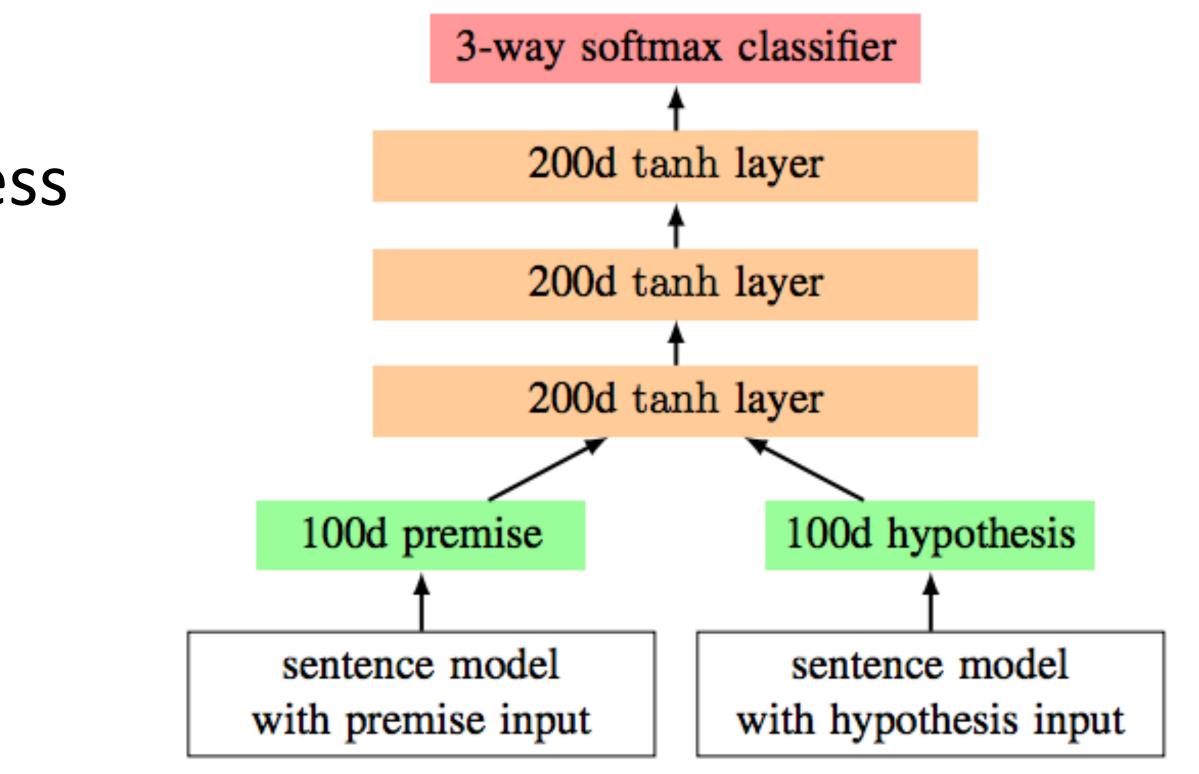
- contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process 100D LSTM: 78% accuracy 300D LSTM: 80% accuracy (Bowman et al., 2016)

Show people captions for (unseen) images and solicit entailed / neural /



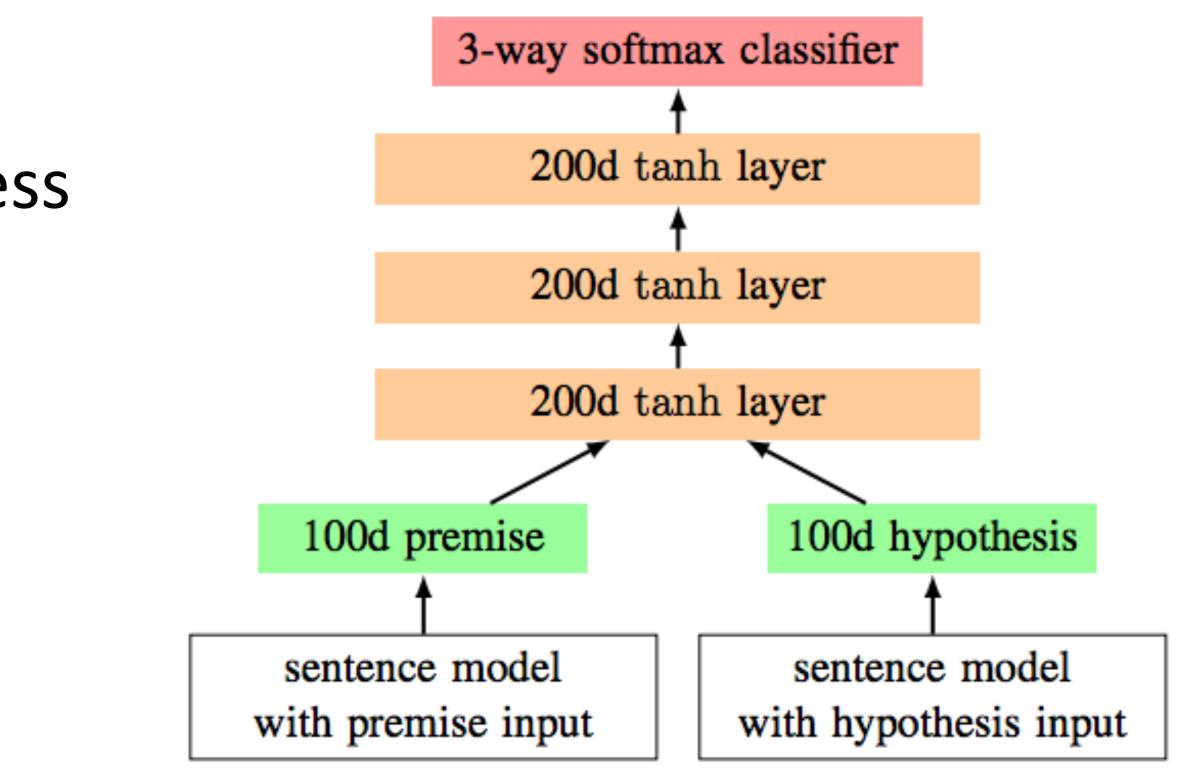
- contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process 100D LSTM: 78% accuracy 300D LSTM: 80% accuracy (Bowman et al., 2016) 300D BiLSTM: 83% accuracy (Liu et al., 2016)

Show people captions for (unseen) images and solicit entailed / neural /



- contradictory statements
- >500,000 sentence pairs
- Encode each sentence and process 100D LSTM: 78% accuracy 300D LSTM: 80% accuracy (Bowman et al., 2016) 300D BiLSTM: 83% accuracy (Liu et al., 2016) Later: better models for this

Show people captions for (unseen) images and solicit entailed / neural /



CNNs

CNNs for Sentiment

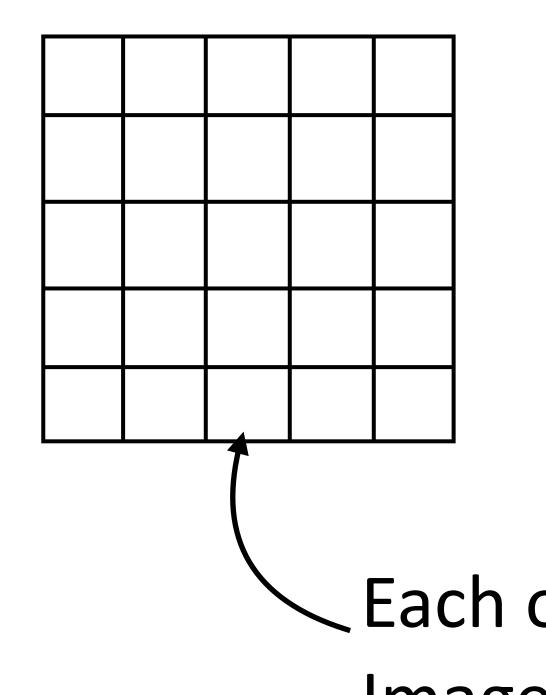
Neural CRFs

This Lecture

CNNS

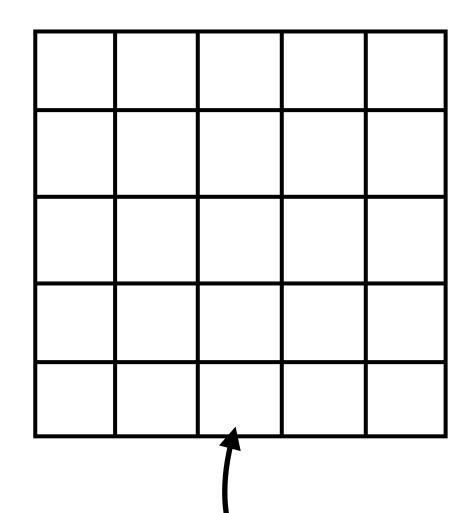
- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input

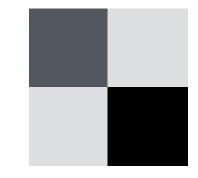
- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input
- image: n x n x k



Each of these cells is a vector with multiple values Images: RGB values (3 dim)

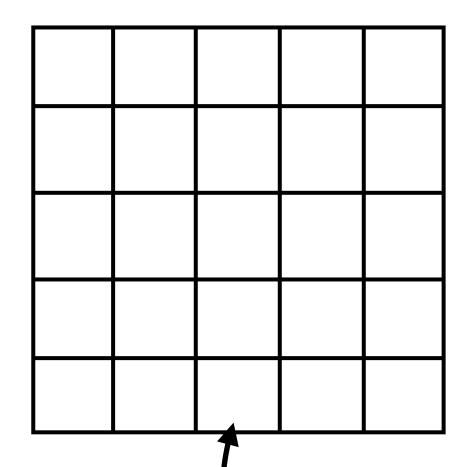
- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input
- image: n x n x k filter: m x m x k

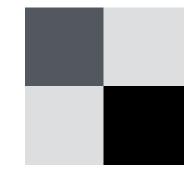




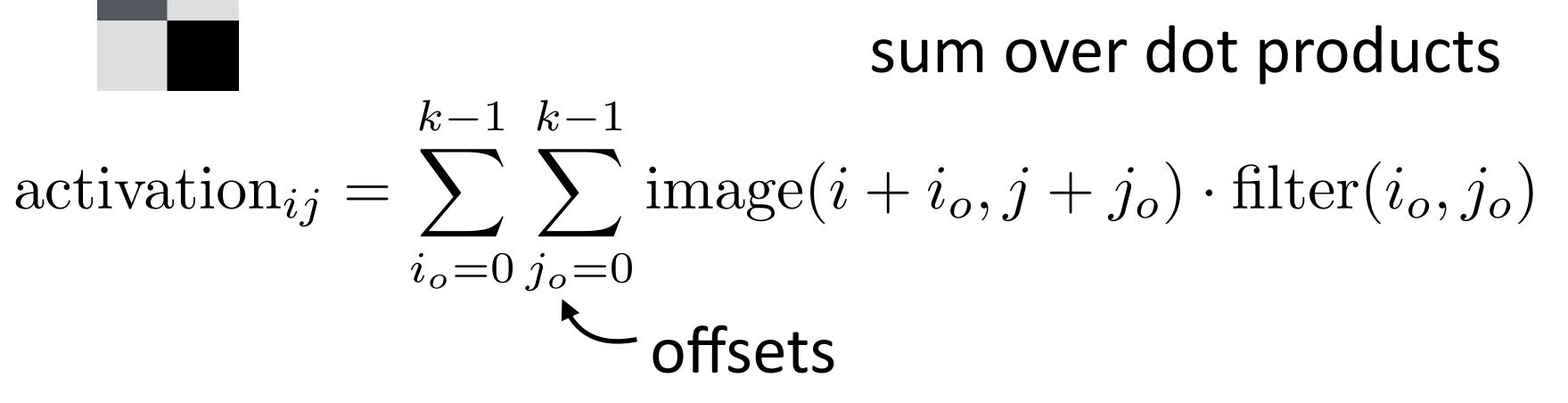
Each of these cells is a vector with multiple values Images: RGB values (3 dim)

- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input





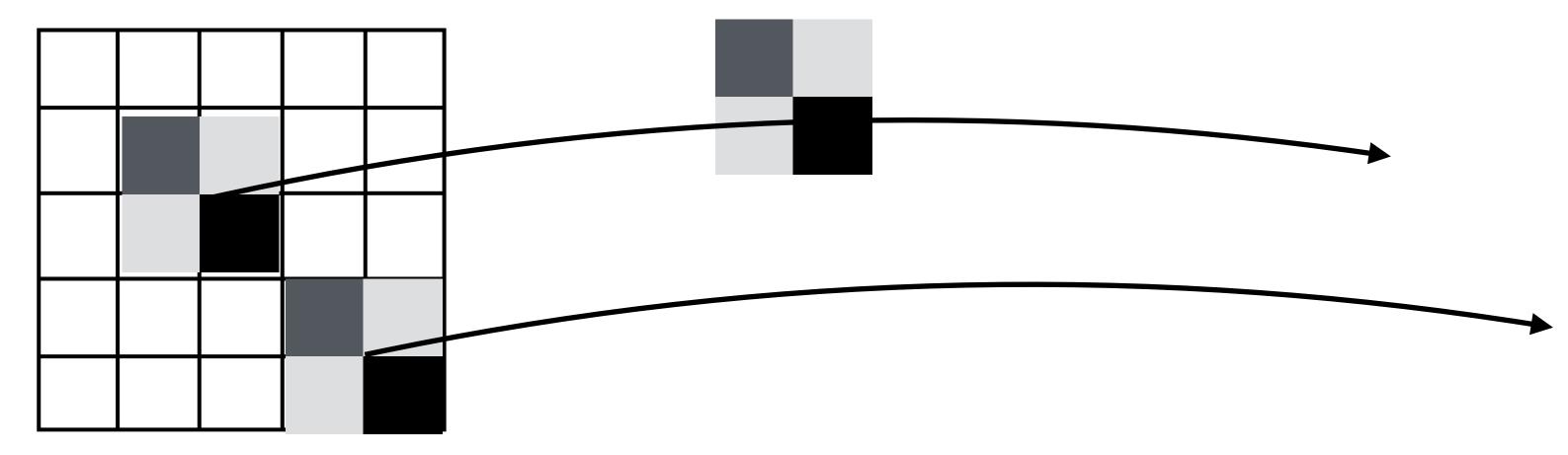
Images: RGB values (3 dim)



Each of these cells is a vector with multiple values

- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input
- image: n x n x k filter: m x m x k

- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input



- Applies a *filter* over patches of the input and returns that filter's activations
- Convolution: take dot product of filter with a patch of the input

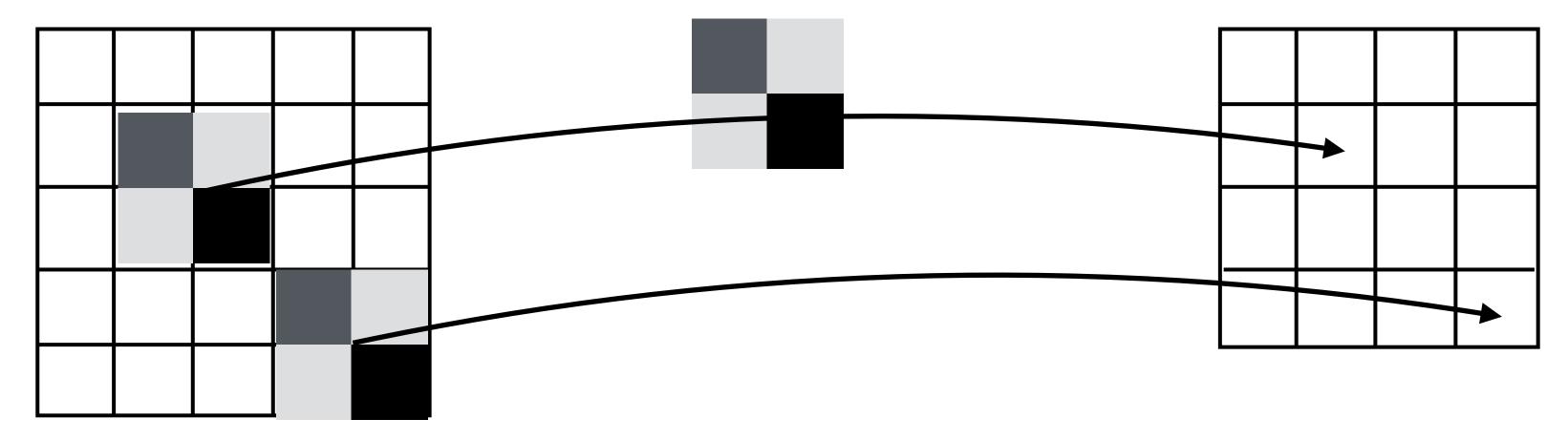


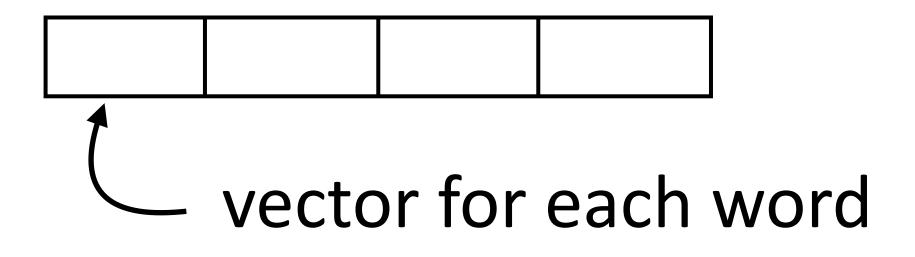
image: $n \times n \times k$ filter: $m \times m \times k$ activations: $(n - m + 1) \times (n - m + 1) \times 1$

Input and filter are 2-dimensional instead of 3-dimensional

Input and filter are 2-dimensional instead of 3-dimensional

sentence: n words x k vec dim

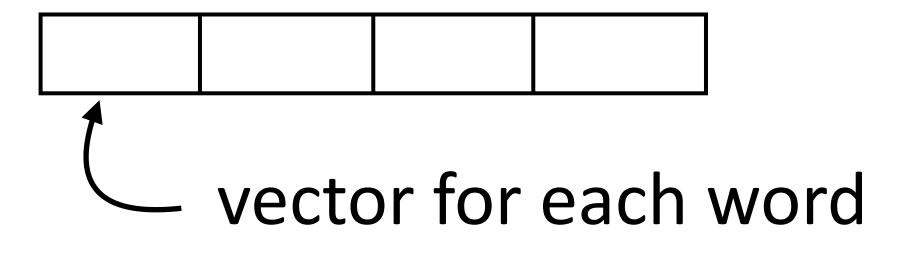
the movie was good



Input and filter are 2-dimensional instead of 3-dimensional

sentence: n words x k vec dim

the movie was good



filter: m x k

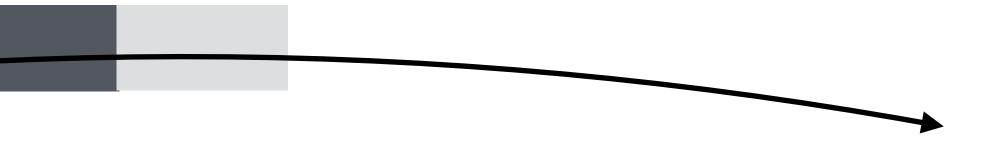
Input and filter are 2-dimensional instead of 3-dimensional

sentence: n words x k vec dim

the movie was good

vector for each word

filter: m x k



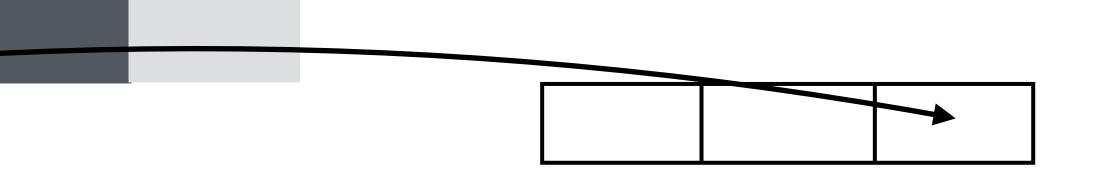
Input and filter are 2-dimensional instead of 3-dimensional

sentence: n words x k vec dim

the movie was good

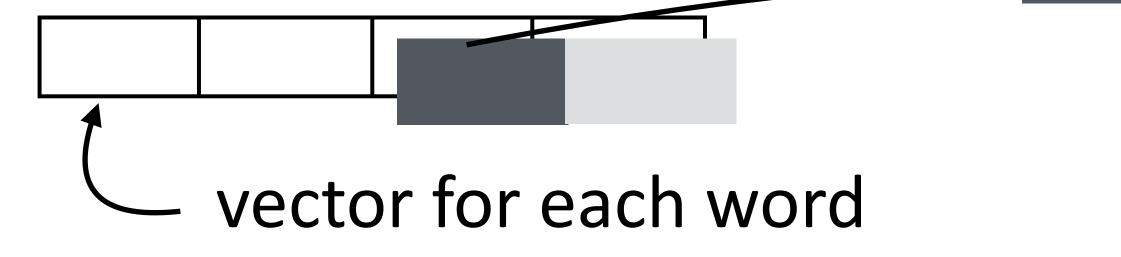
vector for each word

filter: m x k activations: $(n - m + 1) \times 1$

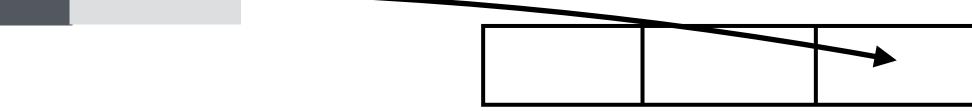


- Input and filter are 2-dimensional instead of 3-dimensional
- sentence: n words x k vec dim

the movie was good

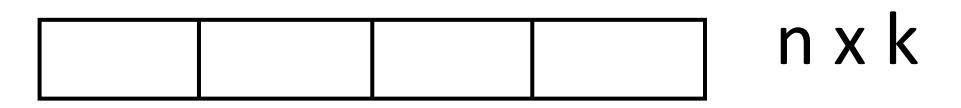


variable-length) representation



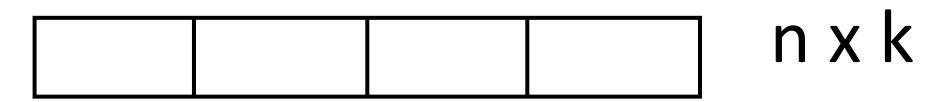
Combines evidence locally in a sentence and produces a new (but still

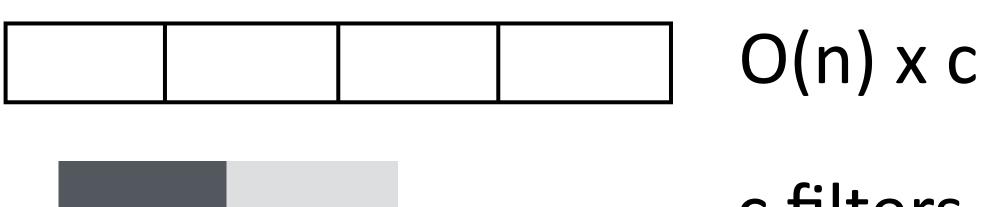
Compare: CNNs vs. LSTMs

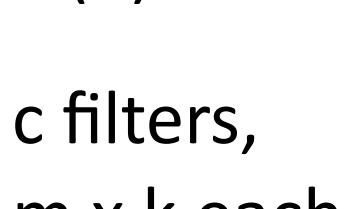


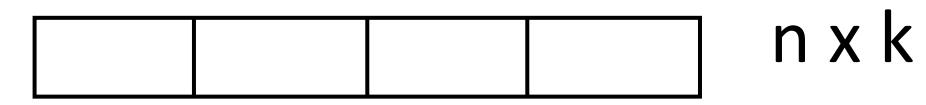
the movie was good

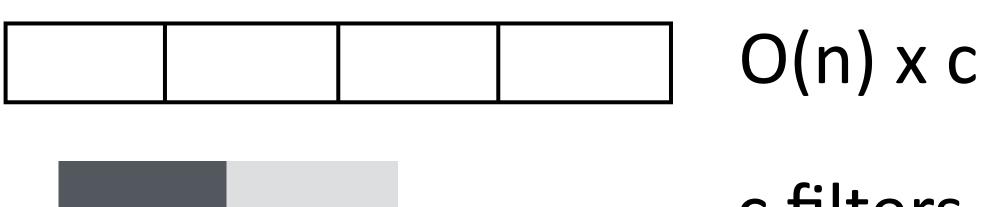
c filters, m x k each

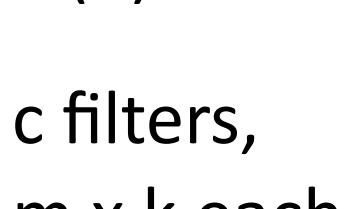


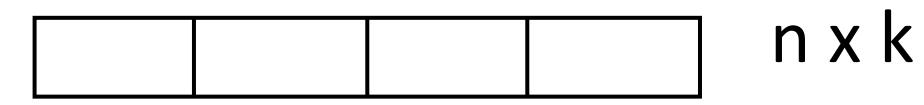






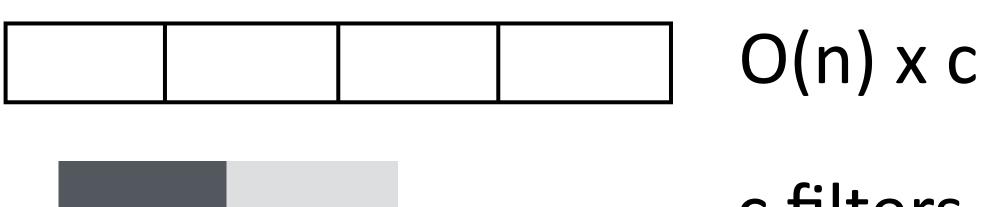


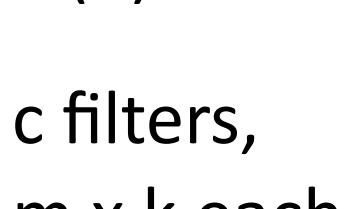


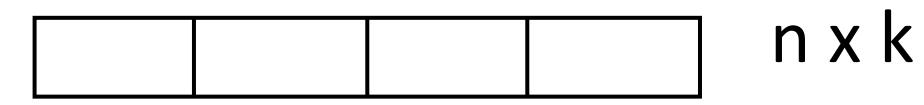


the movie was good

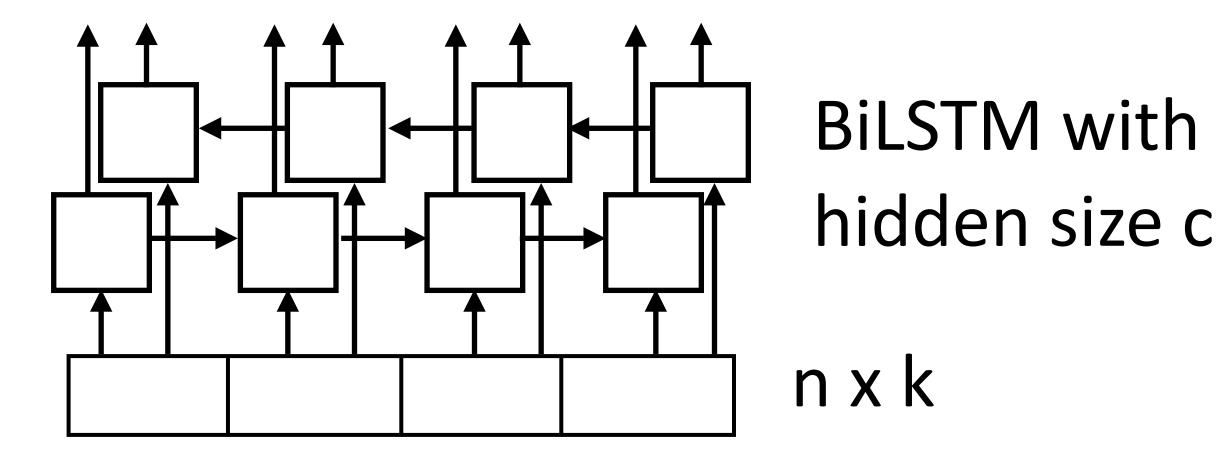
n x k

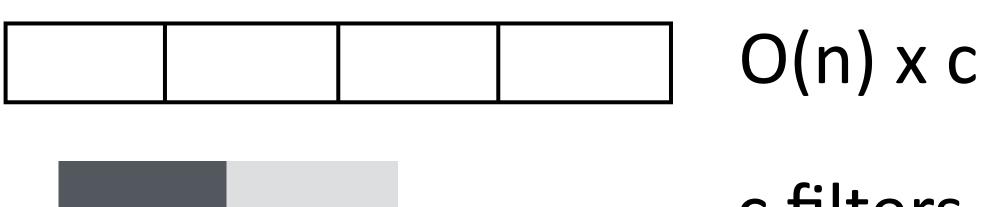


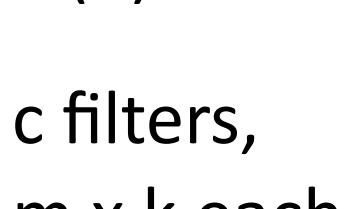


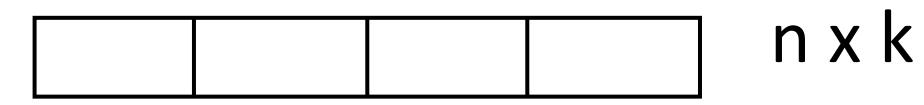


the movie was good

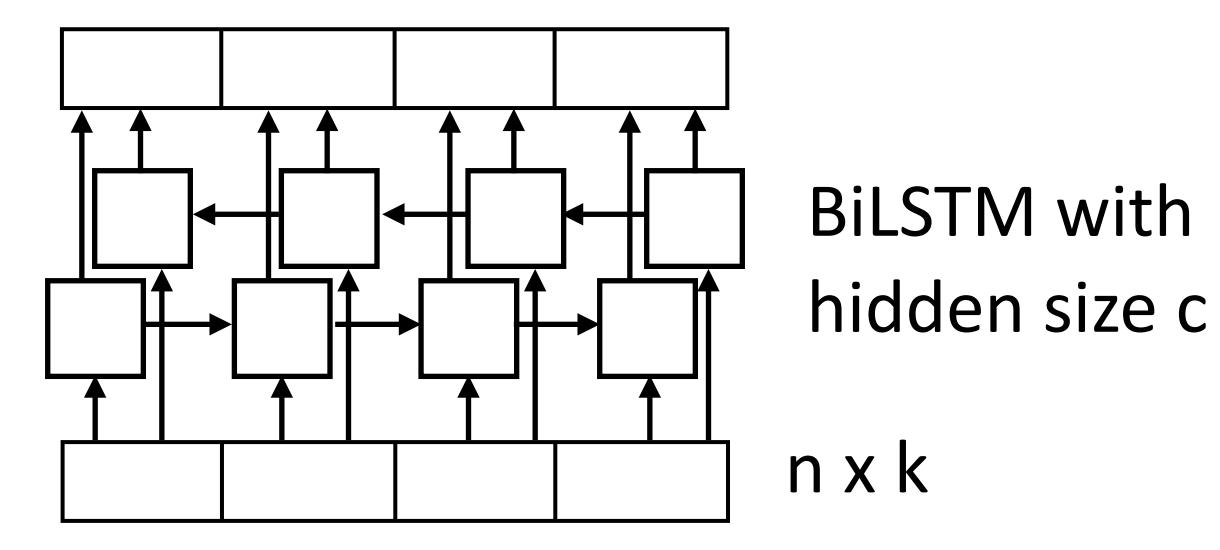


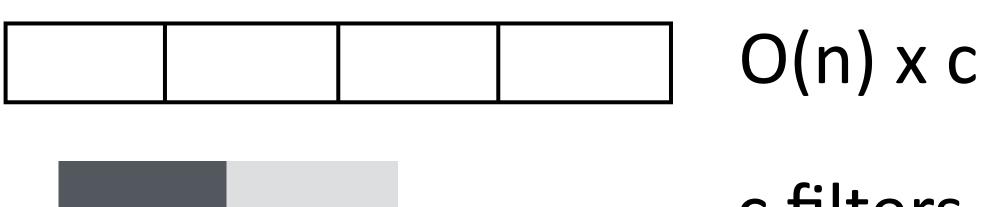


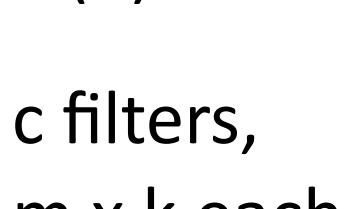


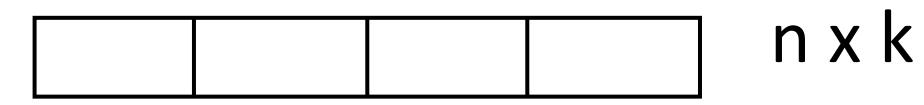


the movie was good

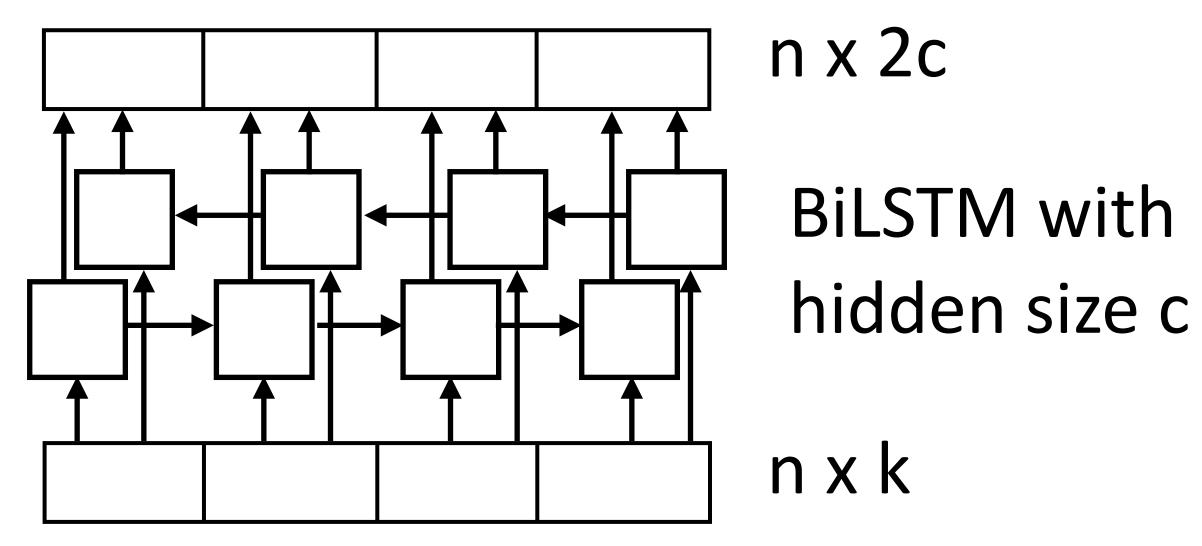


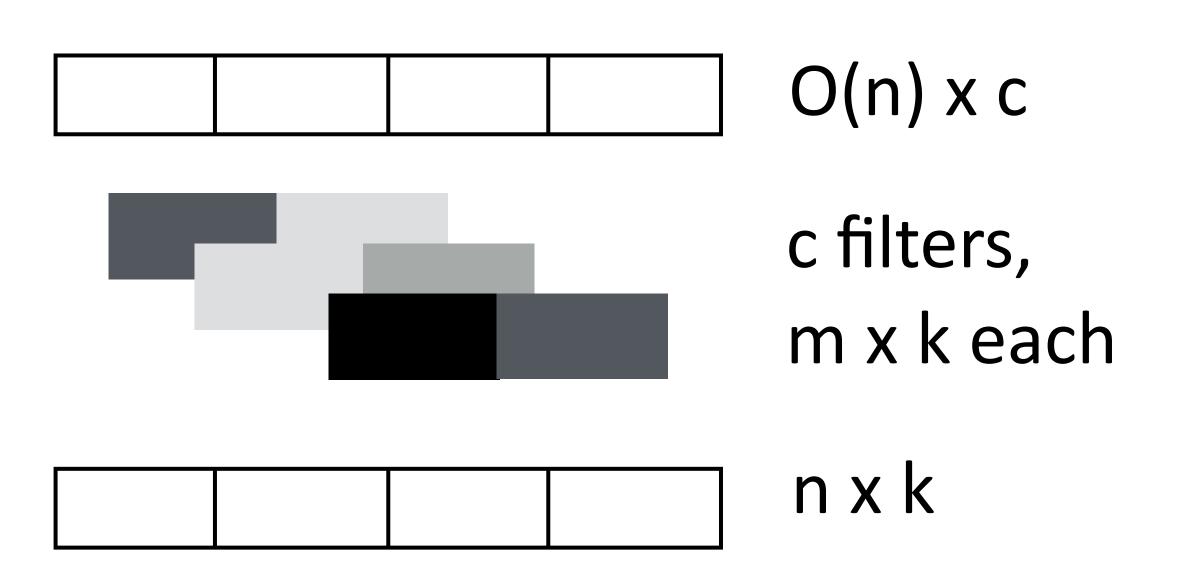




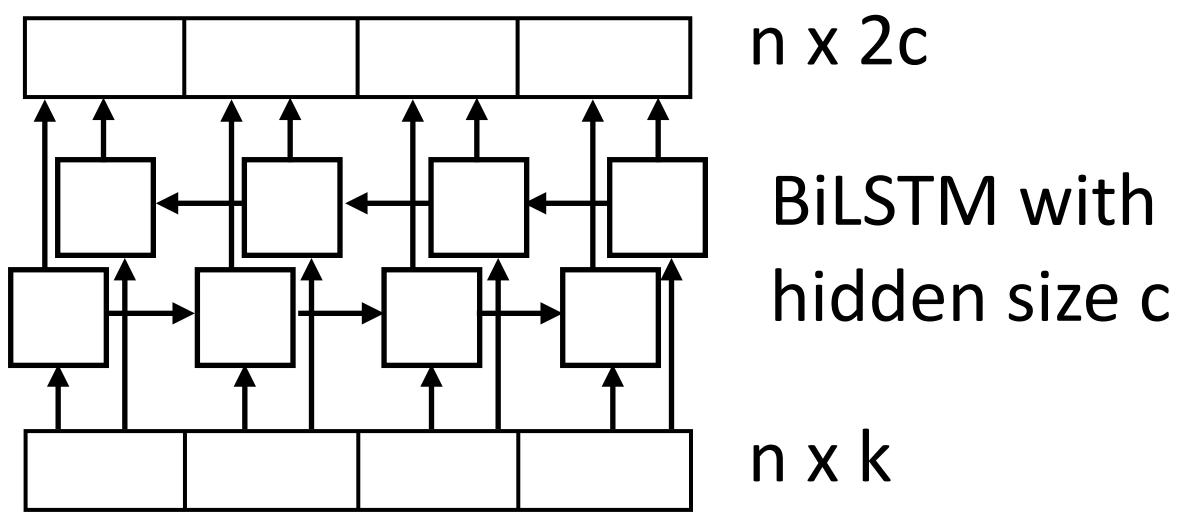


the movie was good





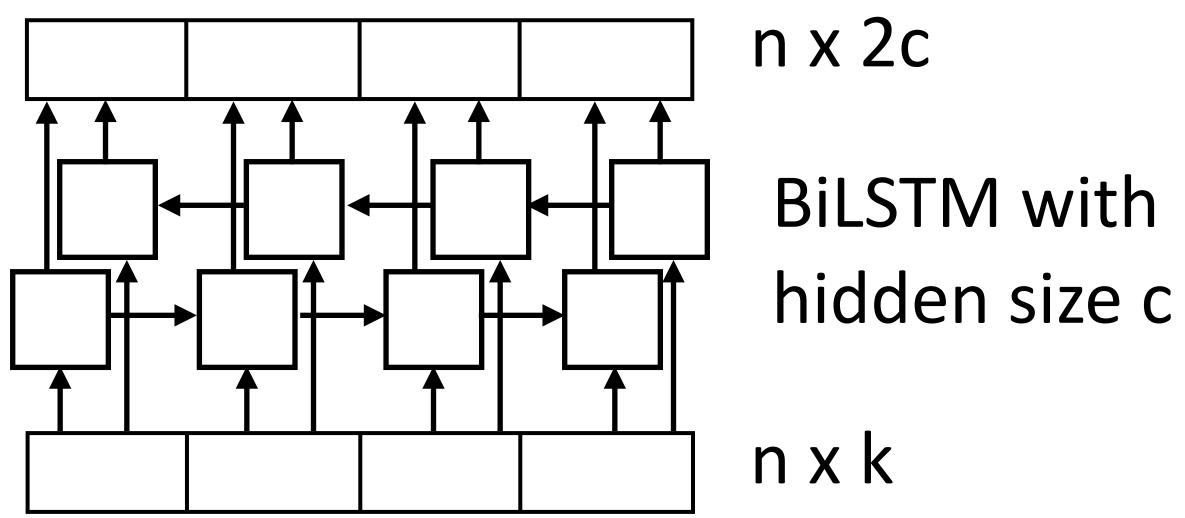
the movie was good



the movie was good

Both LSTMs and convolutional layers transform the input using context

the movie was good

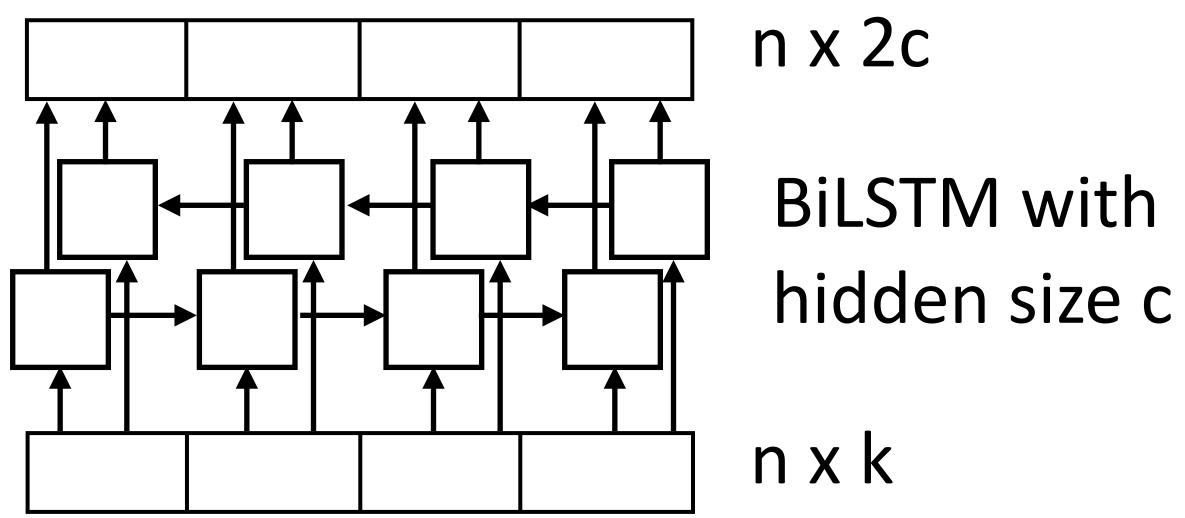


the movie was good

Both LSTMs and convolutional layers transform the input using context LSTM: "globally" looks at the entire sentence (but local for many problems)

the movie was good

- LSTM: "globally" looks at the entire sentence (but local for many problems)
- CNN: local depending on filter width + number of layers

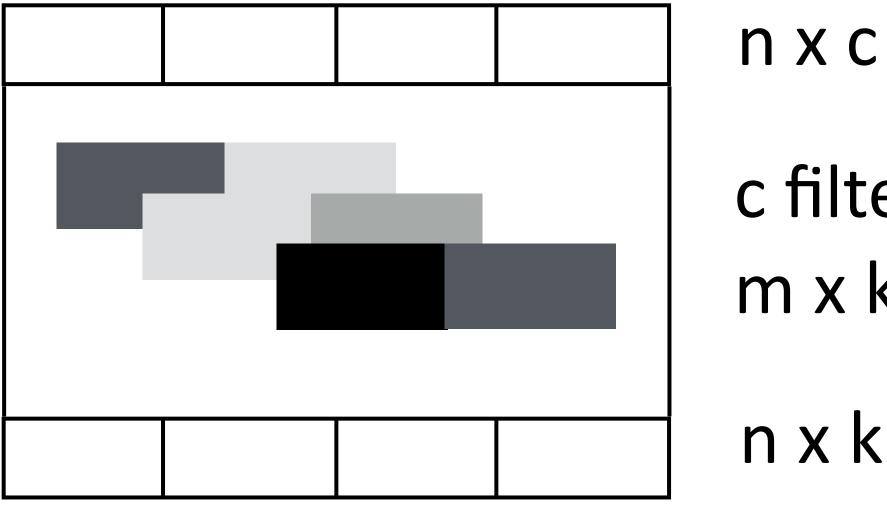


the movie was good

Both LSTMs and convolutional layers transform the input using context

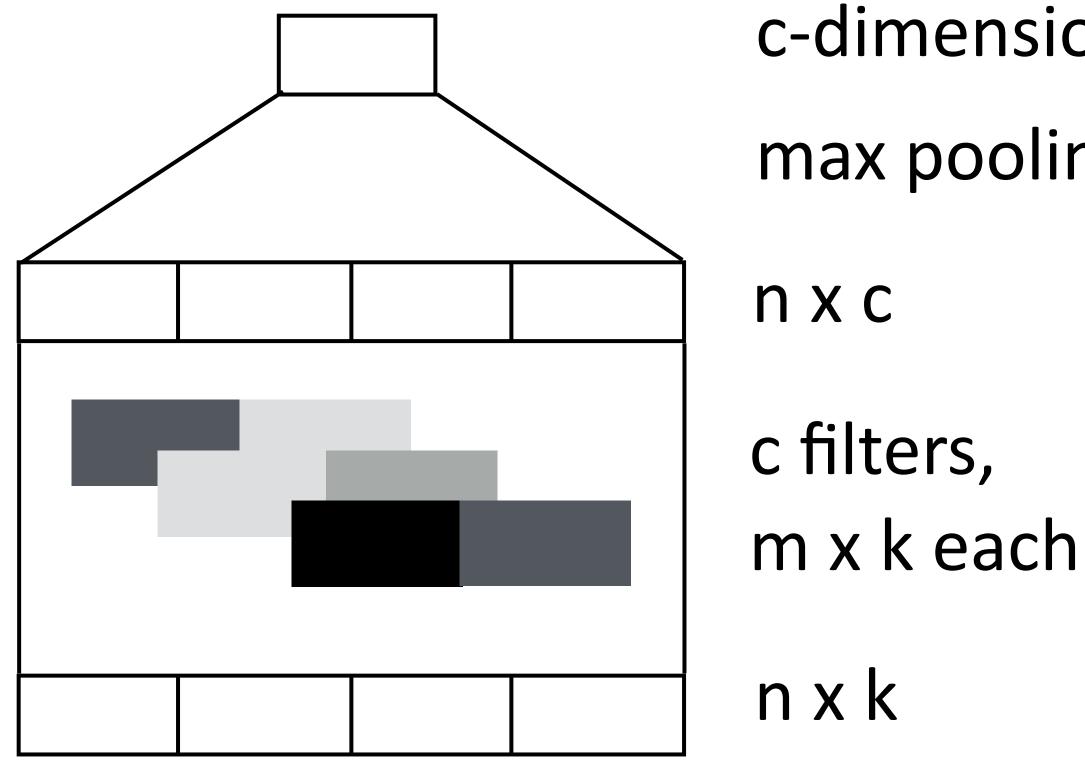
CNNs for Sentiment

CNNs for Sentiment Analysis



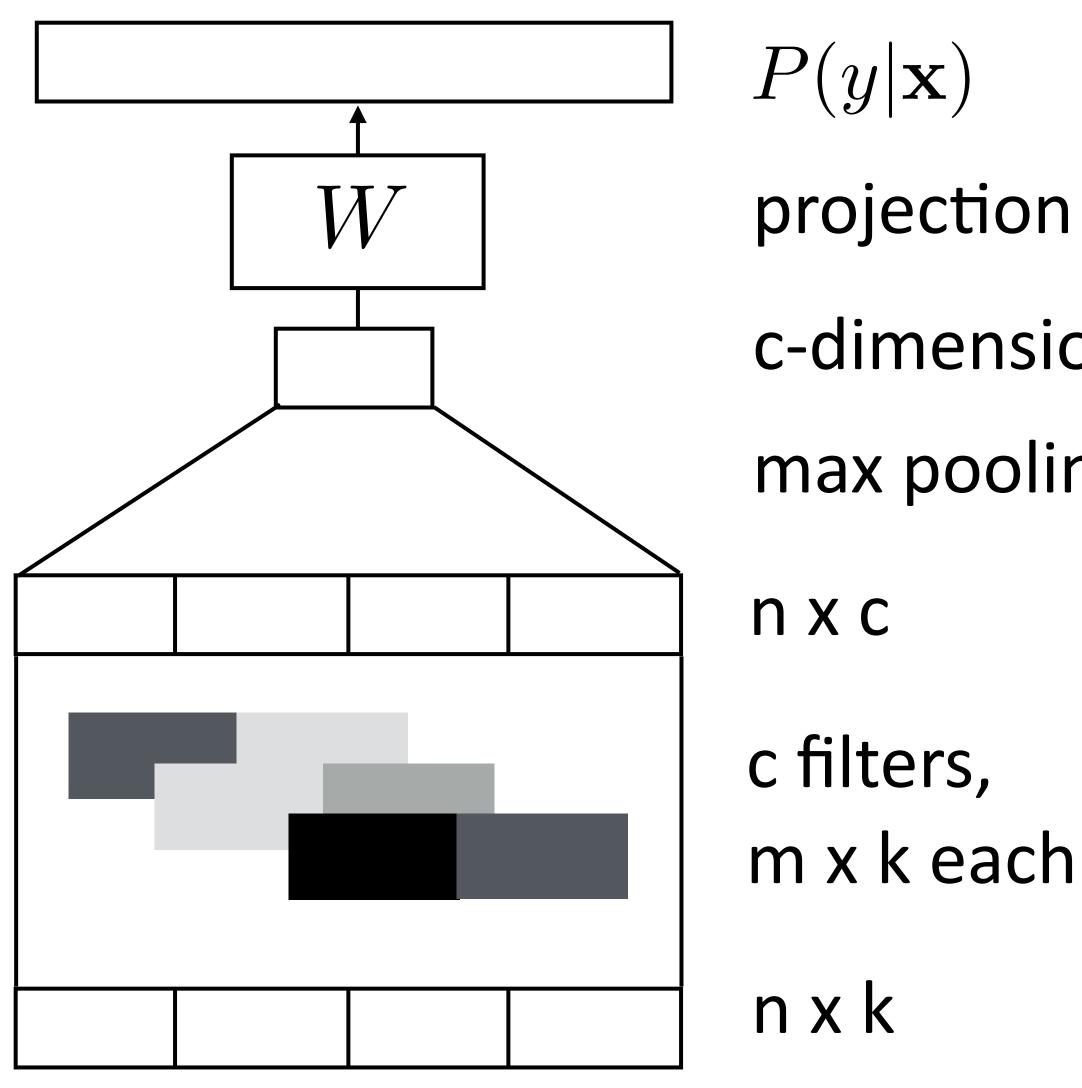
n x c n x k each n x k

CNNs for Sentiment Analysis

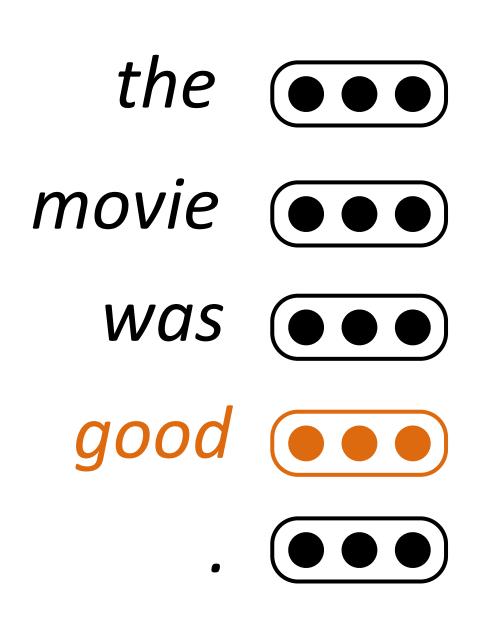


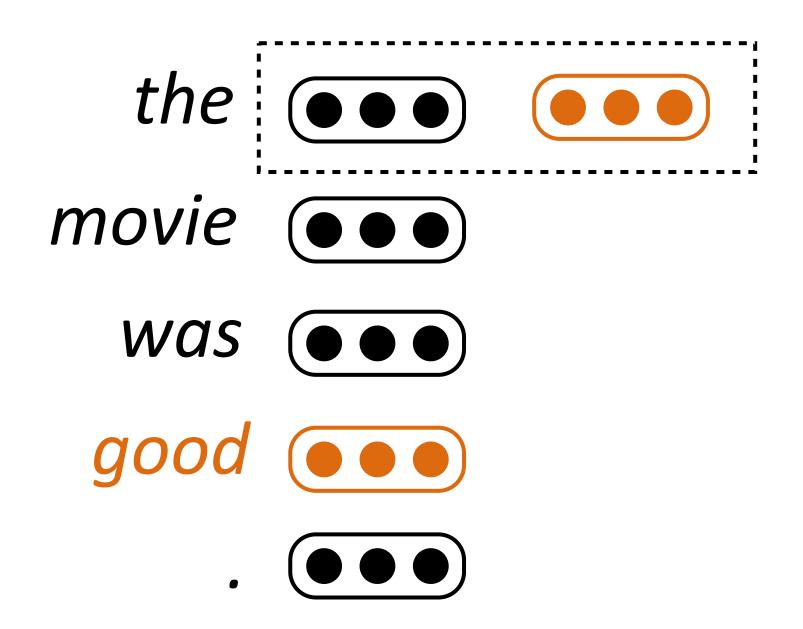
- c-dimensional vector
- max pooling over the sentence
 - Max pooling: return the max activation of a given filter over the entire sentence; like a logical OR (sum pooling is like logical AND)

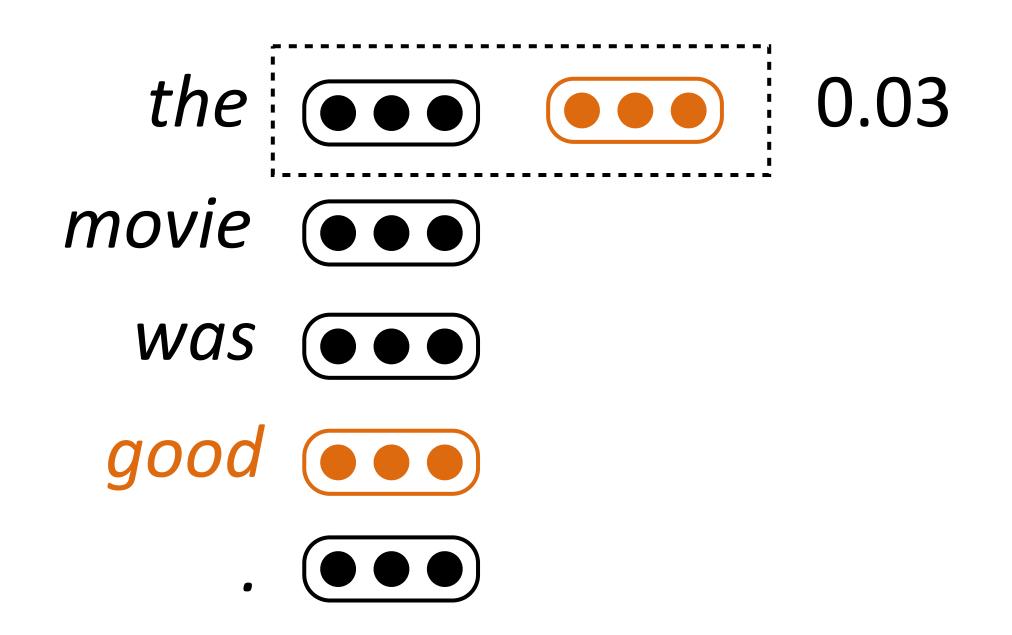
CNNs for Sentiment Analysis



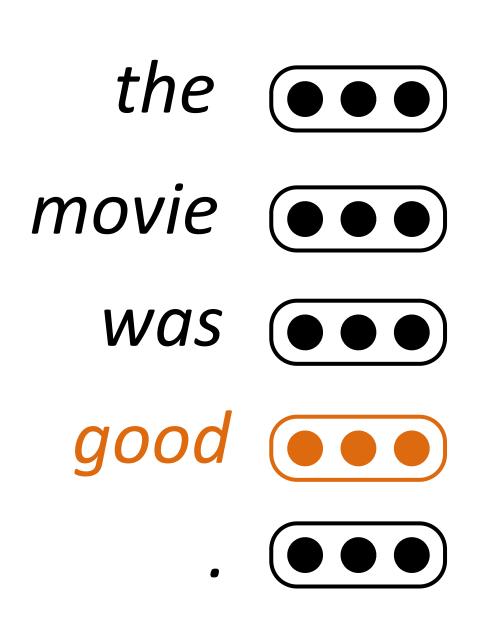
- projection + softmax
- c-dimensional vector
- max pooling over the sentence
 - Max pooling: return the max activation of a given filter over the entire sentence; like a logical OR (sum pooling is like logical AND)

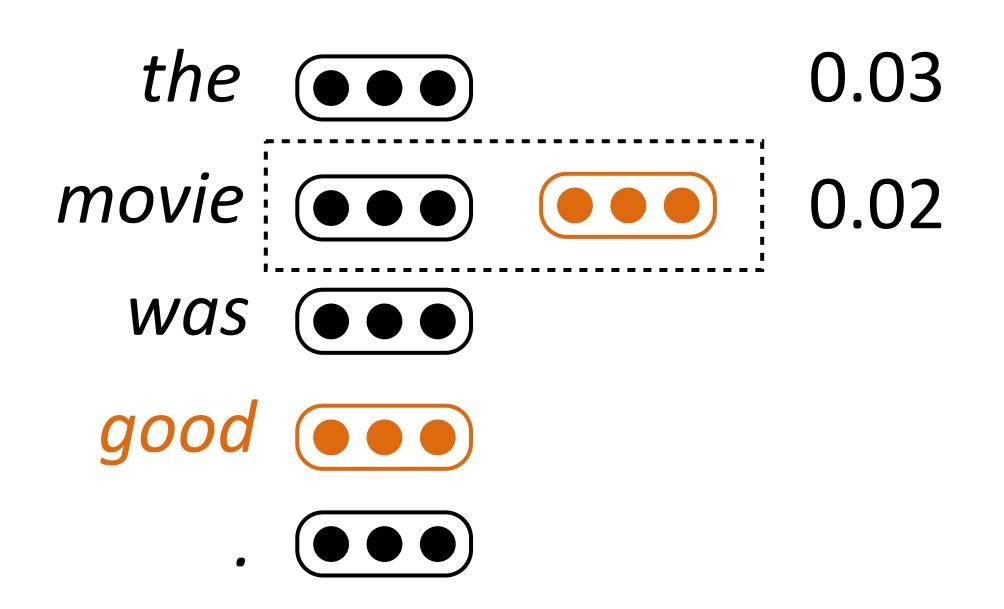


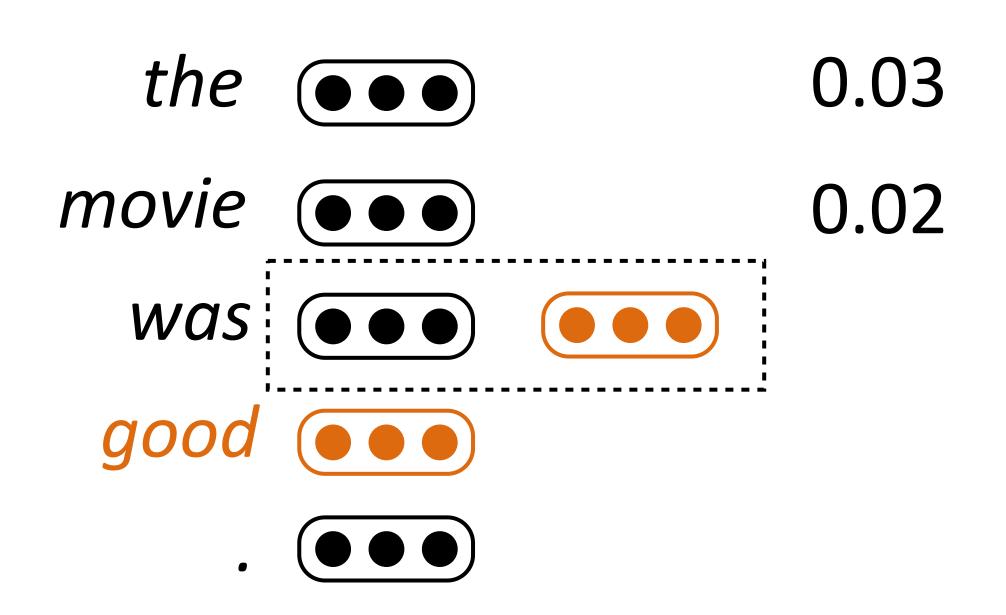


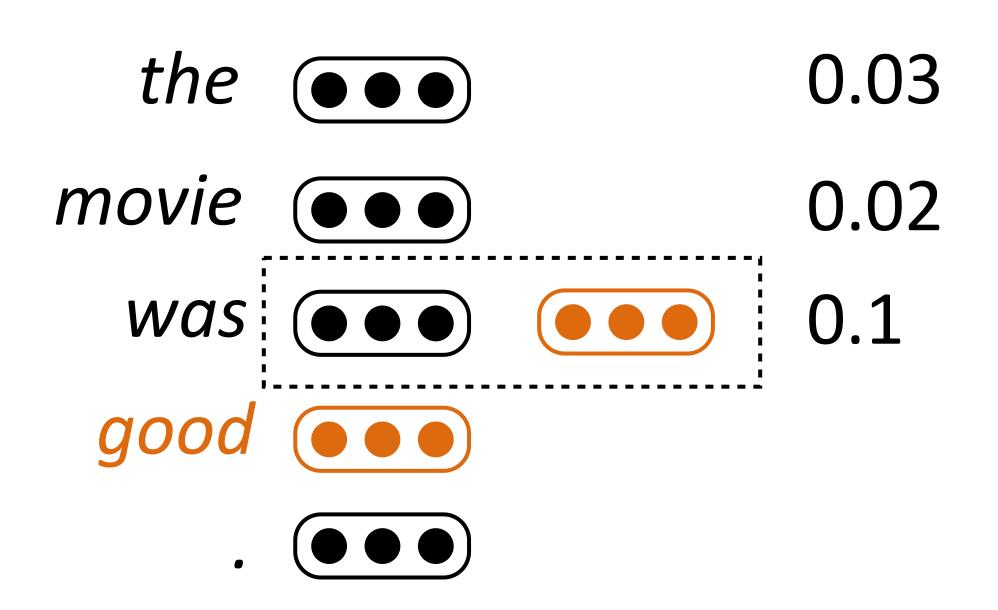


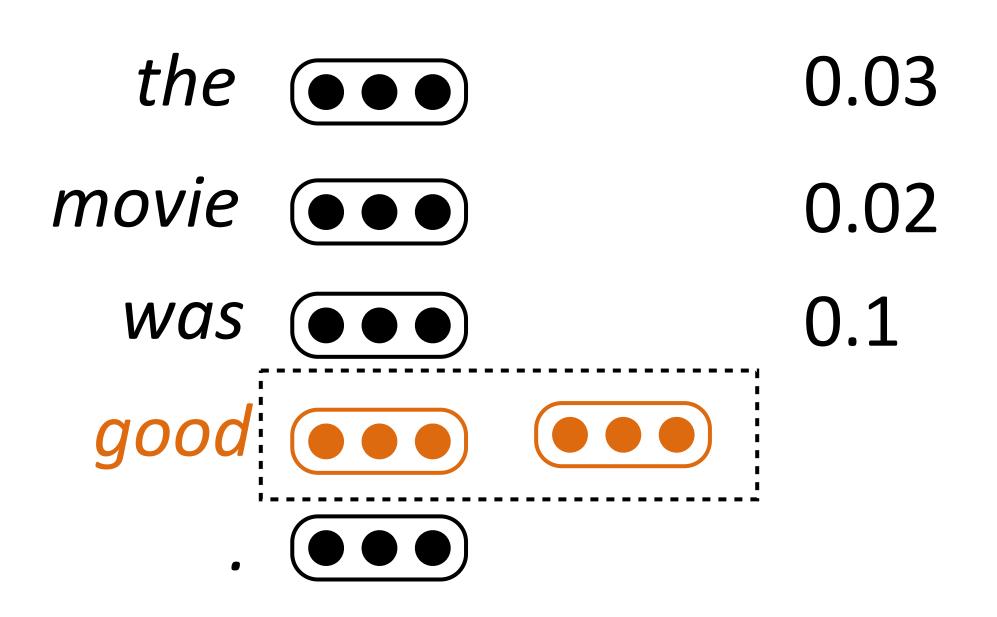
0.03

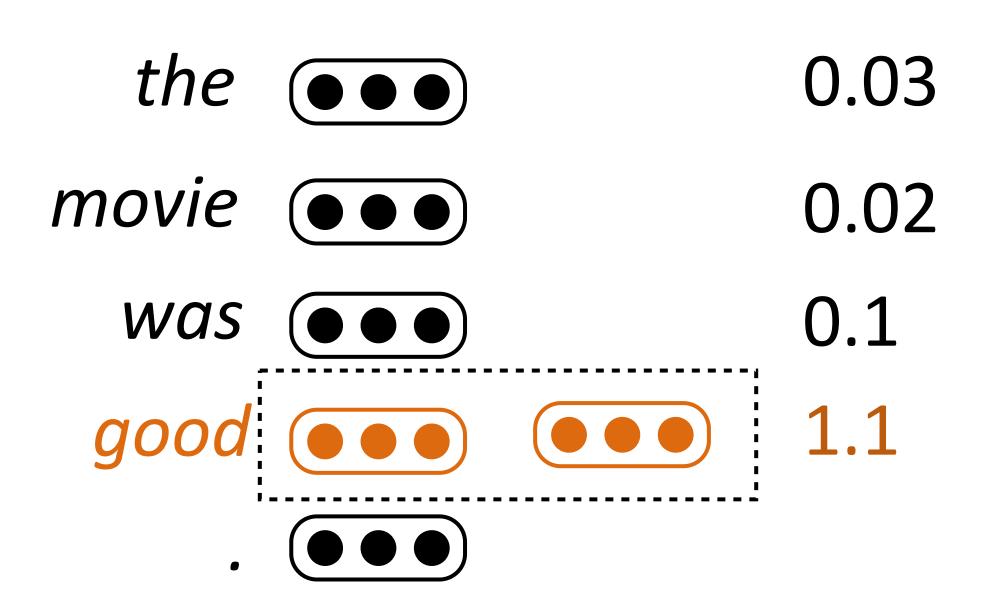


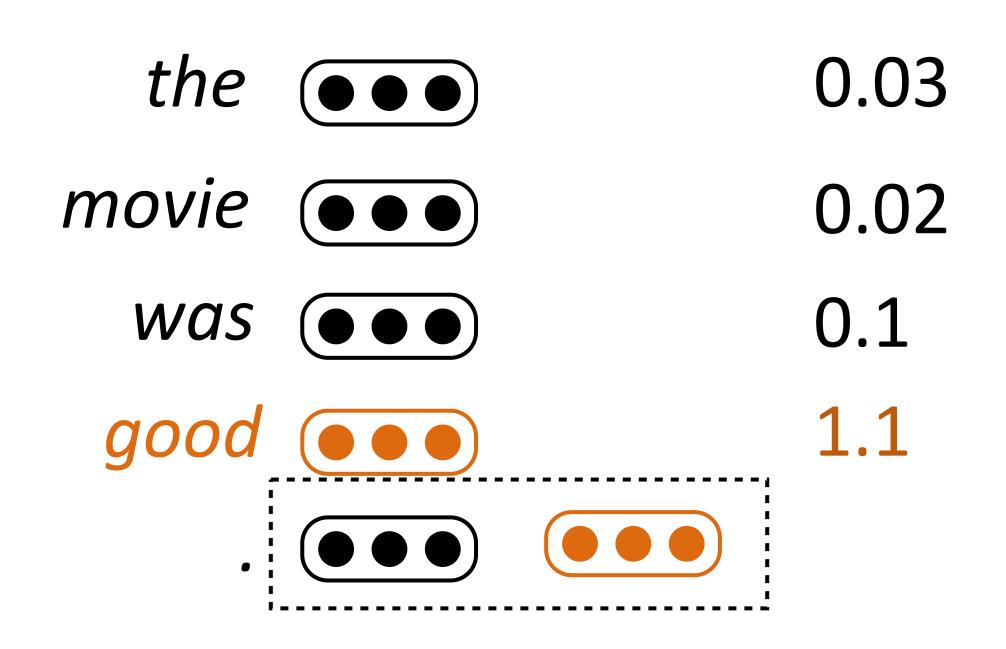


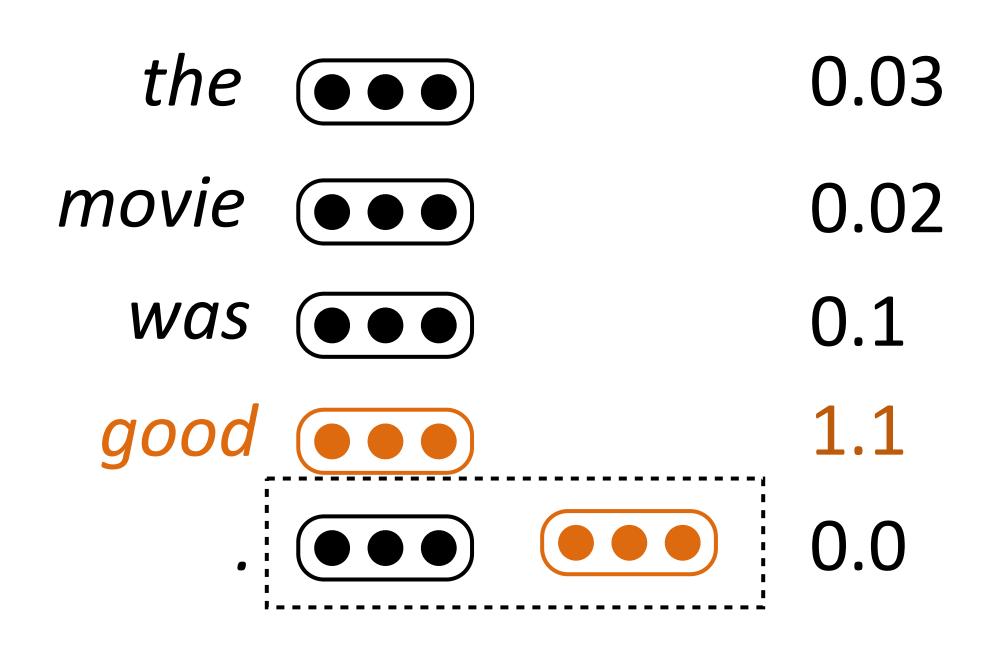


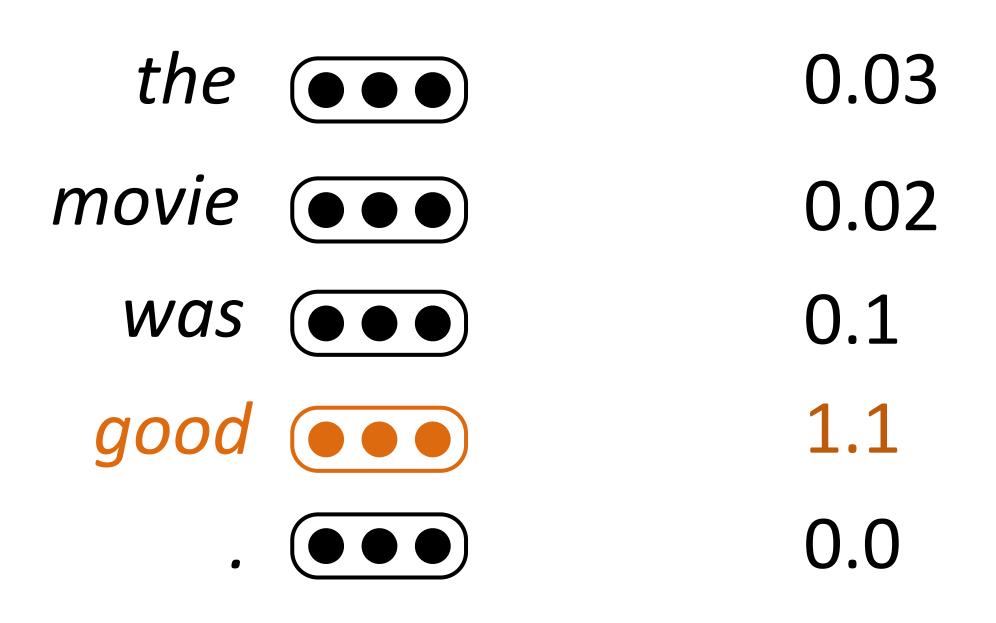


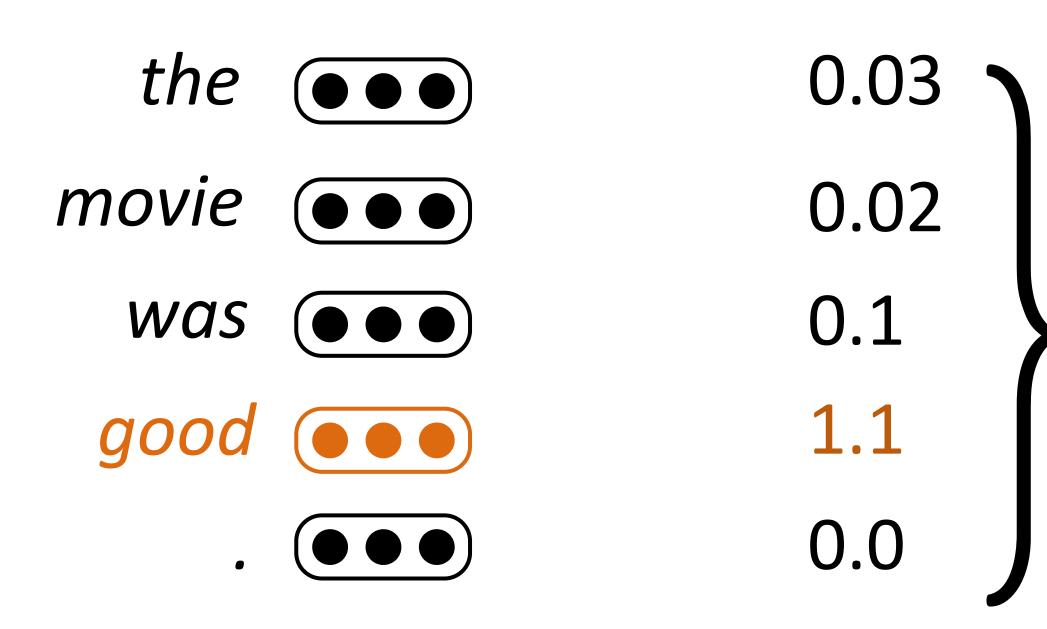




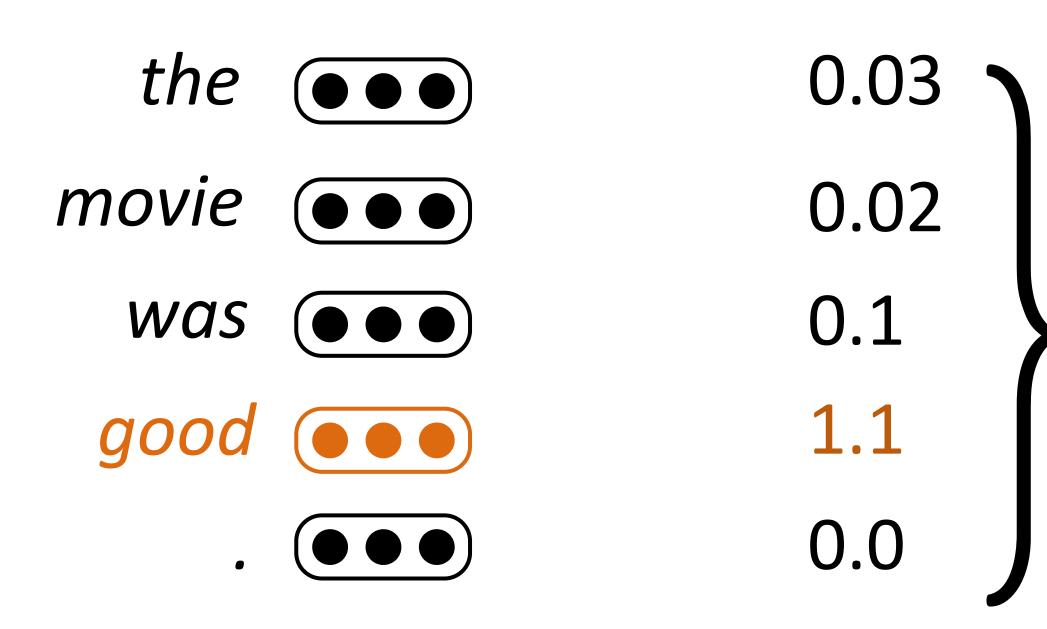




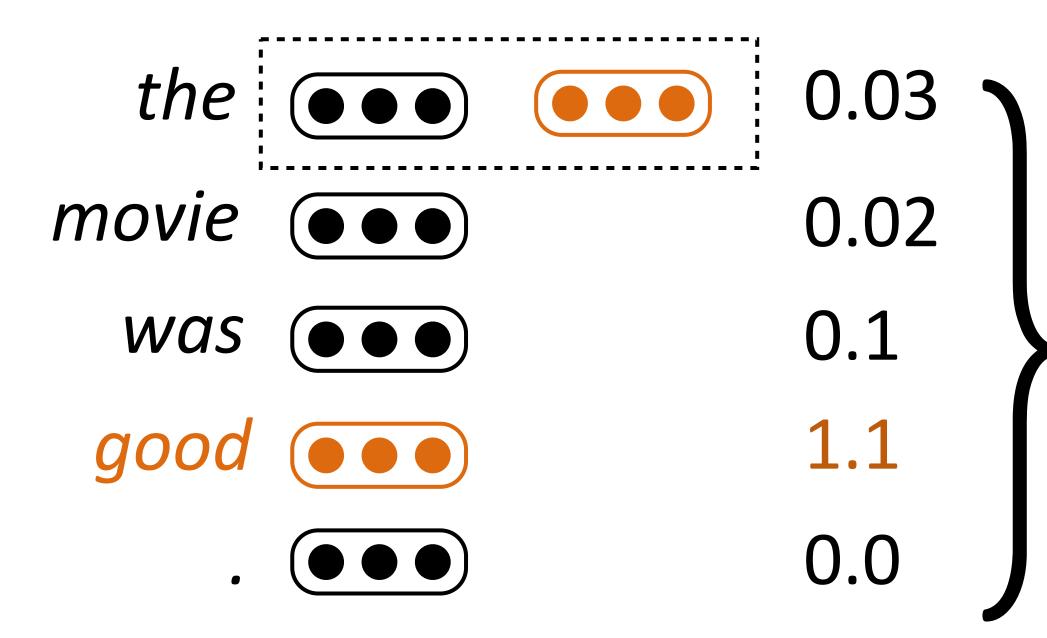




max = 1.1



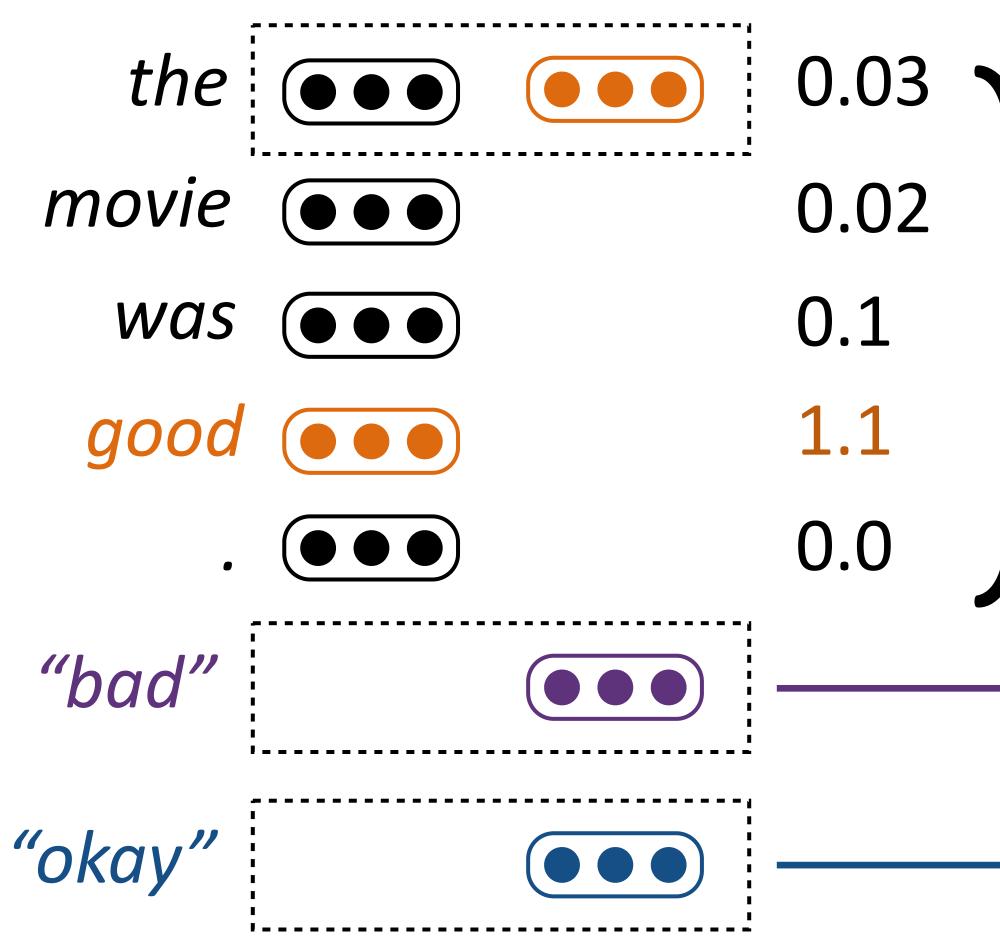
0.02 *"good" filter output*0.1 max = 1.1



max = 1.1

max = 1.1

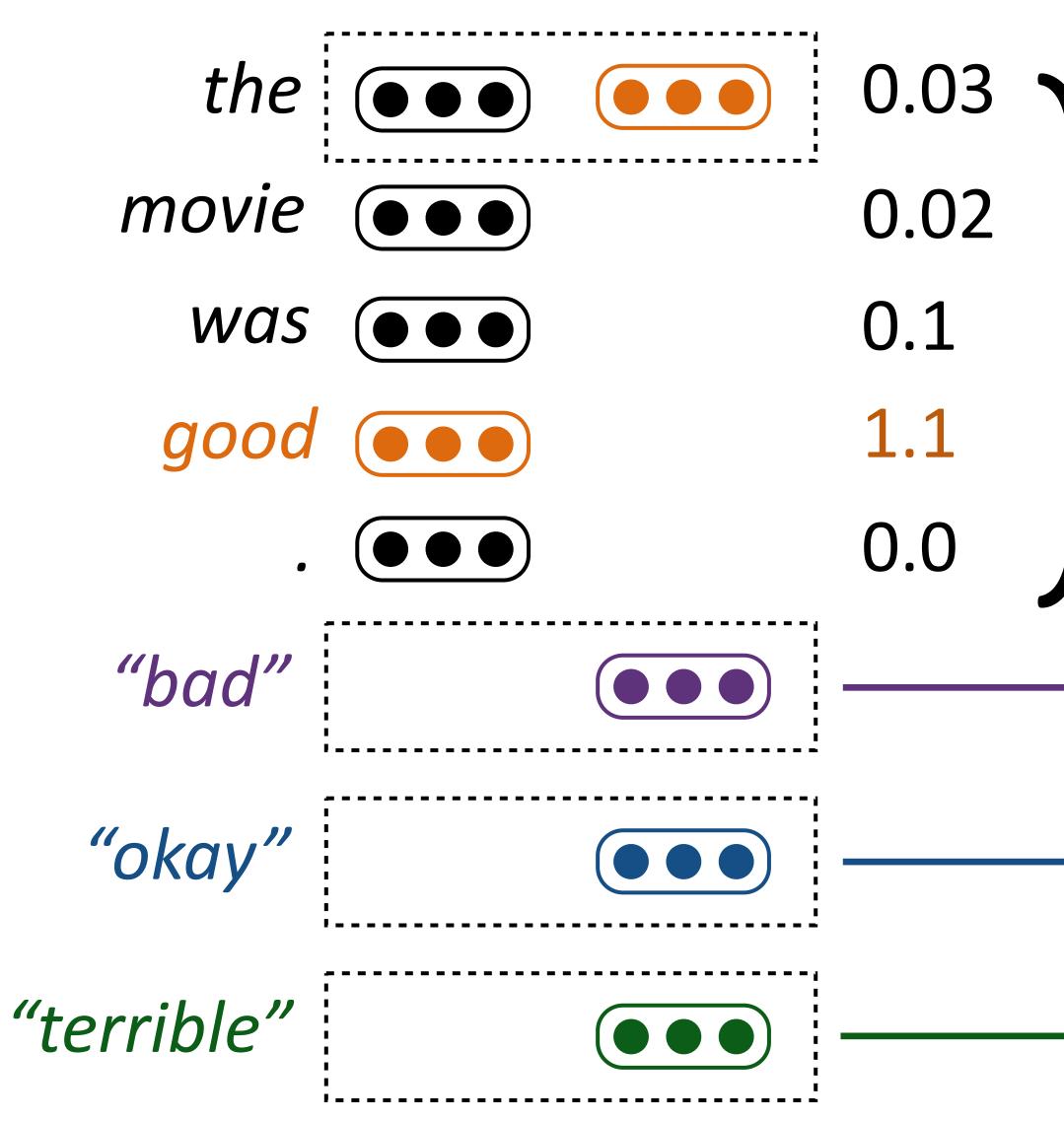
▶ 0.1



max = 1.1

▶ 0.1

► 0.3



max = 1.1

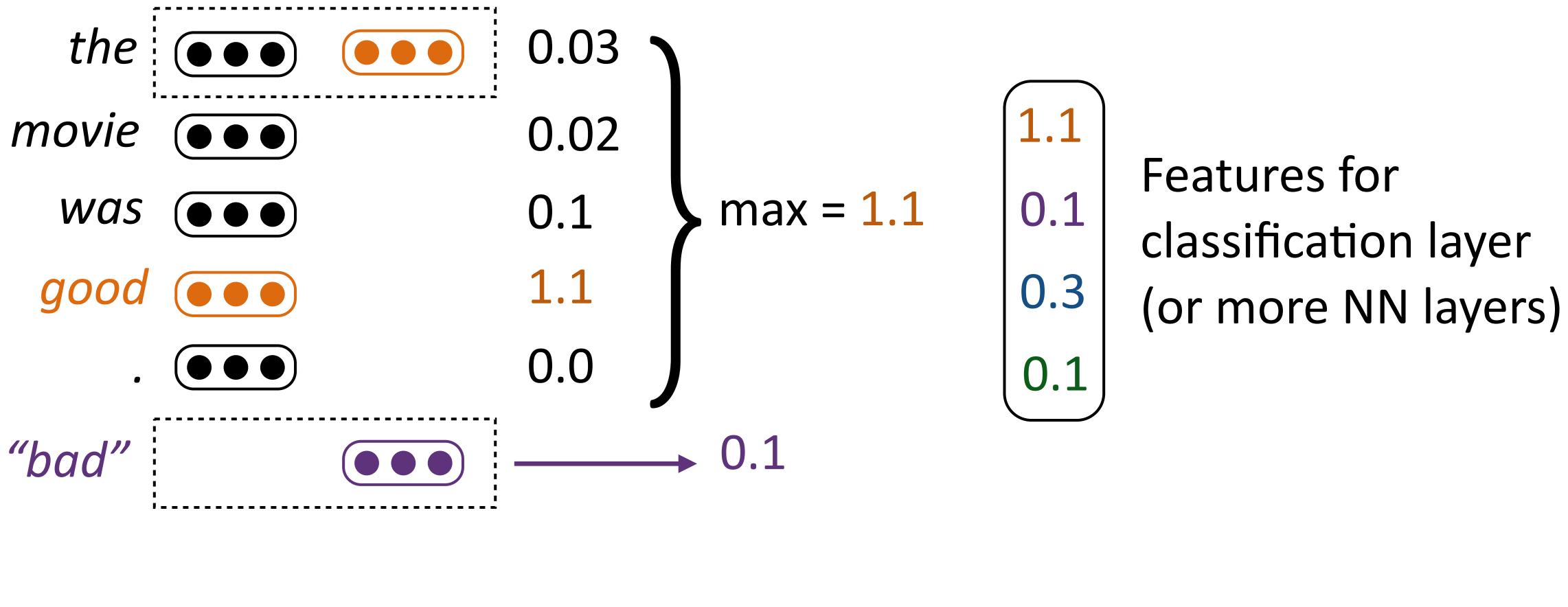
▶ 0.1

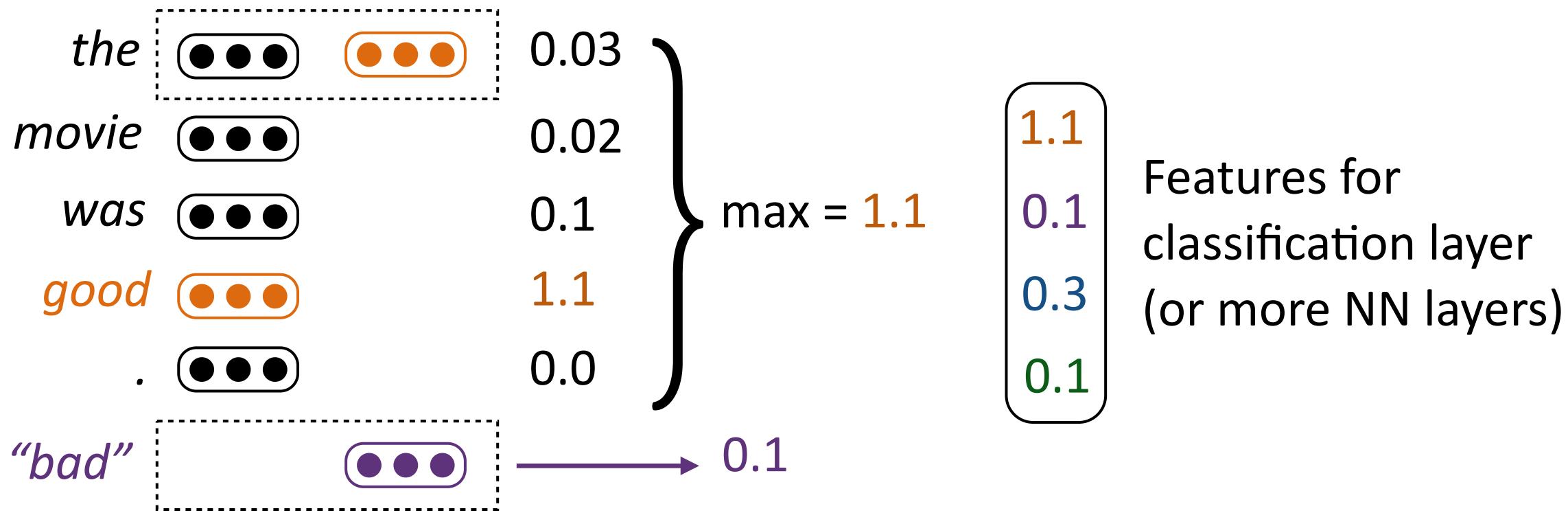
► 0.3

► 0.1

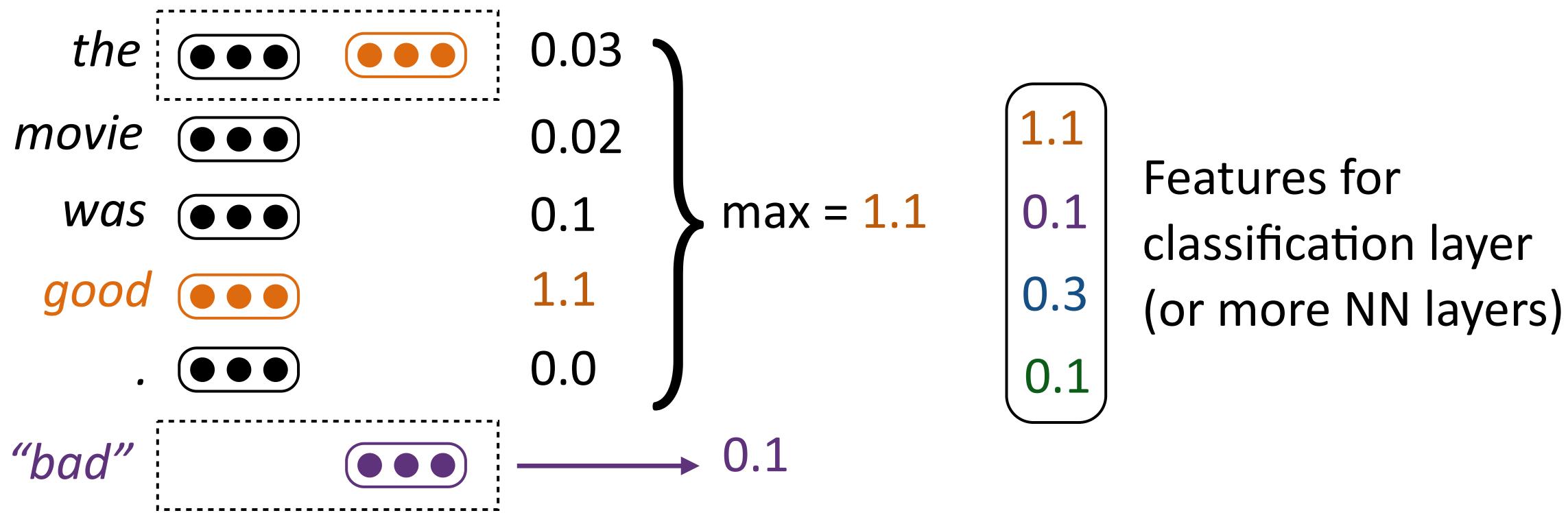
max = 1.1

▶ 0.1

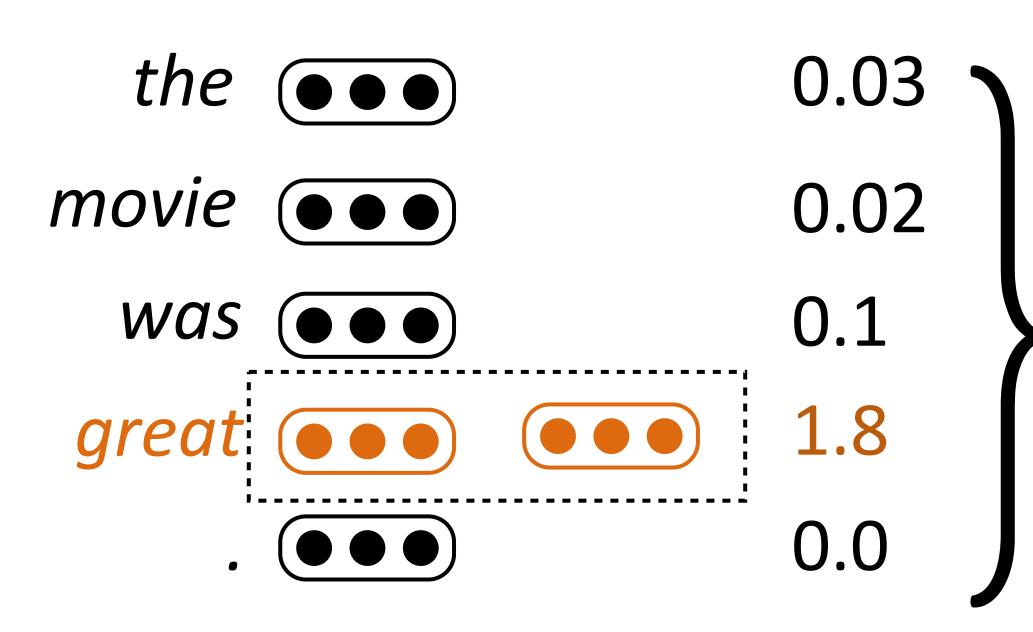




Takes variable-length input and turns it into fixed-length output



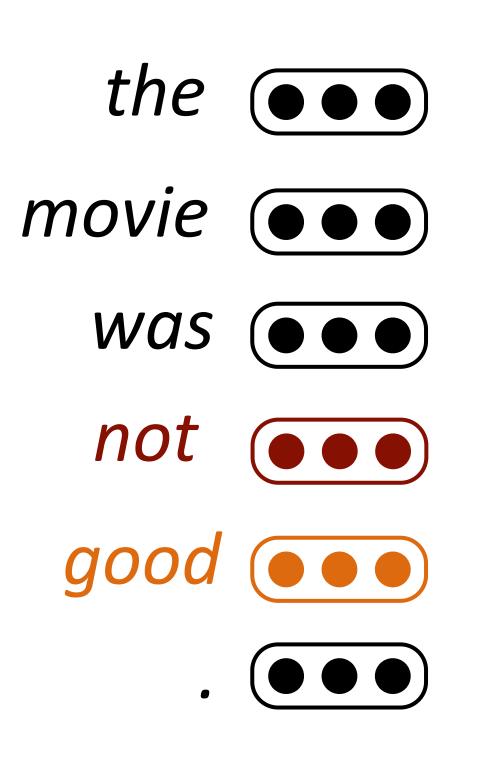
- Takes variable-length input and turns it into fixed-length output
- Filters are initialized randomly and then learned

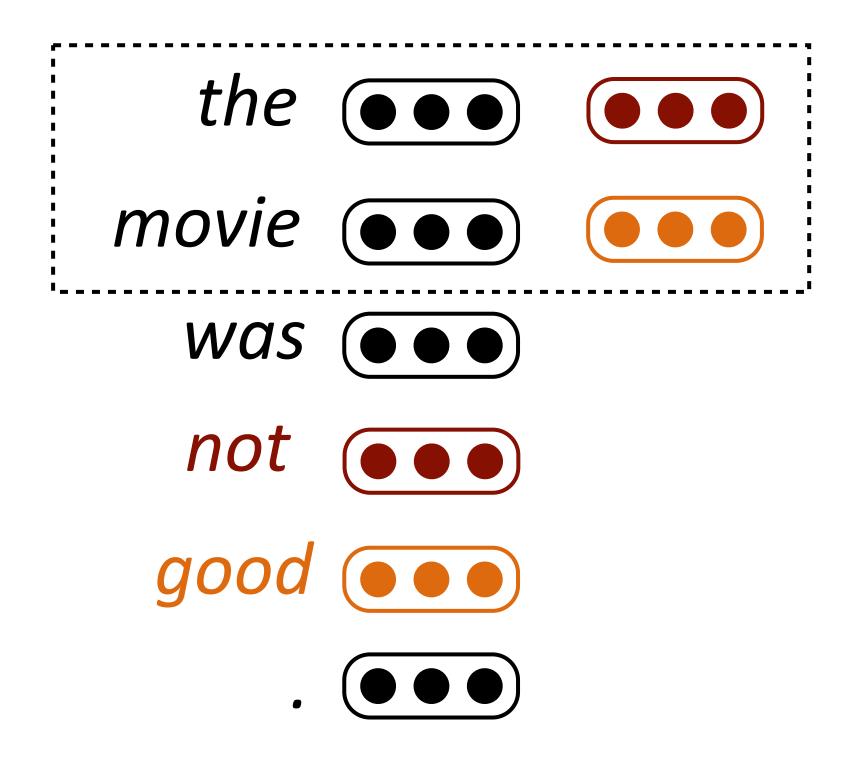


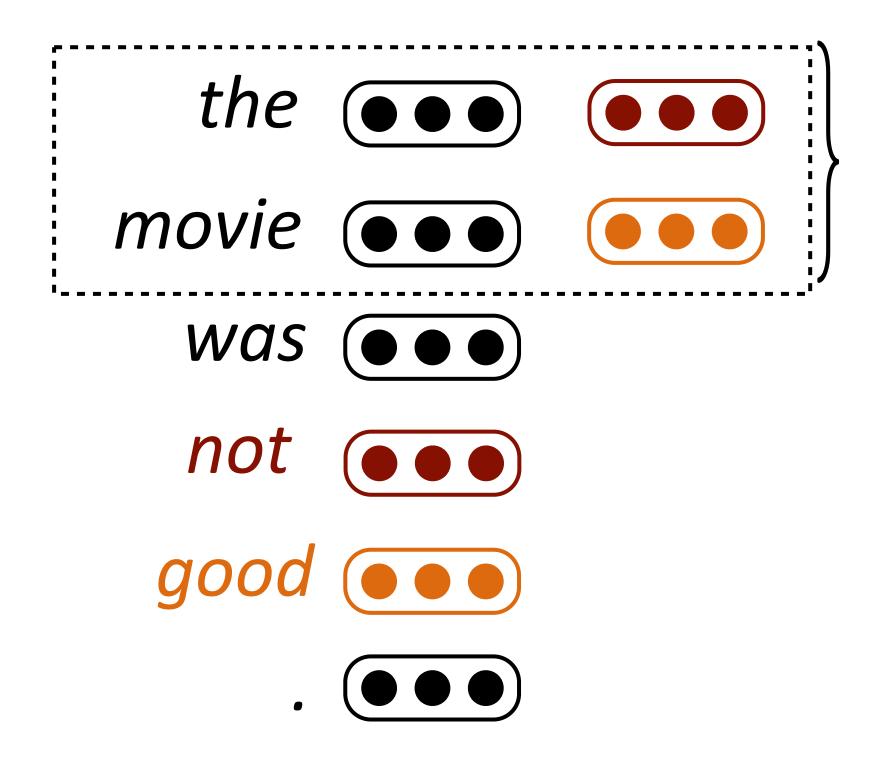
 Word vectors for similar words a have similar outputs

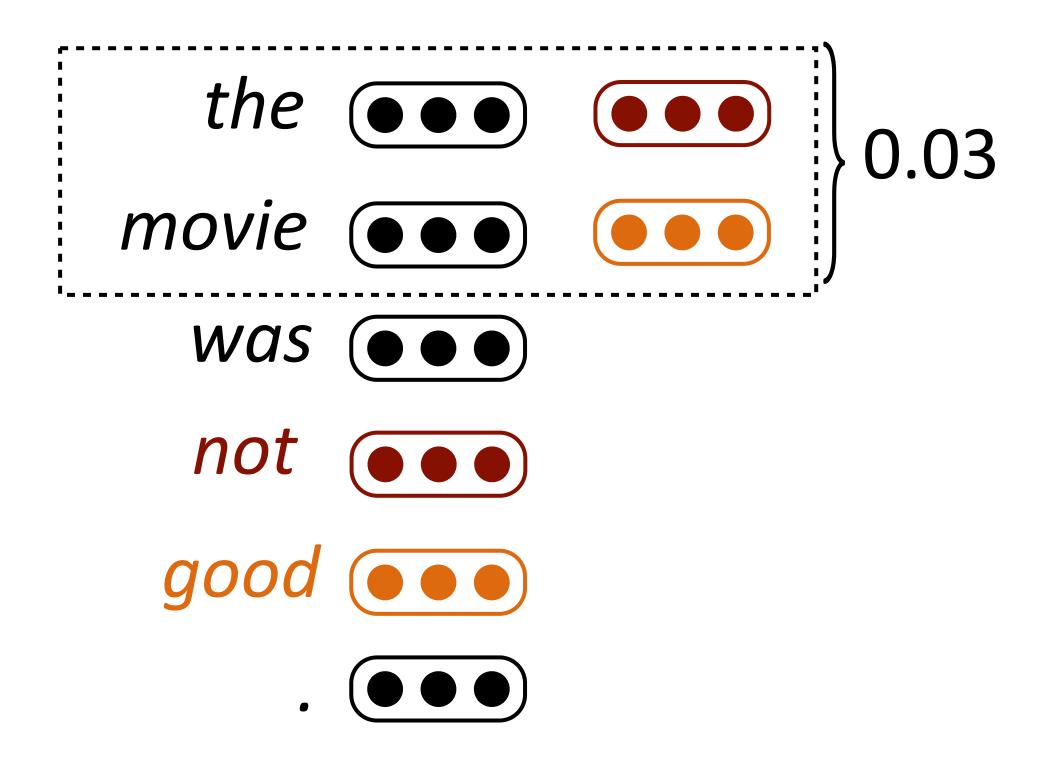
max = 1.8

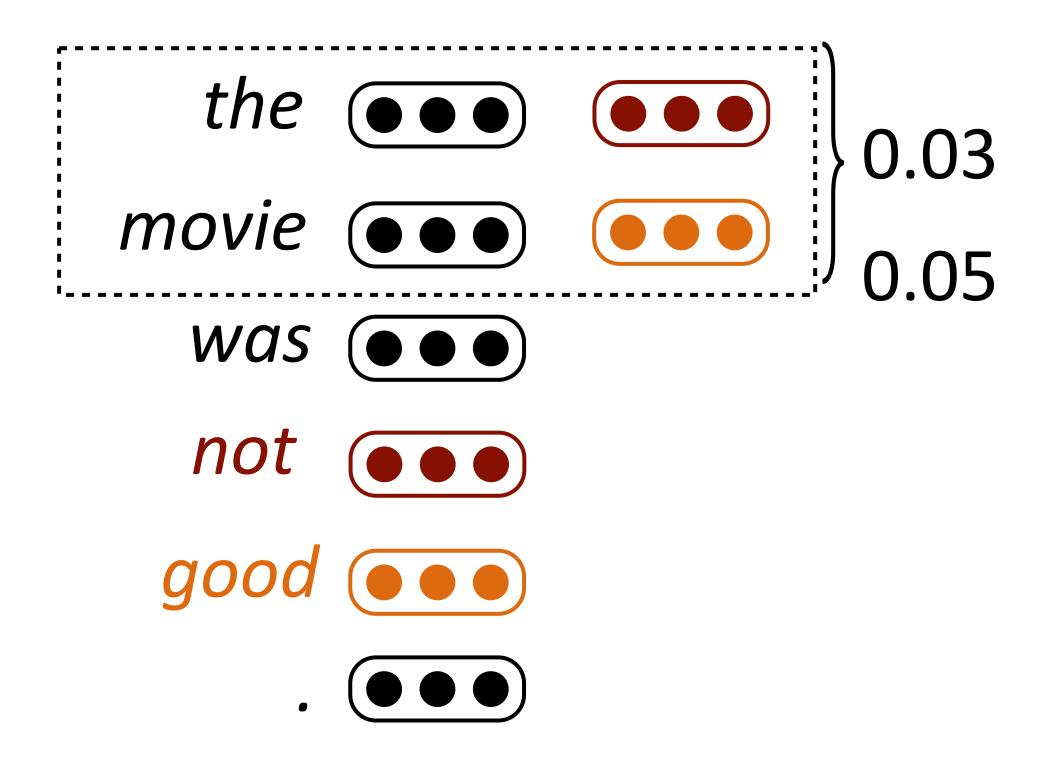
Word vectors for similar words are similar, so convolutional filters will

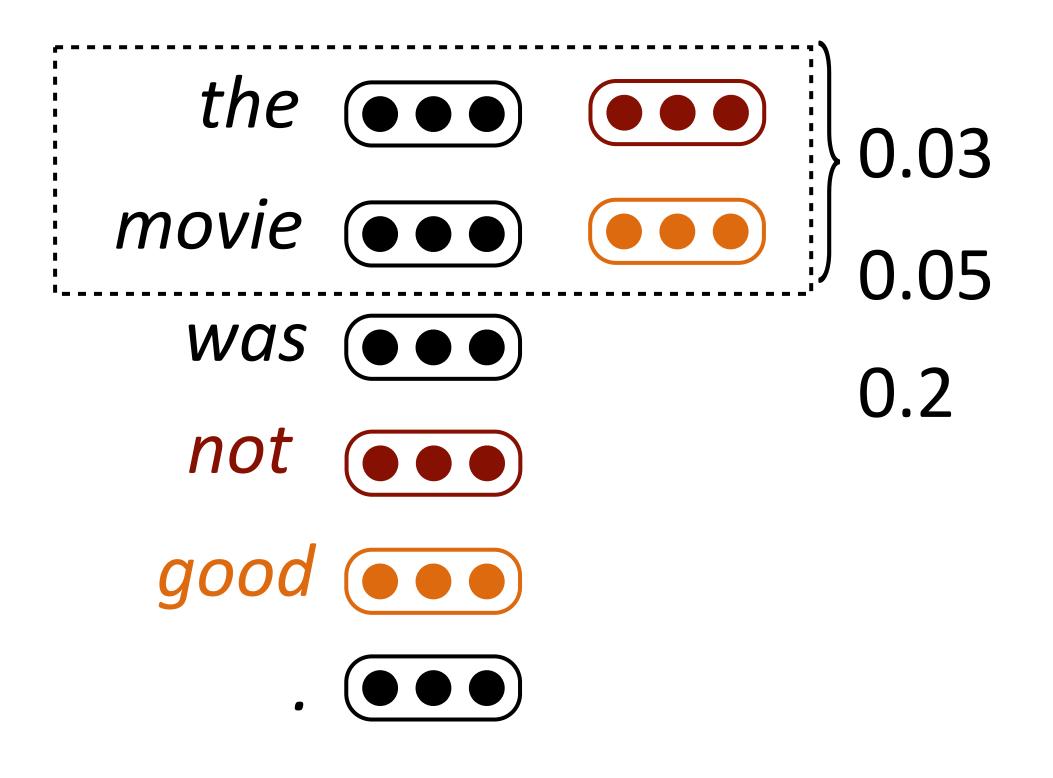


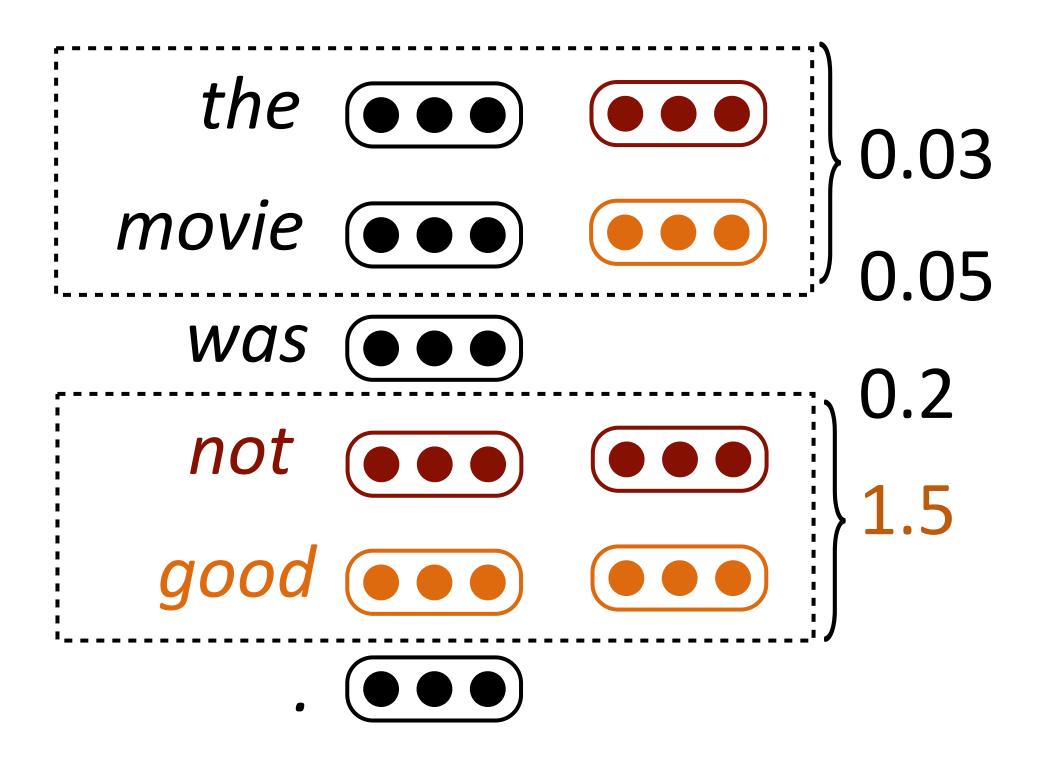


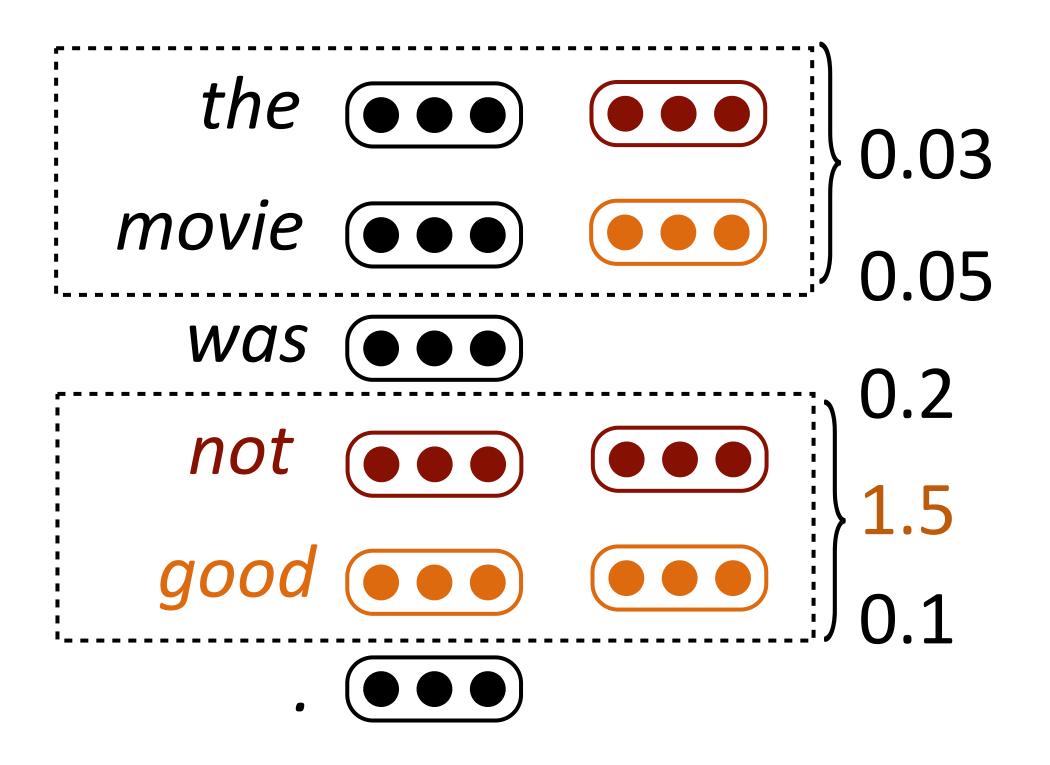


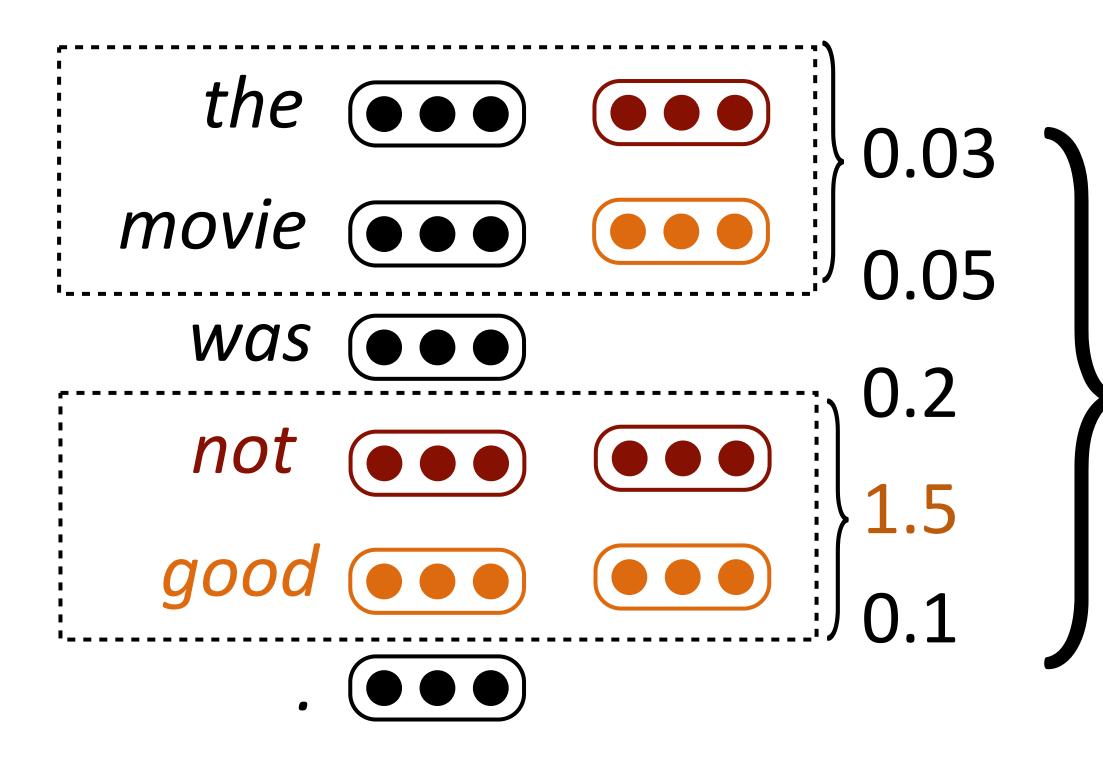






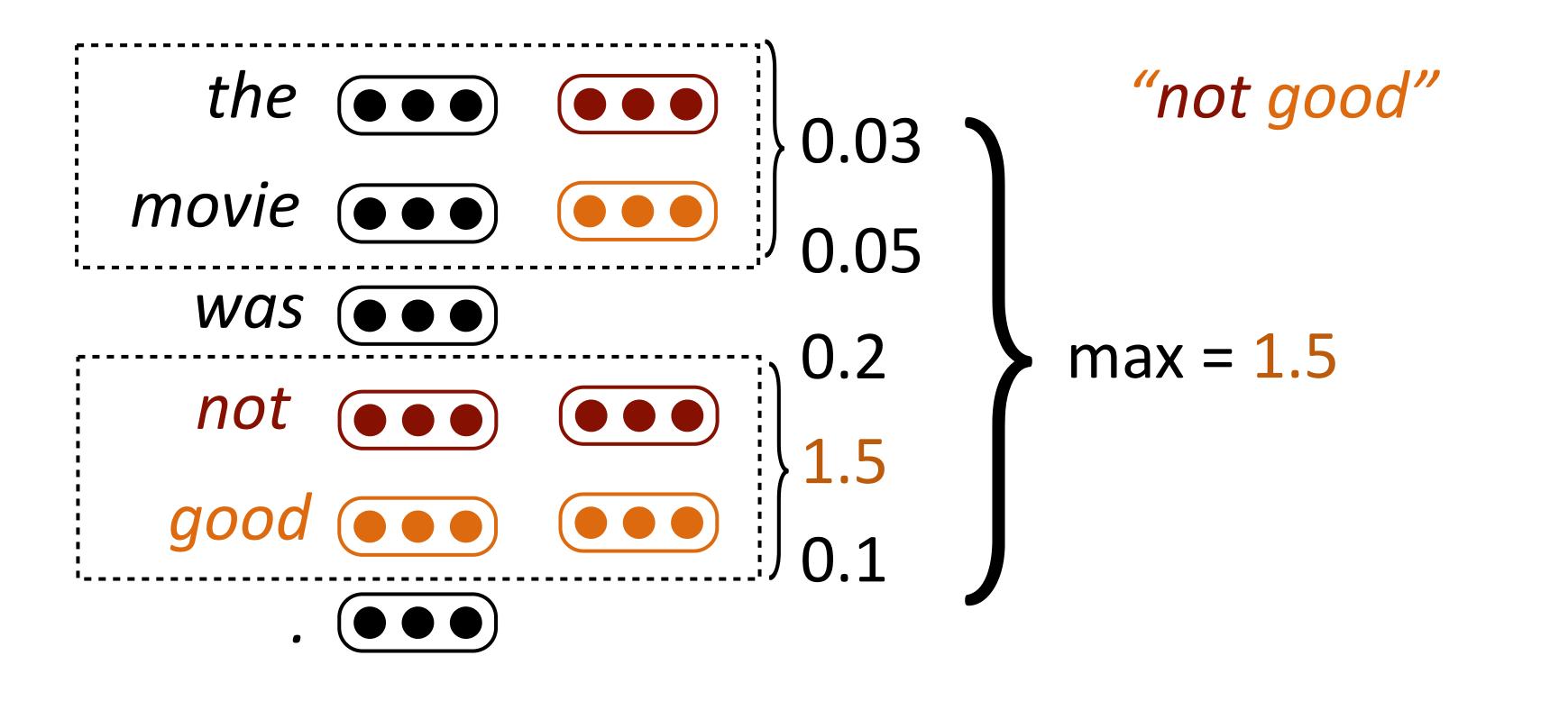




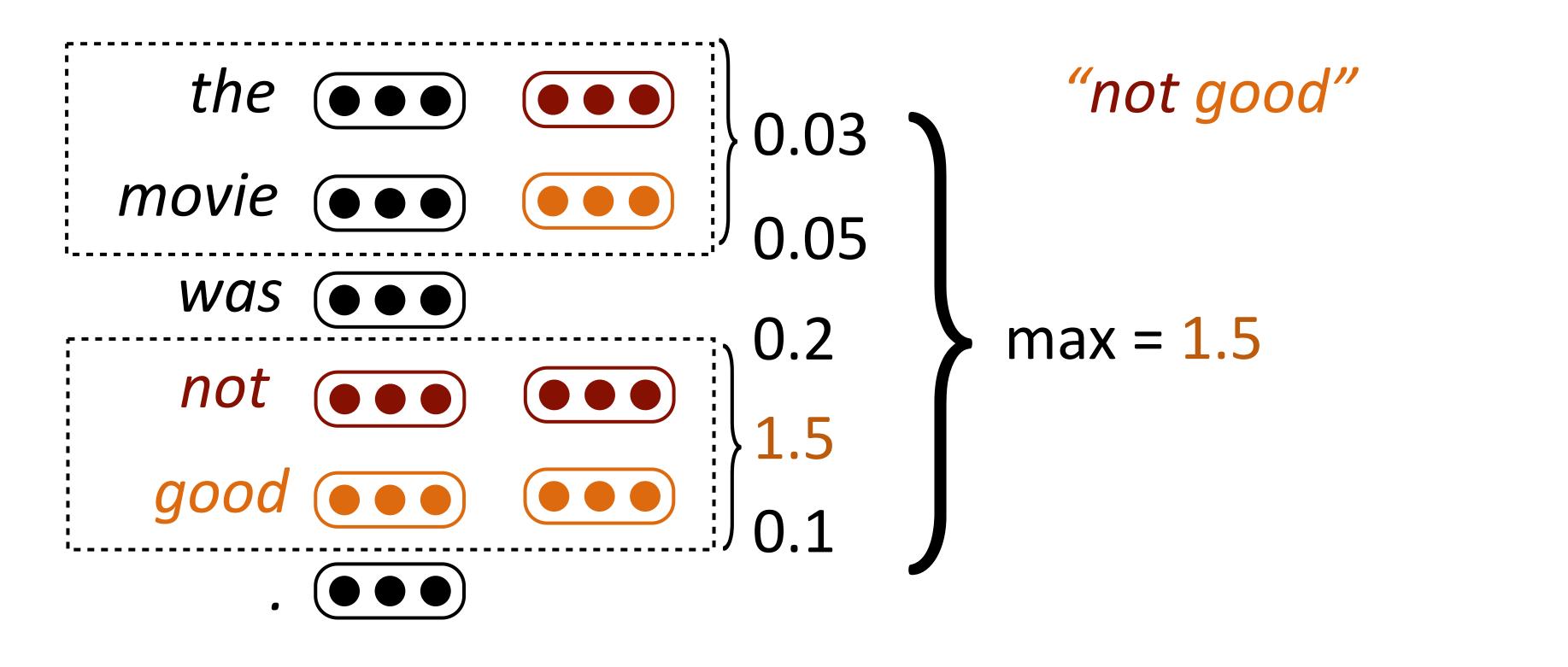


"not good"

• max = 1.5



Analogous to bigram features in bag-of-words models



- Analogous to bigram features in bag-of-words models
- matches that bigram

Indicator feature of text containing bigram <-> max pooling of a filter that

the movie was not really all that good

the cinematography was good, the music great, but the movie was bad

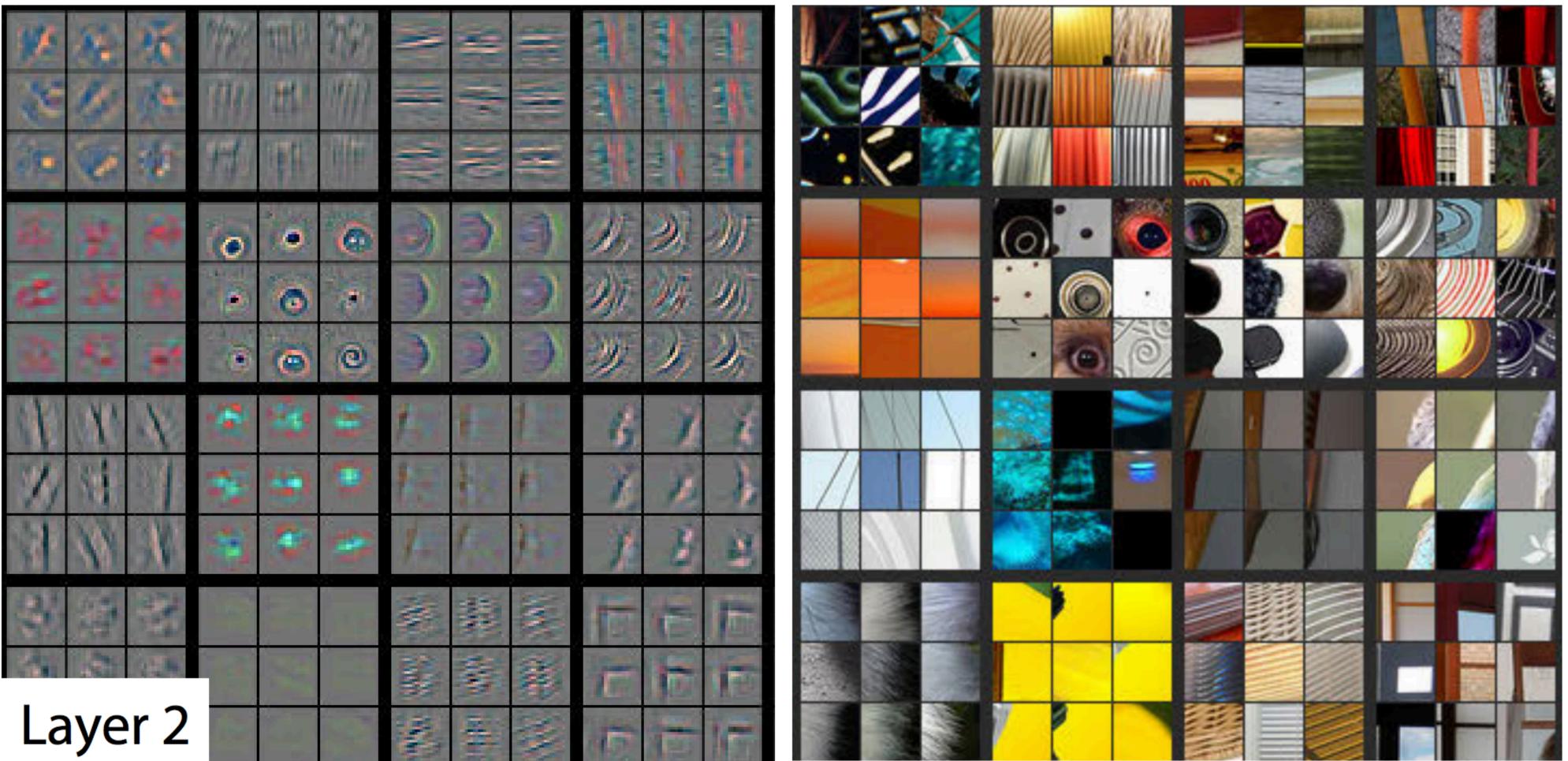
I entered the theater in the bloom of youth and left as an old man

What can CNNs learn?

the movie was not good

Deep Convolutional Networks

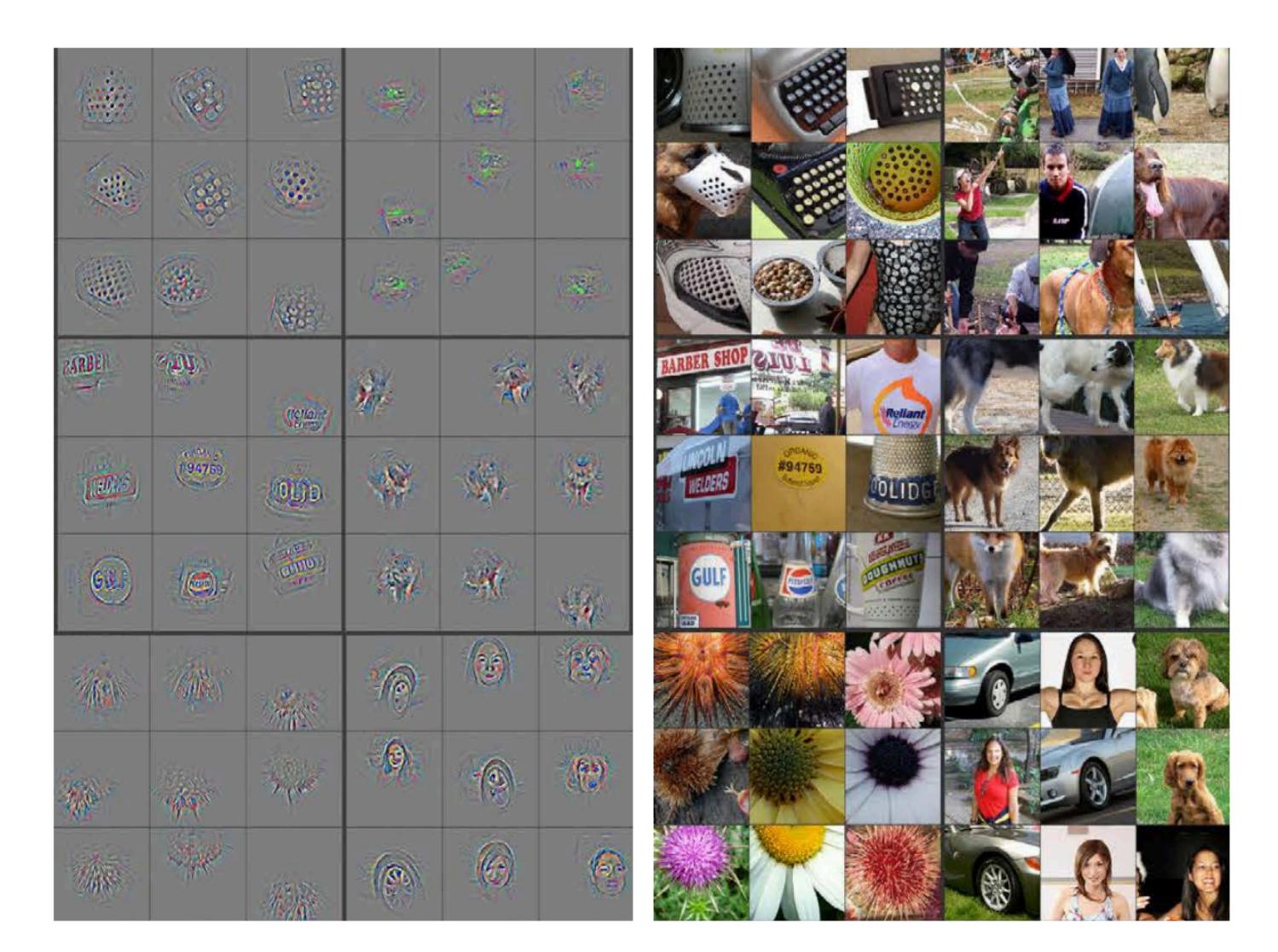
Low-level filters: extract low-level features from the data



Zeiler and Fergus (2014)

Deep Convolutional Networks

High-level filters: match larger and more "semantic patterns"



Zeiler and Fergus (2014)

CNNs: Implementation

Input is batch_size x n x k matrix, filters are c x m x k matrix (c filters)

CNNs: Implementation

- Typically use filters with m ranging from 1 to 5 or so (multiple filter) widths in a single convnet)

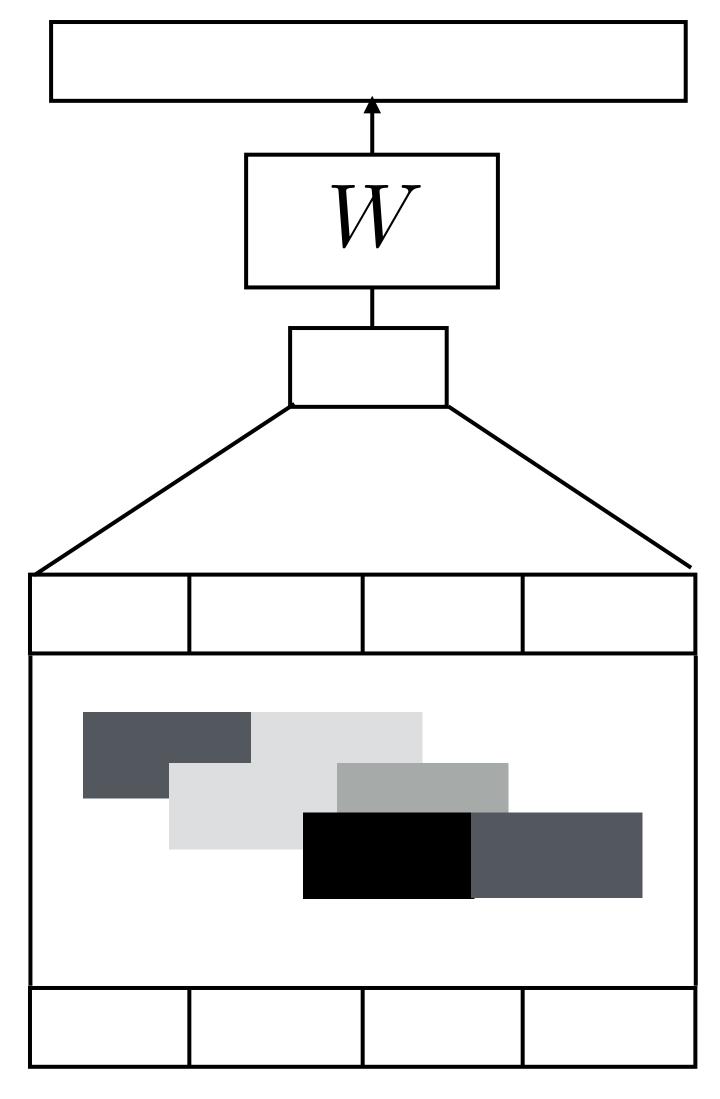
Input is batch_size x n x k matrix, filters are c x m x k matrix (c filters)

CNNs: Implementation

- Input is batch_size x n x k matrix, filters are c x m x k matrix (c filters)
- Typically use filters with m ranging from 1 to 5 or so (multiple filter widths in a single convnet)
- All computation graph libraries support efficient convolution operations

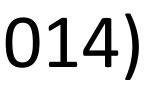
CNNs for Sentence Classification

- Question classification, sentiment, etc.
- Conv+pool, then use feedforward layers to classify
- Can use multiple types of input vectors (fixed initializer and learned)



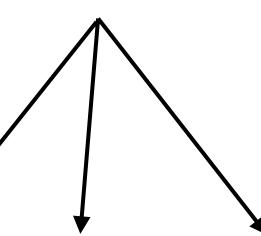
the movie was good

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	-	81.8	86.3



	¥		*				
Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
NBSVM (Wang and Manning, 2012)	79.4	_	-	93.2	-	81.8	86.3

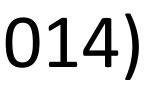
movie review sentiment



	×		4	₩			
Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3

movie review sentiment

subjectivity/objectivity detection

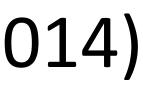


	×		*	₩			
Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3

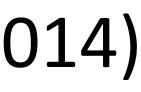
movie review sentiment

subjectivity/objectivity detection

question type classification



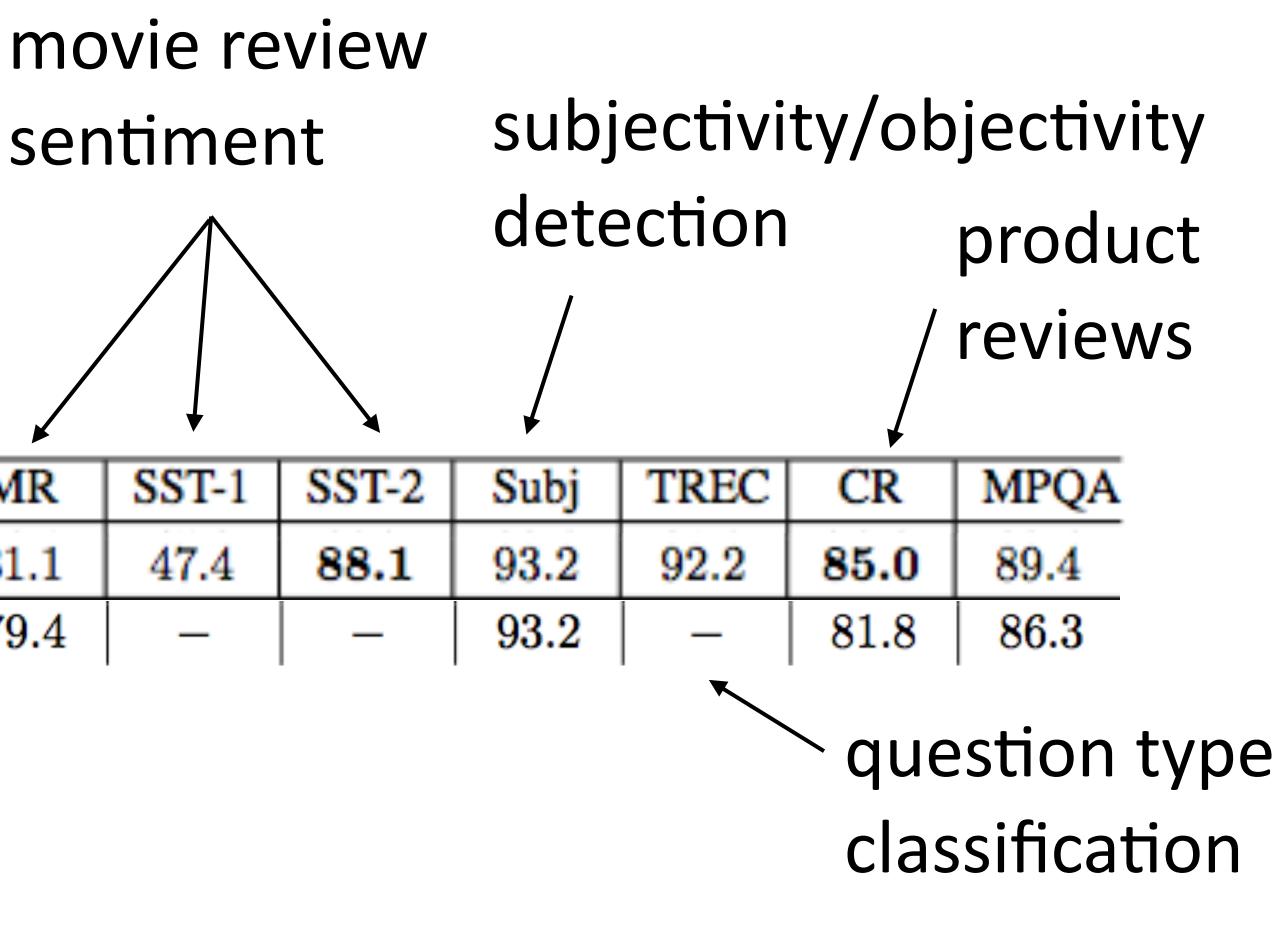
	movie review sentiment				ojectivity			
					ection		product	
							reviews	
Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA	
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4	
NBSVM (Wang and Manning, 2012)	79.4	_	-	93.2	-	81.8	86.3	
						•	estion type ssification	

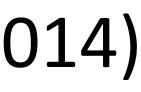


Model	MR
CNN-multichannel	81.1
NBSVM (Wang and Manning, 2012)	79.4

Also effective at document-level text classification

Sentence Classification





Neural CRF Basics

NER Revisited 0 LOC ORG

O O B-LOC O O B-ORG O 0 B-PER I-PER **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. PERSON

O O B-LOC O O B-ORG OB-PER I-PER O 0 **Barack Obama** will travel to Hangzhou today for the G20 meeting. PERSON ORG LOC

Features in CRFs: I[tag=B-LOC & curr_word=Hangzhou], I[tag=B-LOC & prev_word=to], I[tag=B-LOC & curr_prefix=Han]

B-PER I-PER O O O B-ORG O 0 **Barack Obama** will travel to Hangzhou today for the G20 meeting. PERSON ORG

- Features in CRFs: I[tag=B-LOC & curr_word=Hangzhou], I[tag=B-LOC & prev_word=to], I[tag=B-LOC & curr_prefix=Han]
- Linear model over features

B-PER I-PER O O O B-ORG O 0 **Barack Obama** will travel to Hangzhou today for the G20 meeting. PERSON ORG

- Features in CRFs: I[tag=B-LOC & curr_word=Hangzhou], I[tag=B-LOC & prev_word=to], I[tag=B-LOC & curr_prefix=Han]
- Linear model over features
- Downsides:

B-PER I-PER O O O B-ORG O 0 **Barack Obama** will travel to Hangzhou today for the G20 meeting. PERSON ORG

- Features in CRFs: I[tag=B-LOC & curr_word=Hangzhou], I[tag=B-LOC & prev_word=to], I[tag=B-LOC & curr_prefix=Han]
- Linear model over features
- Downsides:

Lexical features mean that words need to be seen in the training data

B-PER I-PER O O O B-ORG O 0 **Barack Obama** will travel to Hangzhou today for the G20 meeting. PERSON ORG

- Features in CRFs: I[tag=B-LOC & curr_word=Hangzhou], I[tag=B-LOC & prev_word=to], I[tag=B-LOC & curr_prefix=Han]
- Linear model over features
- Downsides:

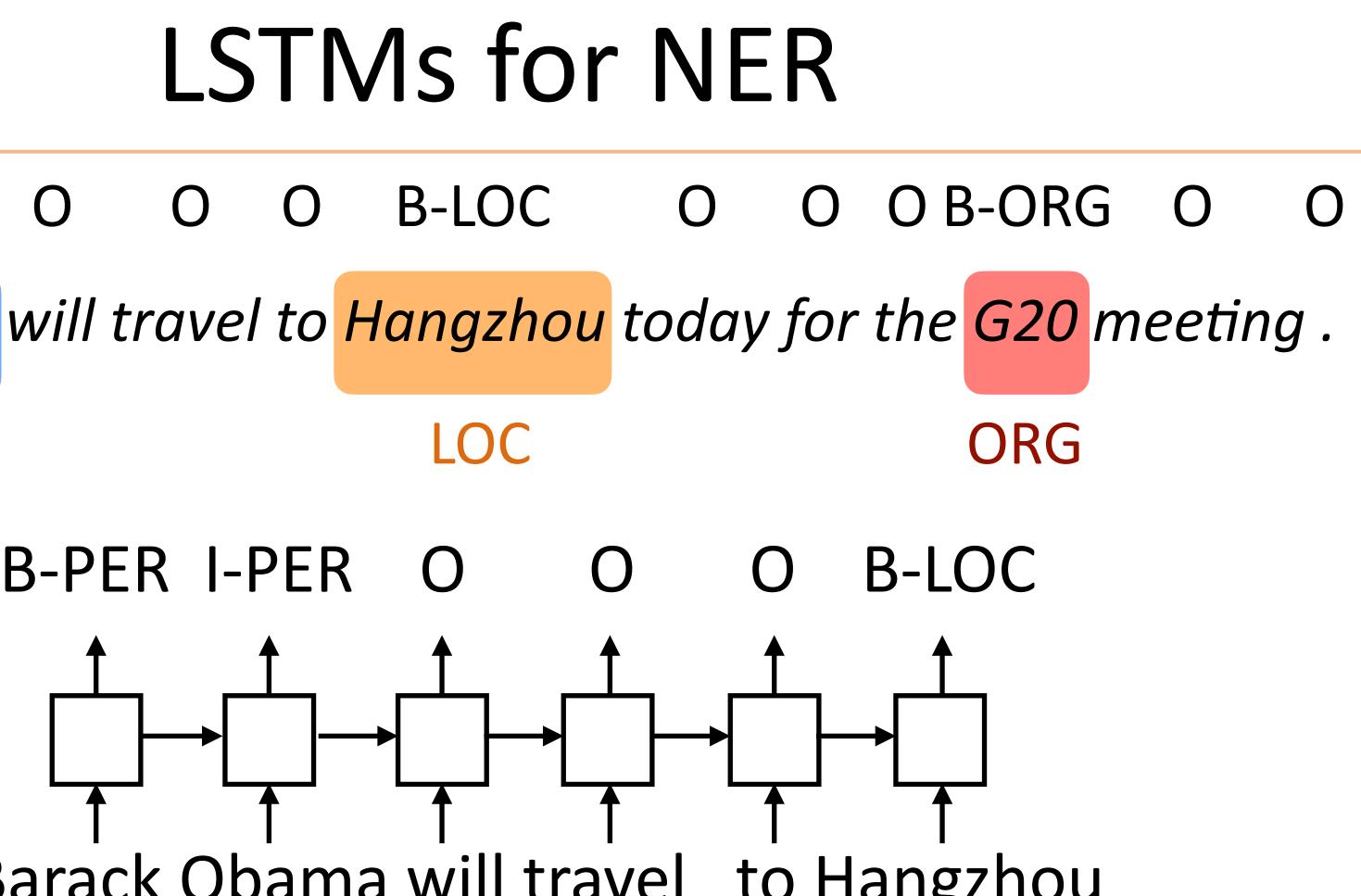
 - work well to look at more than 2 words with a single feature)

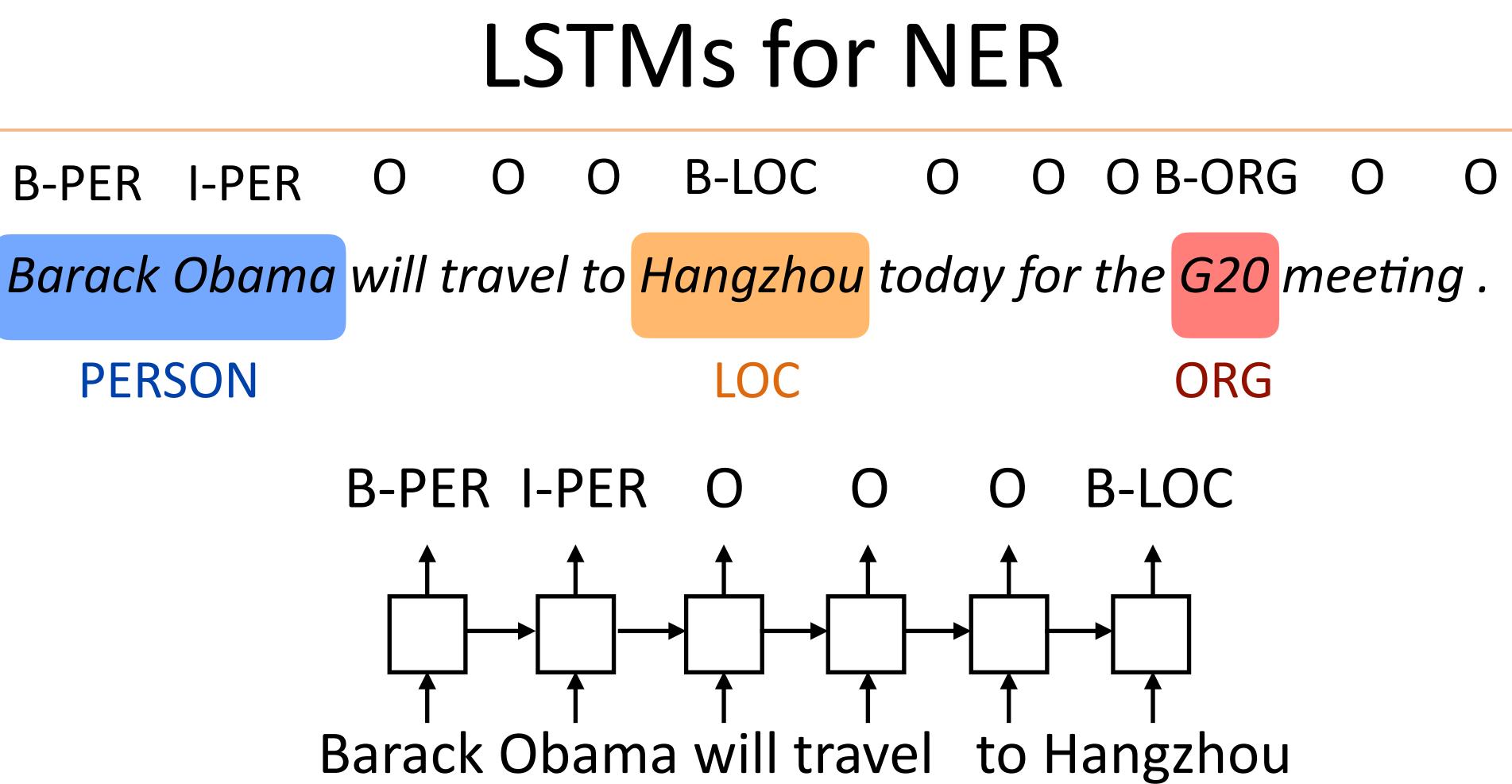
Lexical features mean that words need to be seen in the training data

Linear model can't capture feature conjunctions as effectively (doesn't

I-PER **B-PER**

PERSON



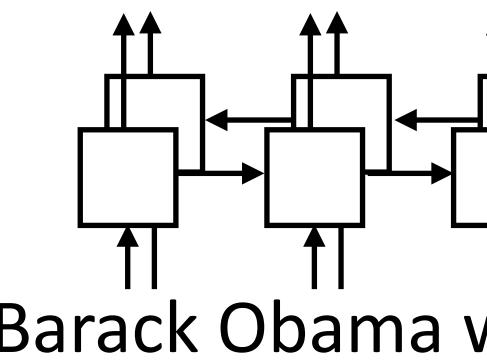


- Transducer (LM-like model)

What are the strengths and weaknesses of this model compared to CRFs?

0 LOC ORG

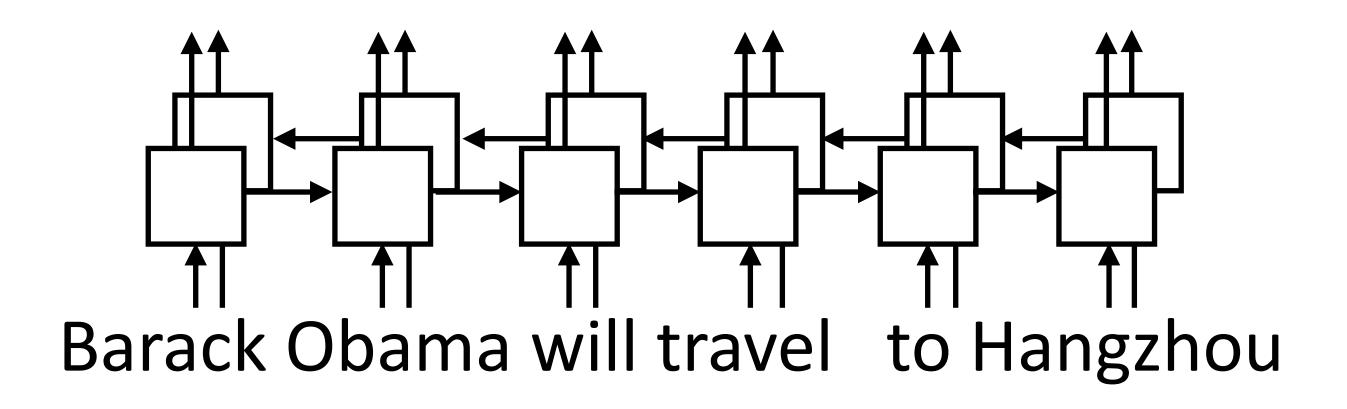
LSTMs for NER O O B-LOC O O B-ORG O I-PER **B-PER Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. PERSON B-PER I-PER O O B-LOC Barack Obama will travel to Hangzhou



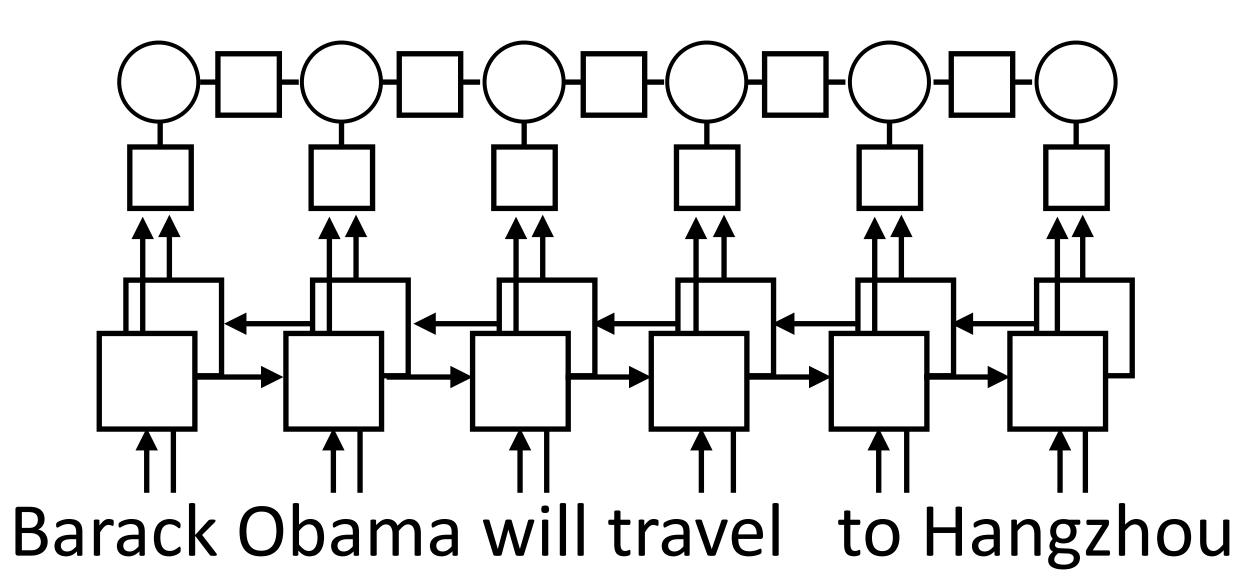
- Bidirectional transducer model

What are the strengths and weaknesses of this model compared to CRFs?

0 O O B-LOC O O B-ORG O 0 B-PER I-PER **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. **PERSON** LOC ORG



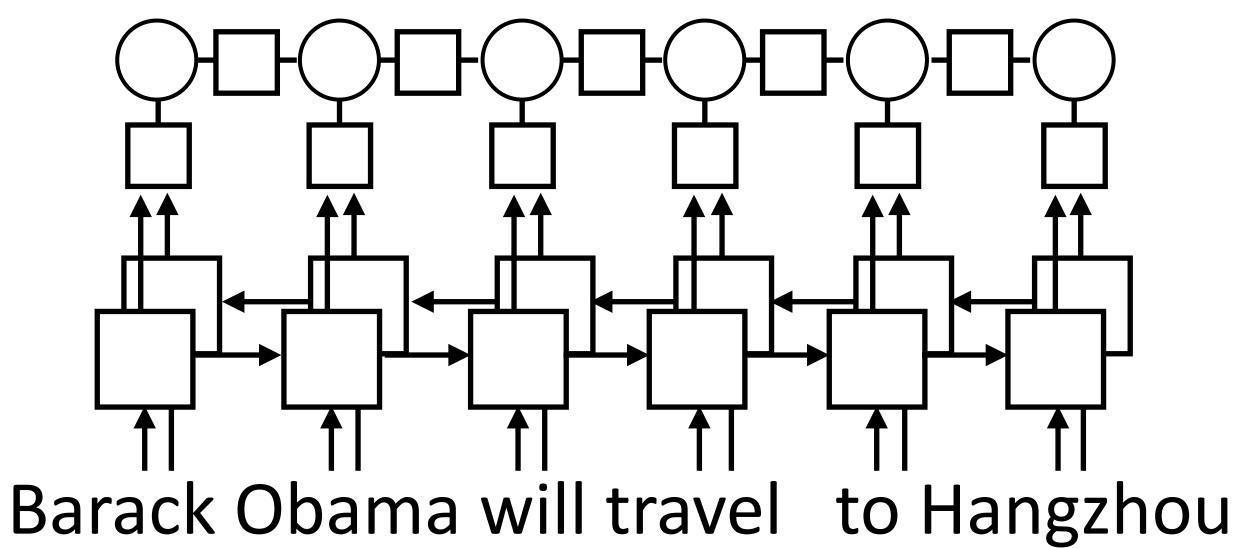
0 O O B-LOC O O B-ORG O 0 B-PER I-PER **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting.



- LOC ORG

O O B-LOC O O B-ORG O 0 I-PER **B-PER Barack Obama** will travel to **Hangzhou** today for the **G20** meeting.

PERSON

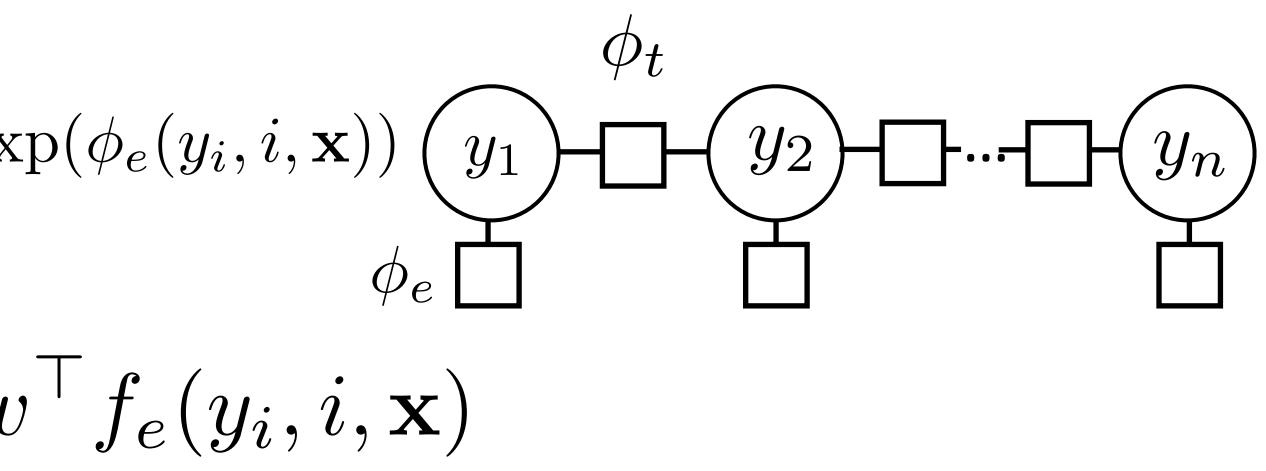


Neural CRFs: bidirectional LSTMs (or some NN) compute emission potentials, capture structural constraints in transition potentials

- LOC ORG

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

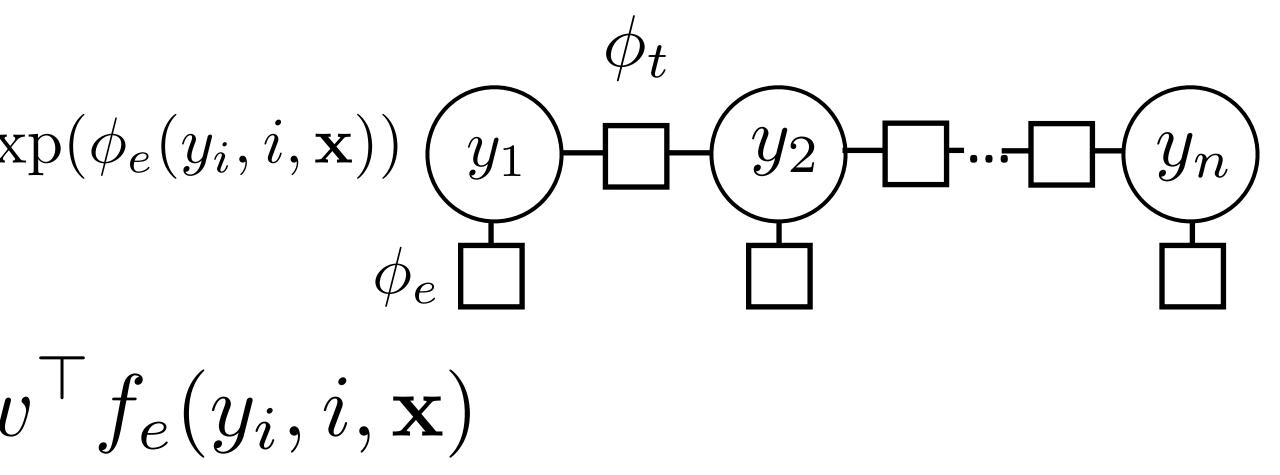
• Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

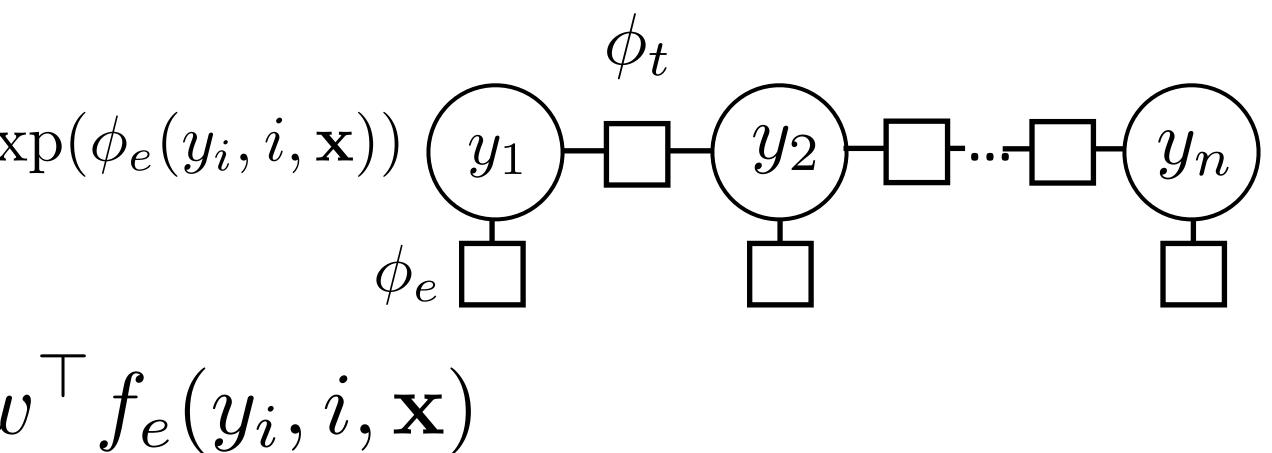
• Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$

• Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{y_i}^{\top} f(i, \mathbf{x})$ W is a num_tags x len(f) matrix



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

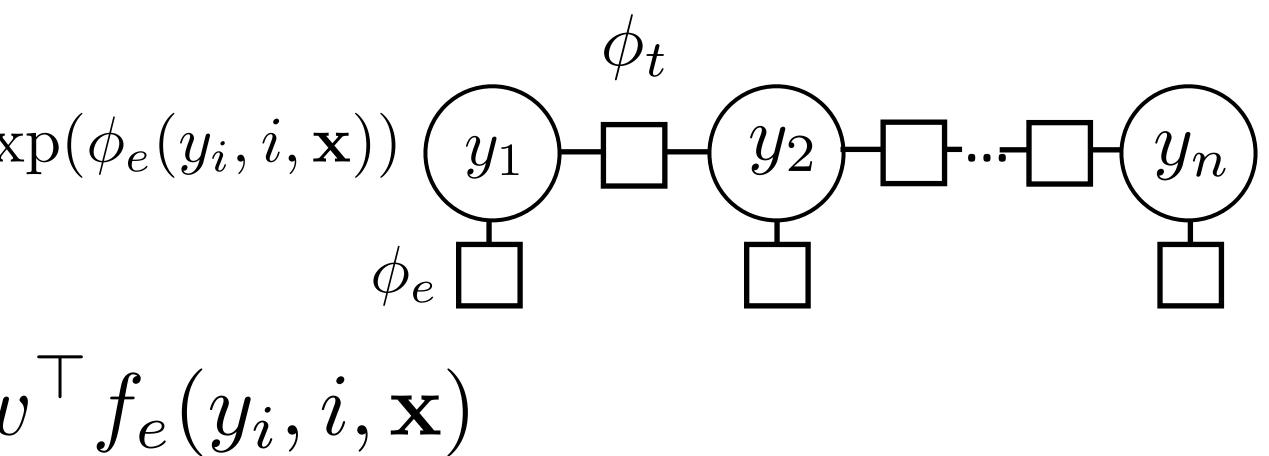
- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{u_i}^\top f(i, \mathbf{x})$ W is a num_tags x len(f) matrix
- words around position *i*, or the *i*th output of an LSTM, ...



• $f(i, \mathbf{x})$ could be the output of a feedforward neural network looking at the

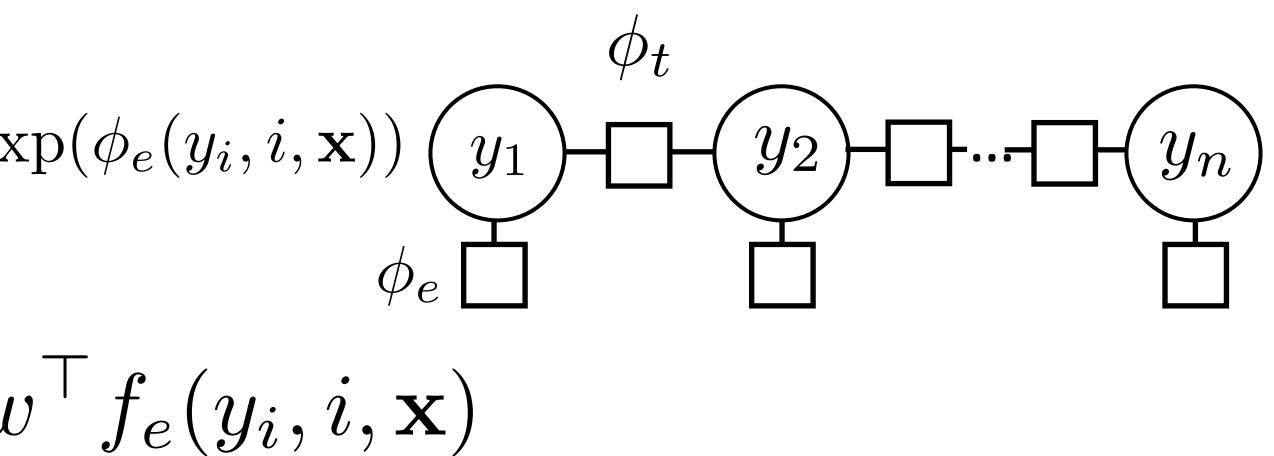
$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{u_i}^\top f(i, \mathbf{x})$ W is a num_tags x len(f) matrix f(i, x) could be the output of a feedforward neural network looking at the words around position *i*, or the *i*th output of an LSTM, ...
- Neural network computes unnormalized potentials that are consumed and "normalized" by a structured model



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

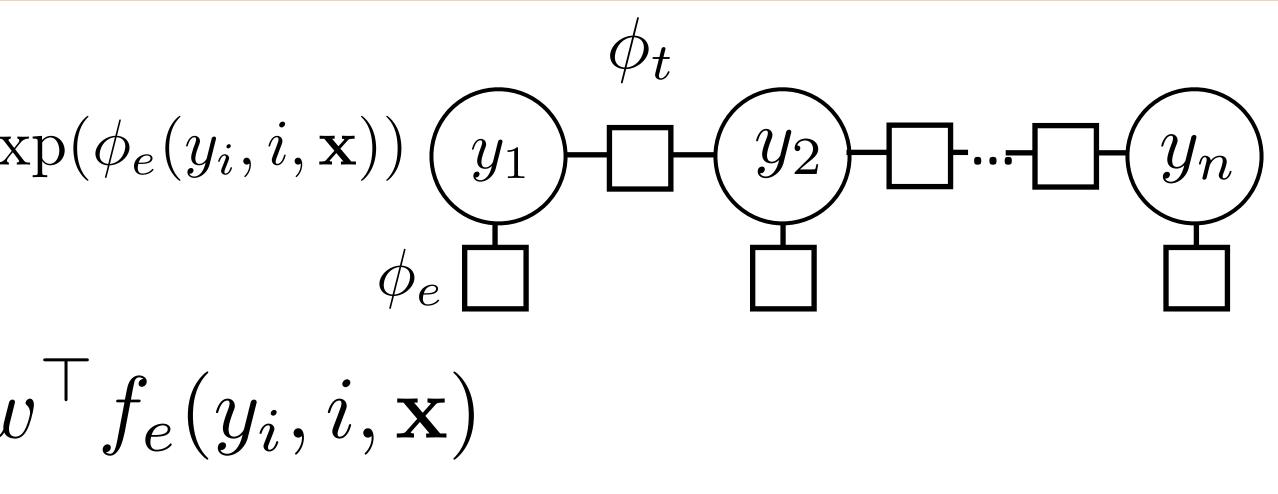
- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{u_i}^\top f(i, \mathbf{x})$ W is a num_tags x len(f) matrix f(i, x) could be the output of a feedforward neural network looking at the words around position *i*, or the *i*th output of an LSTM, ...
- Neural network computes unnormalized potentials that are consumed and "normalized" by a structured model
- Inference: compute f, use Viterbi



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

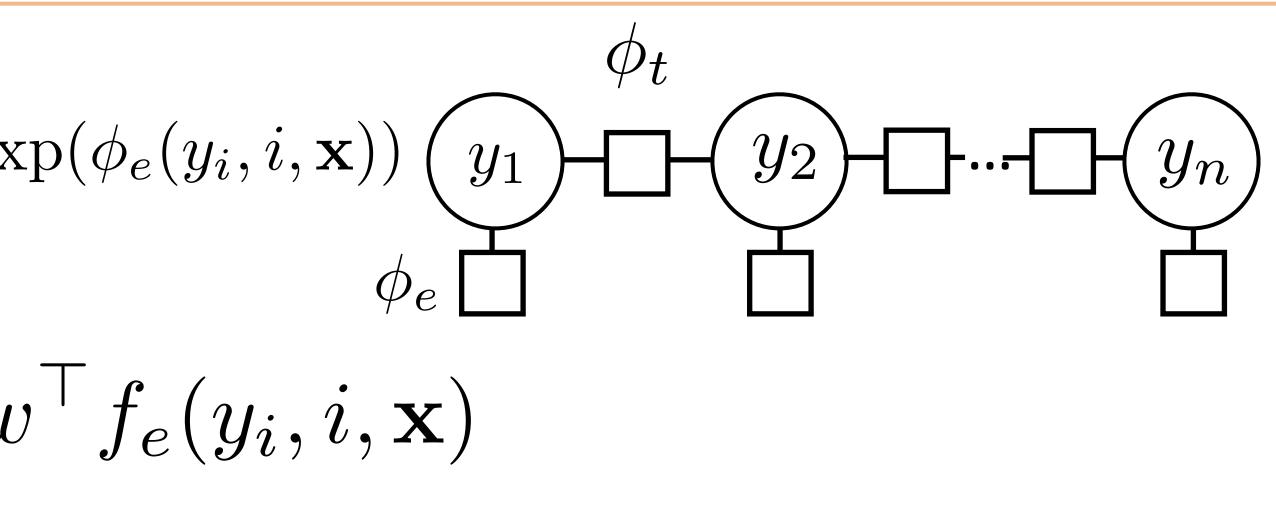
• Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$

Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{y_i}^{\top} f(i, \mathbf{x})$



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{y_i}^{\top} f(i, \mathbf{x})$ $\frac{\partial \mathcal{L}}{\partial \phi_{e,i}} = -P(y_i = s | \mathbf{x}) + I[s \text{ is gold}] \quad \text{``error signal'', compute with F-B}$

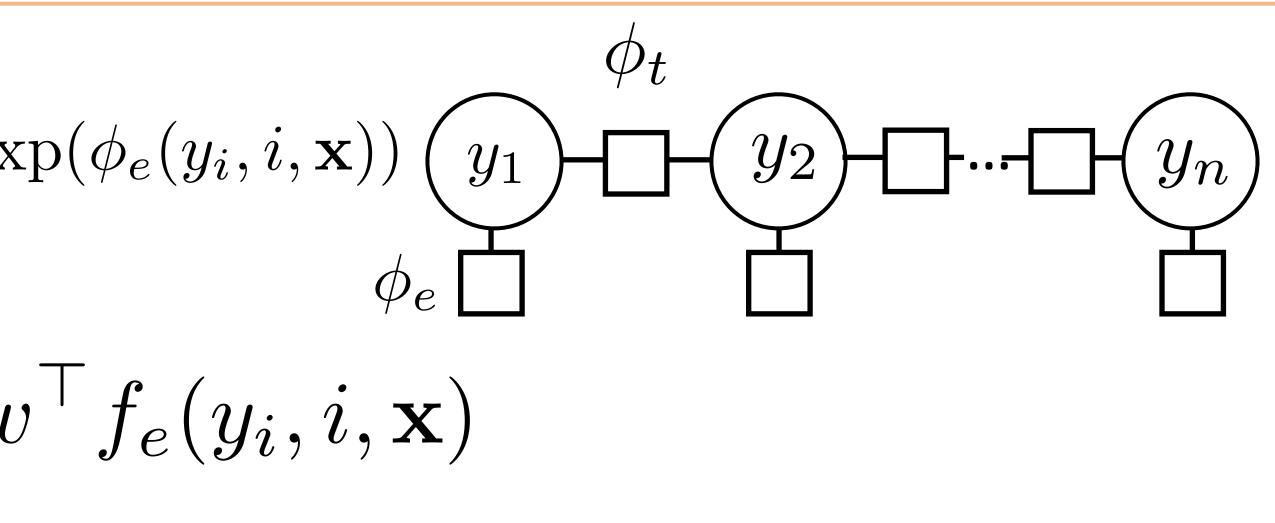


$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{u_i}^{\top} f(i, \mathbf{x})$ $\frac{\partial \mathcal{L}}{\partial \phi_{e,i}} = -P(y_i = s | \mathbf{x}) + I[s \text{ is gold}] \quad \text{``error signal'', compute with F-B}$

 w_i

For linear model: $\frac{\partial \phi_{e,i}}{\partial \phi_{e,i}} = f_{e,i}($

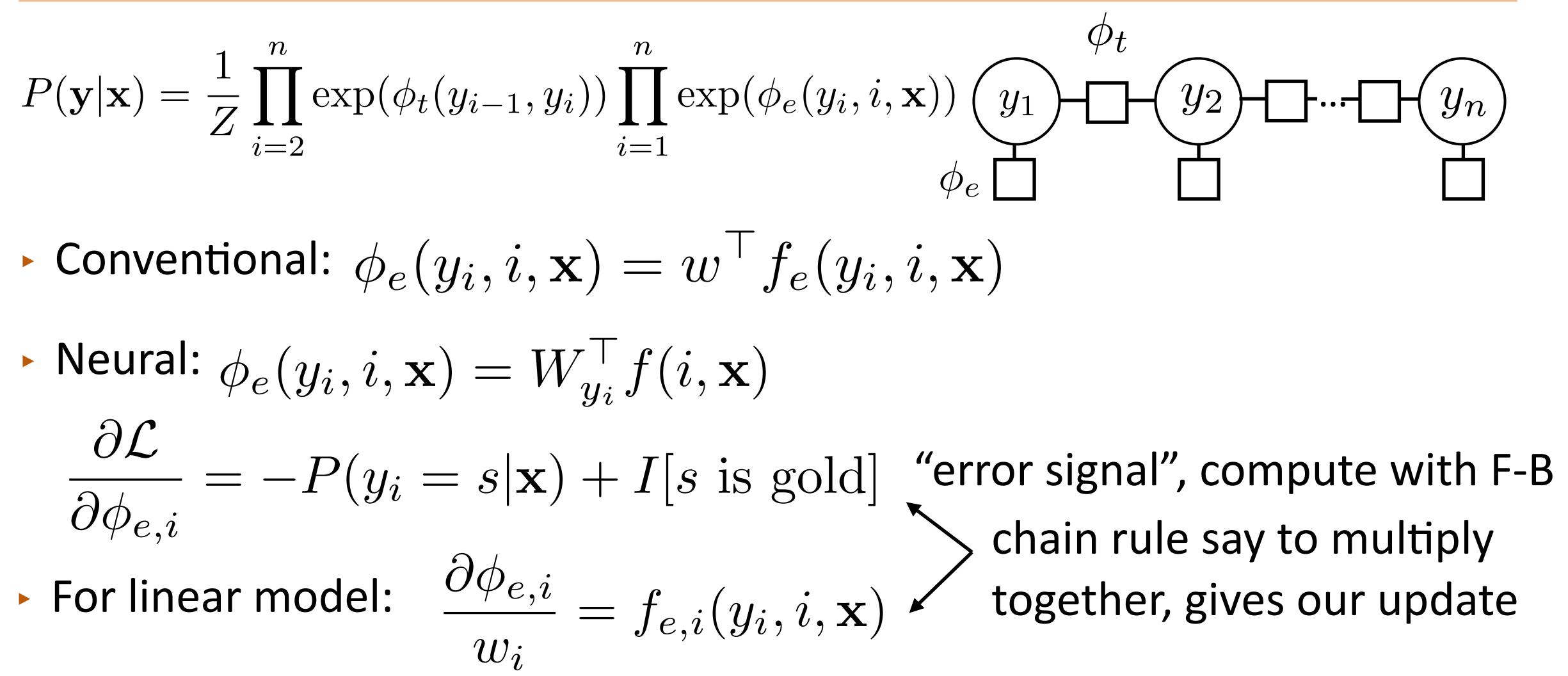


$$(y_i, i, \mathbf{x})$$

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{u_i}^{\top} f(i, \mathbf{x})$

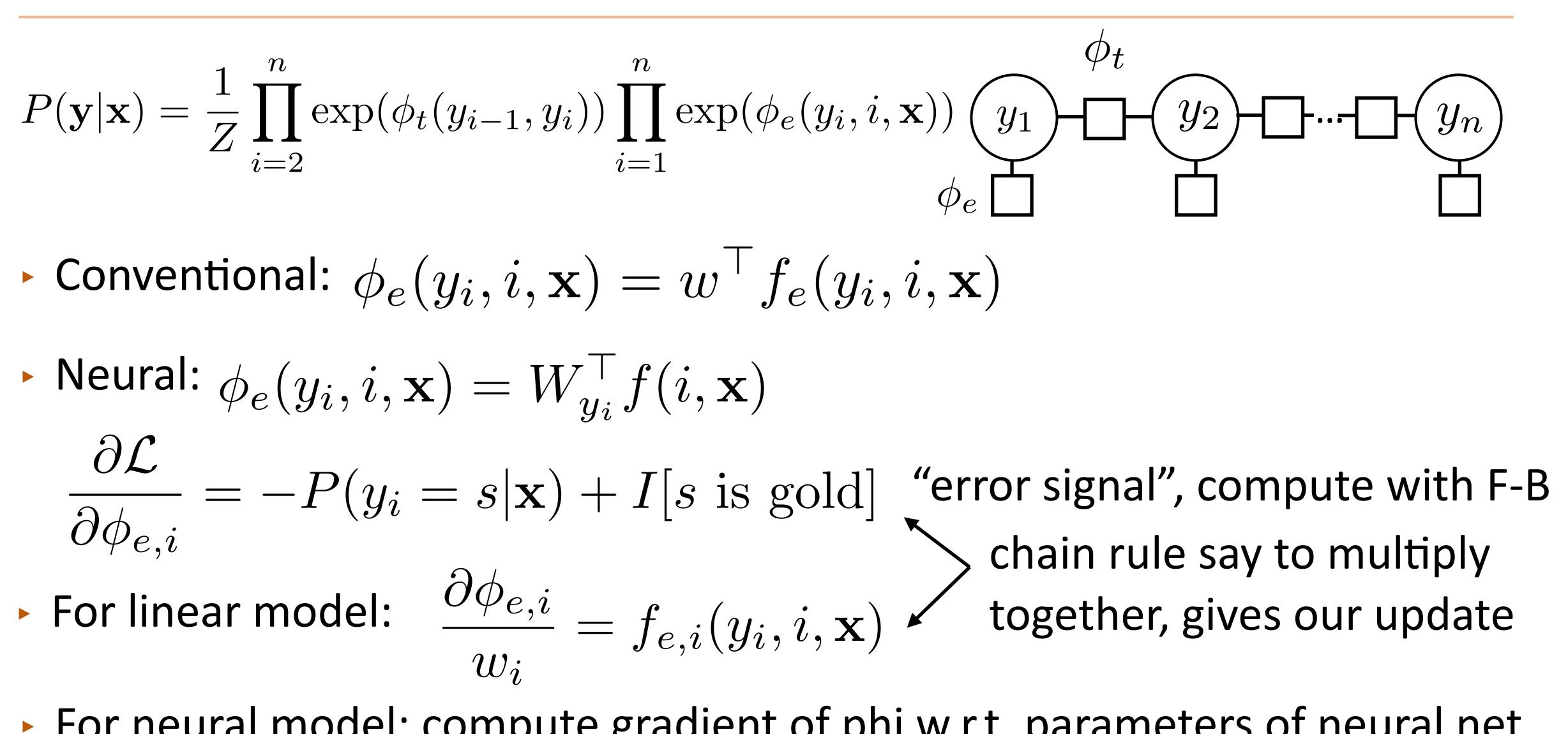
 w_i



$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^$$

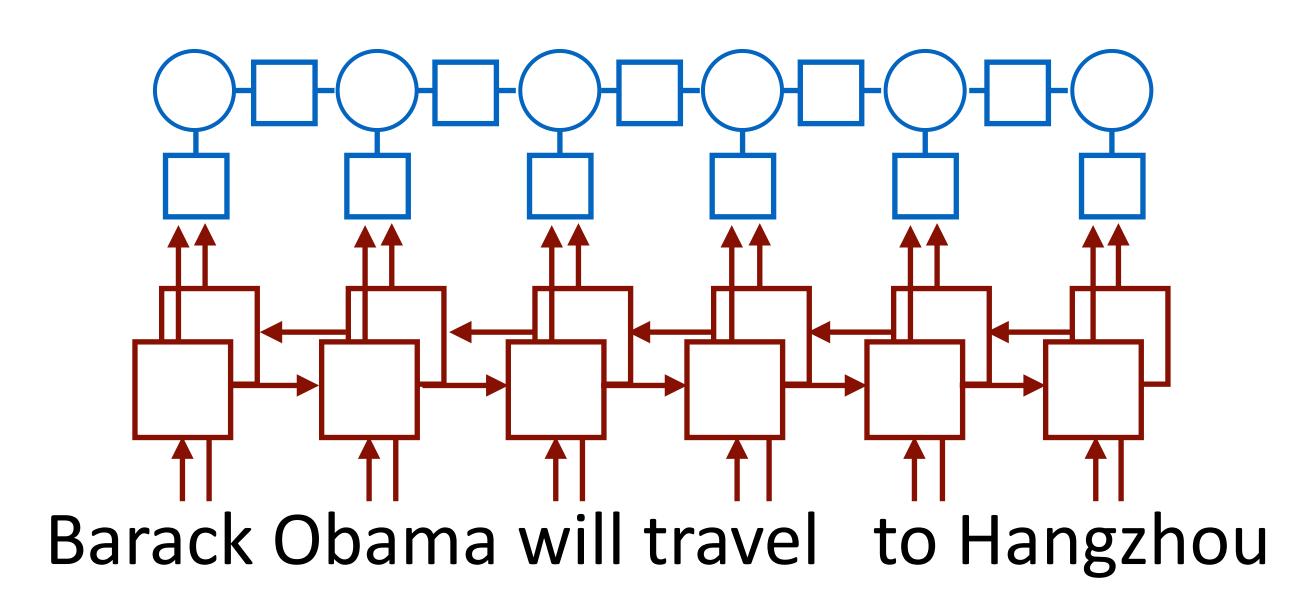
- Conventional: $\phi_e(y_i, i, \mathbf{x}) = w^{\top} f_e(y_i, i, \mathbf{x})$
- Neural: $\phi_e(y_i, i, \mathbf{x}) = W_{u_i}^{\top} f(i, \mathbf{x})$

 W_i

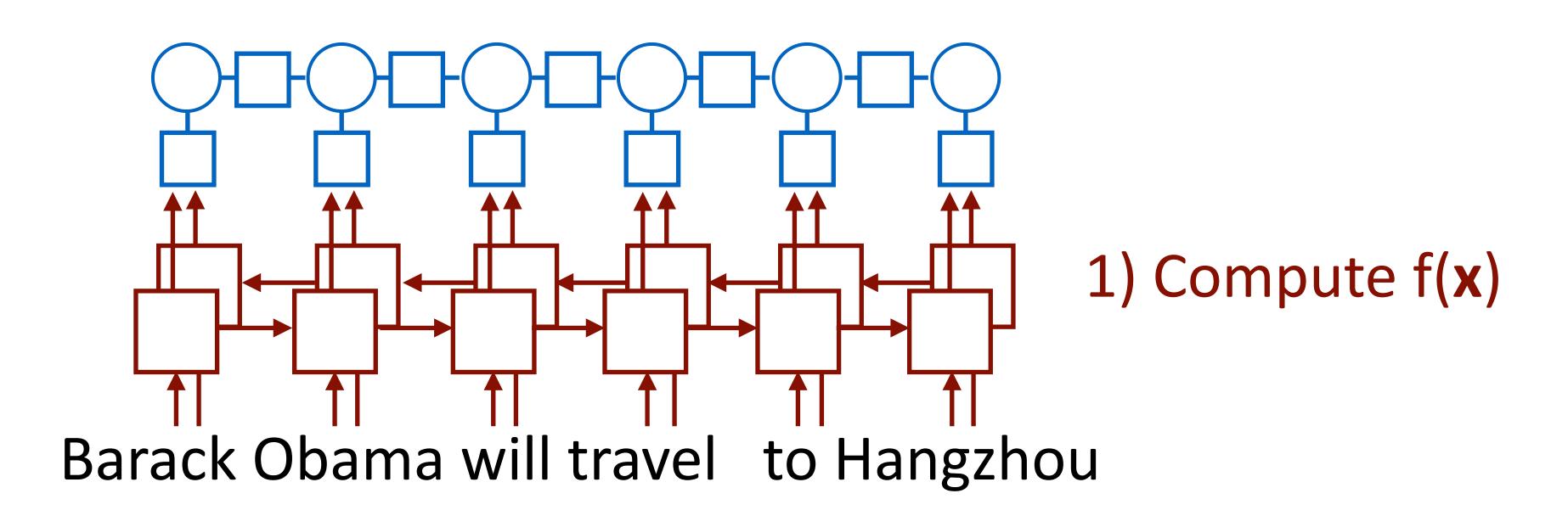


For neural model: compute gradient of phi w.r.t. parameters of neural net

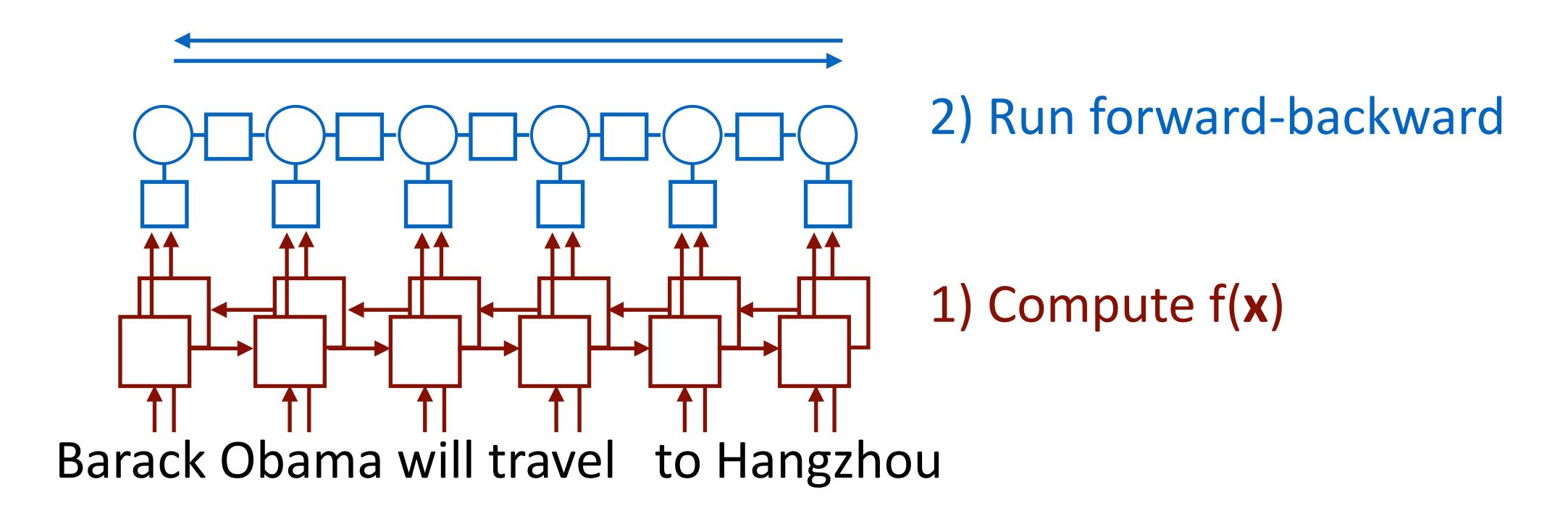
0 O O B-LOC O O B-ORG O O B-PER I-PER **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG



O O B-LOC O O B-ORG O 0 B-PER I-PER \mathbf{O} **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG

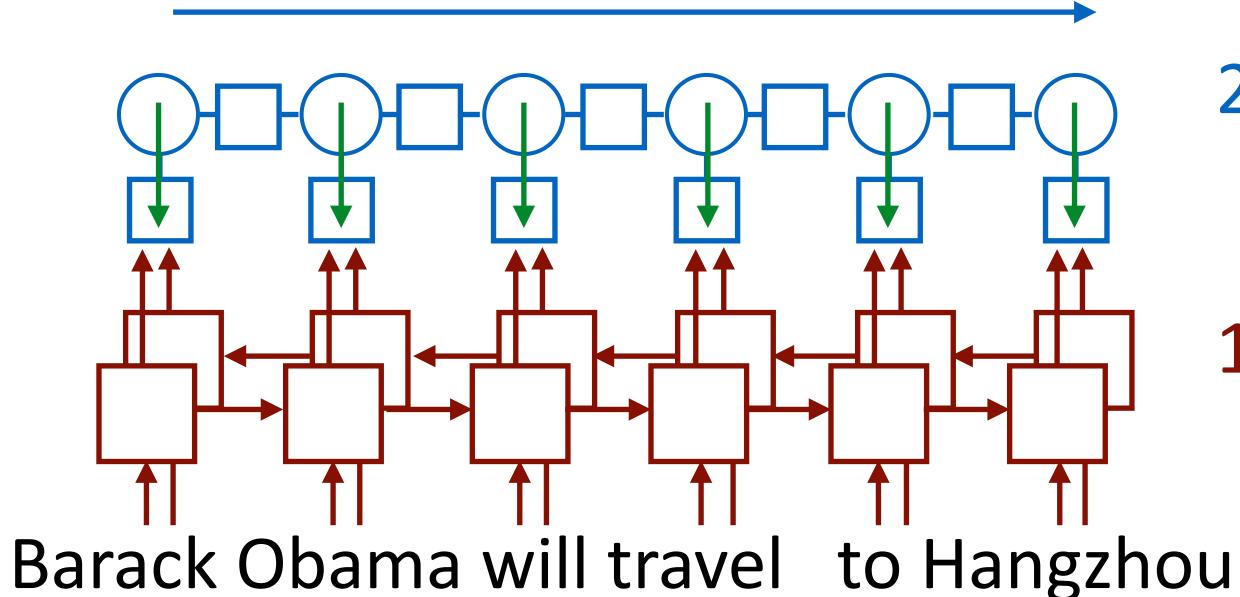


B-LOC O O O B-ORG O 0 0 0 I-PER **B-PER** ()**Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG



O O O B-ORG **B-LOC** 0 0 (\mathbf{O} I-PER **B-PER Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG

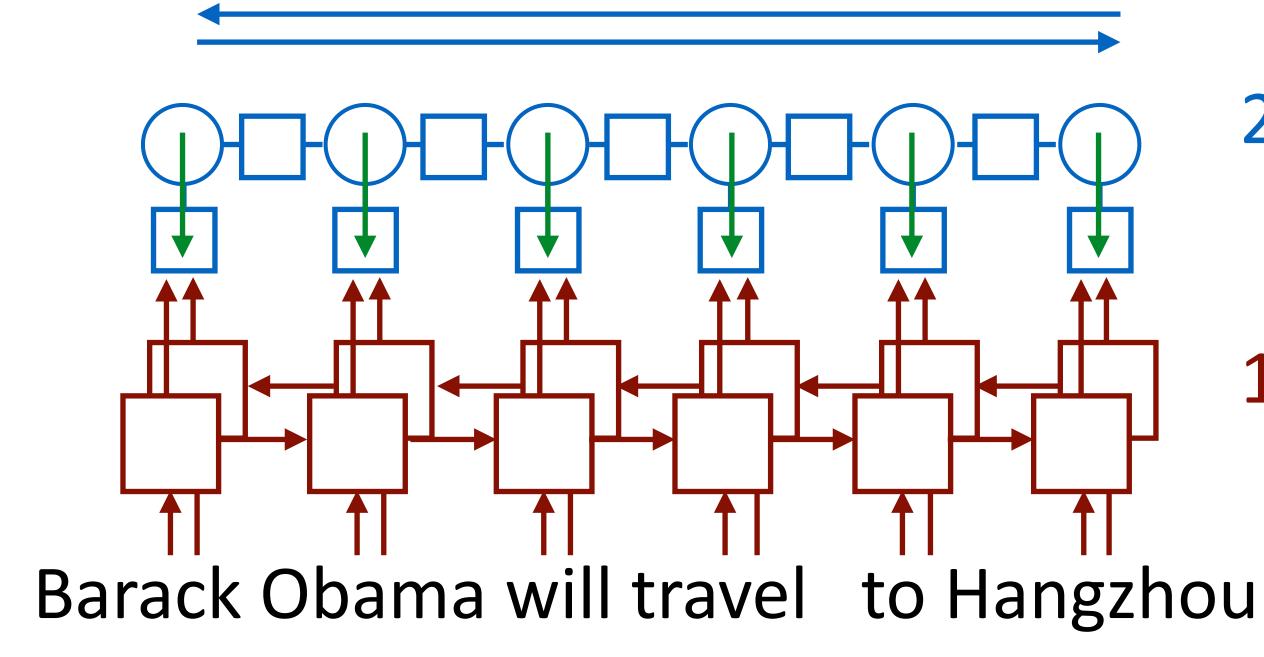
PERSON



2) Run forward-backward 3) Compute error signal 1) Compute f(x)

B-LOC O O O B-ORG Ο ()()**B-PER** I-PER **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. LOC ORG

PERSON



2) Run forward-backward

3) Compute error signal

1) Compute f(x)

4) Backprop (no knowledge of sequential structure required)

FFNN Neural CRF for NER

O O B-LOC O O B-ORG O 0 0 B-PER I-PER

PERSON

Barack Obama will travel to **Hangzhou** today for the **G20** meeting.

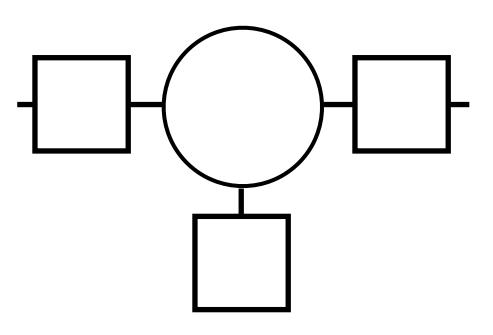
LOC

ORG

FFNN Neural CRF for NER

O O B-LOC O O B-ORG O 0 **B-PER** I-PER Ο

PERSON



to **Hangzhou** today

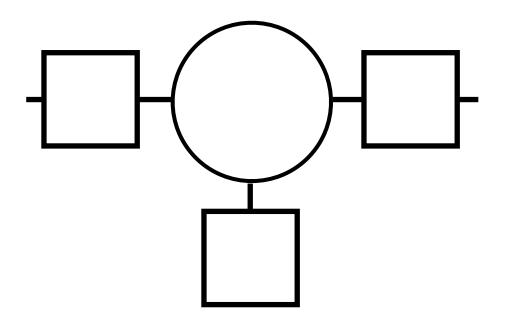
Barack Obama will travel to **Hangzhou** today for the **G20** meeting.

LOC

ORG

O B-LOC O O B-ORG O 0 ()()LOC ORG

FFNN Neural CRF for NER I-PER **B-PER Barack Obama** will travel to Hangzhou today for the G20 meeting. PERSON

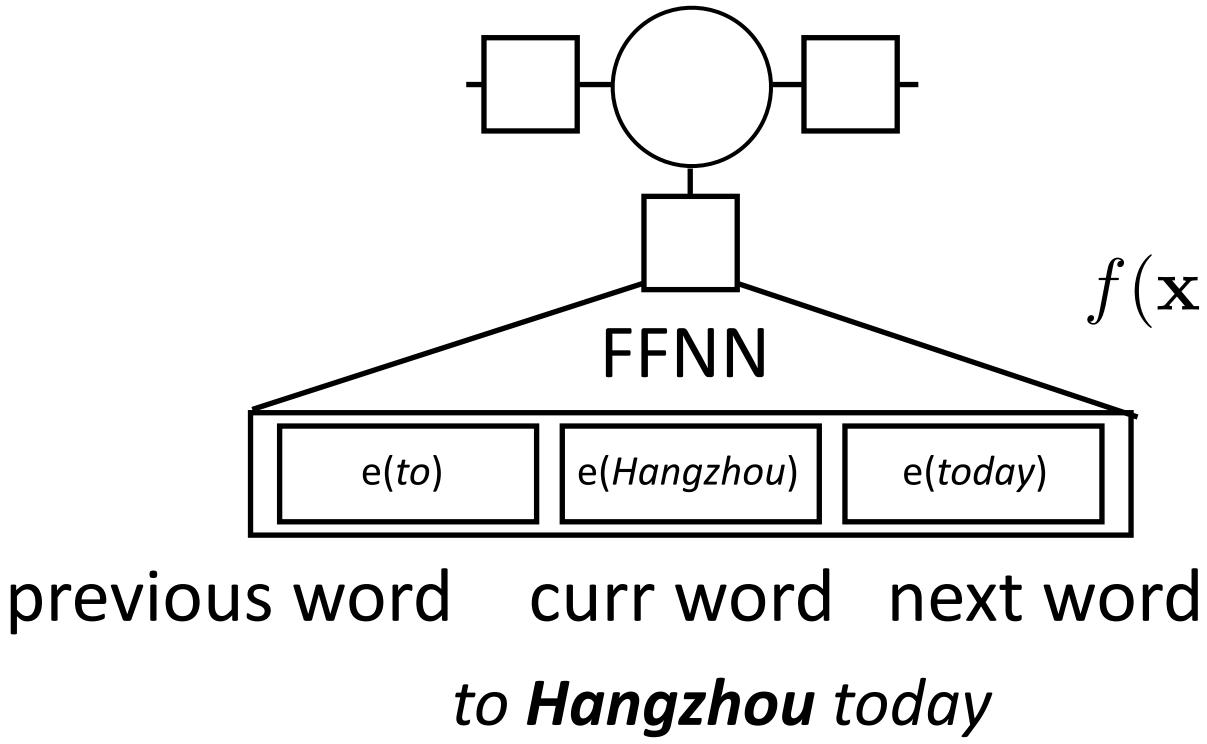


previous word curr word next word to **Hangzhou** today

$f(\mathbf{x}, i) = [\operatorname{emb}(\mathbf{x}_{i-1}), \operatorname{emb}(\mathbf{x}_i), \operatorname{emb}(\mathbf{x}_{i+1})]$

O B-LOC O O B-ORG O 0 \mathbf{O} ()LOC ORG

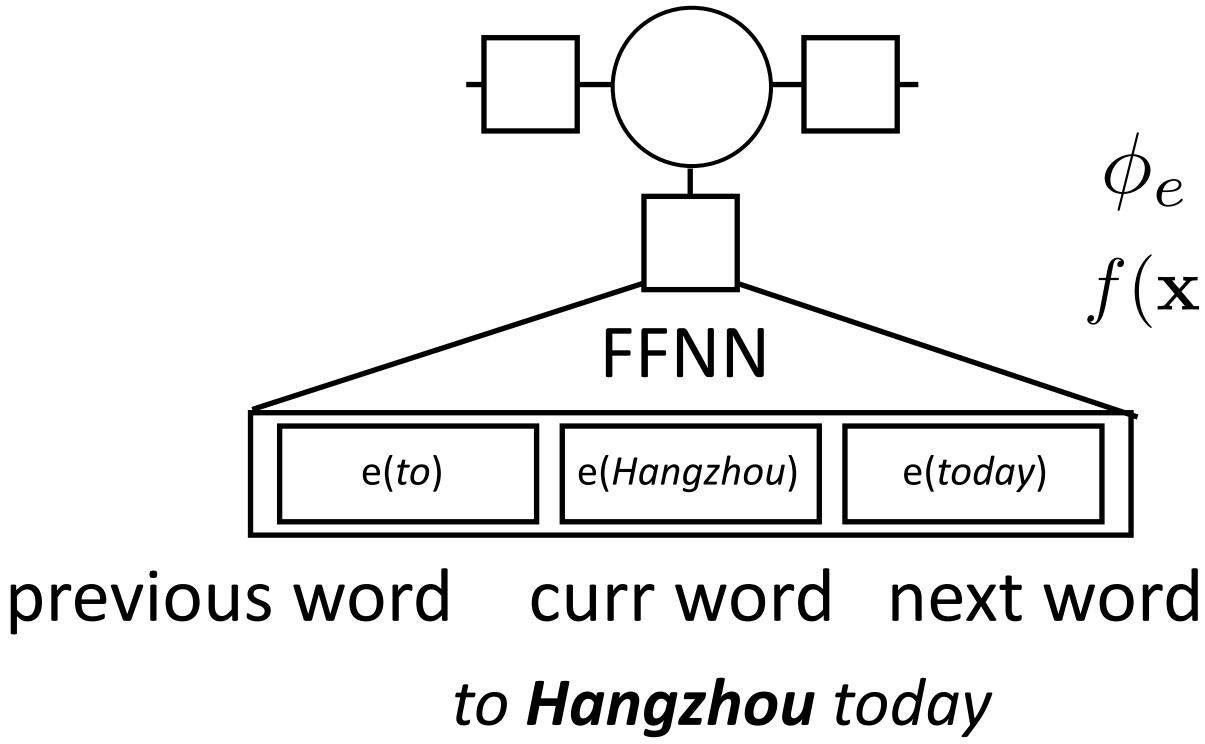
FFNN Neural CRF for NER I-PER **B-PER Barack Obama** will travel to Hangzhou today for the G20 meeting. PERSON



$f(\mathbf{x}, i) = [\operatorname{emb}(\mathbf{x}_{i-1}), \operatorname{emb}(\mathbf{x}_i), \operatorname{emb}(\mathbf{x}_{i+1})]$

0 B-LOC O O B-ORG \mathbf{O} \mathbf{O} LOC ORG

FFNN Neural CRF for NER **B-PER** I-PER **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting. PERSON

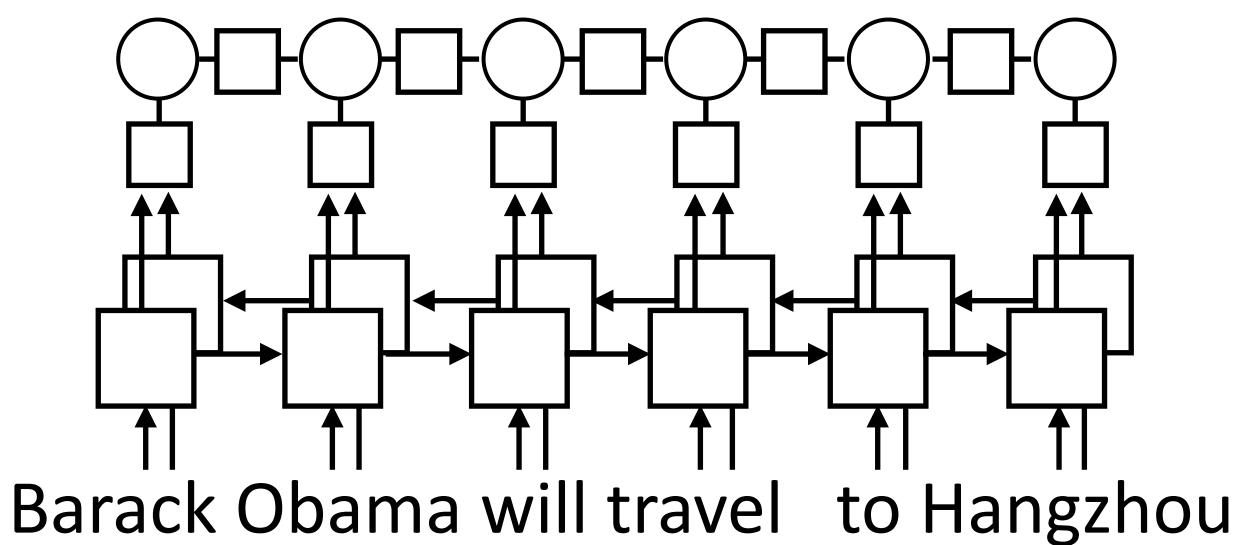


$\phi_e = Wg(Vf(\mathbf{x}, i))$ $f(\mathbf{x}, i) = [\operatorname{emb}(\mathbf{x}_{i-1}), \operatorname{emb}(\mathbf{x}_i), \operatorname{emb}(\mathbf{x}_{i+1})]$

LSTM Neural CRFs

B-PER I-PER \mathbf{O}

PERSON

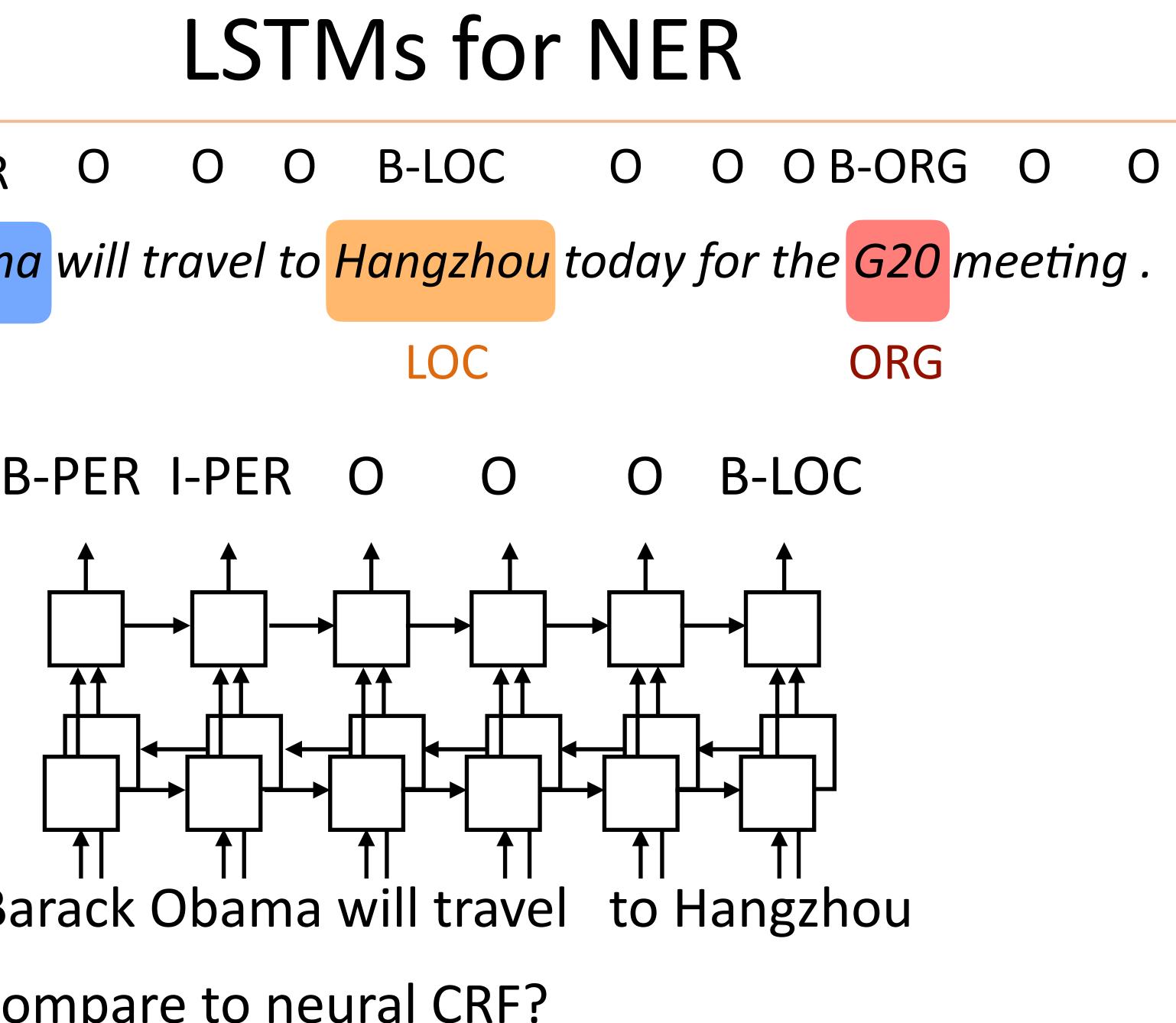


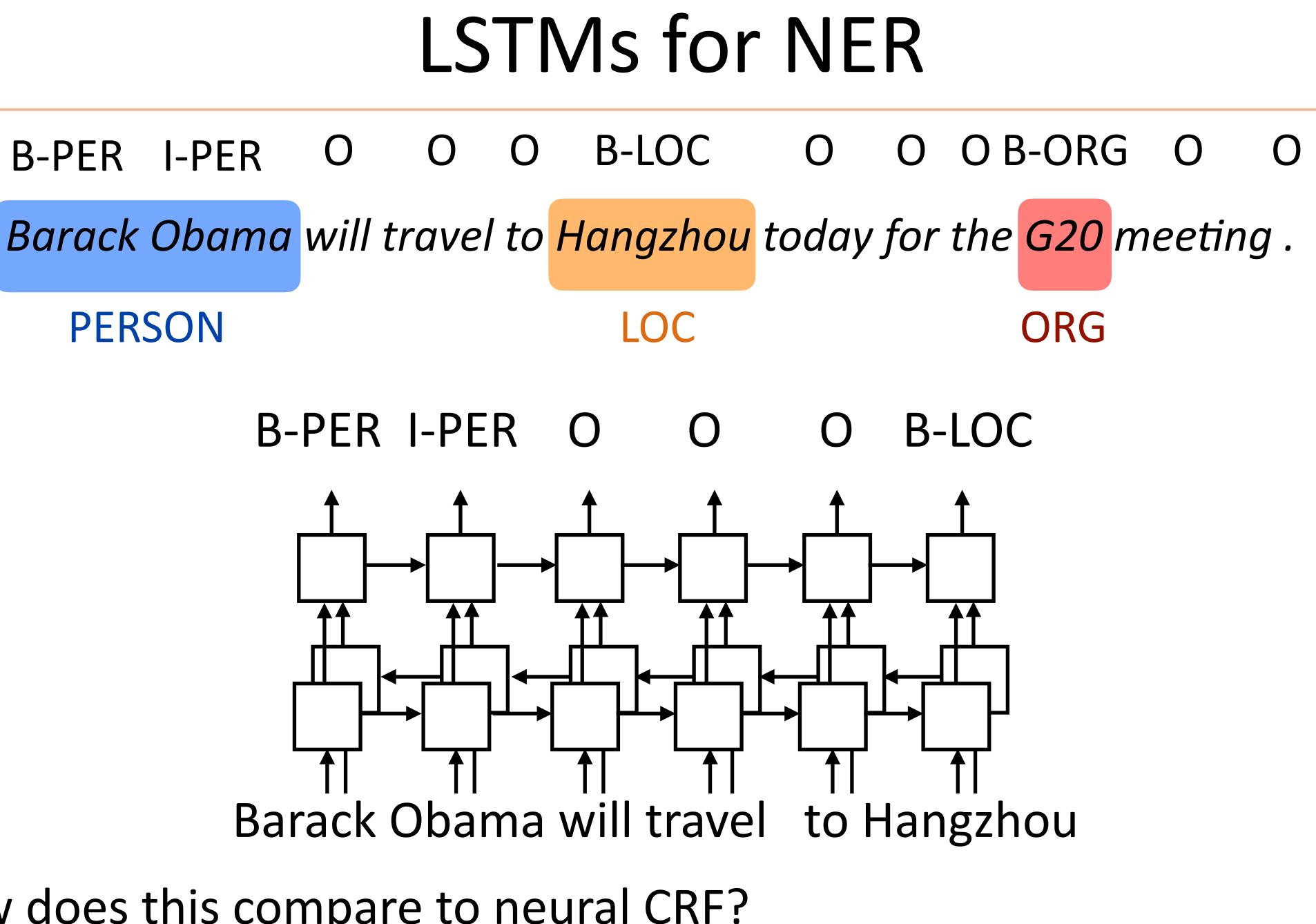
Bidirectional LSTMs compute emission (or transition) potentials

- O O B-LOC O O B-ORG O 0
- **Barack Obama** will travel to **Hangzhou** today for the **G20** meeting.
 - LOC ORG

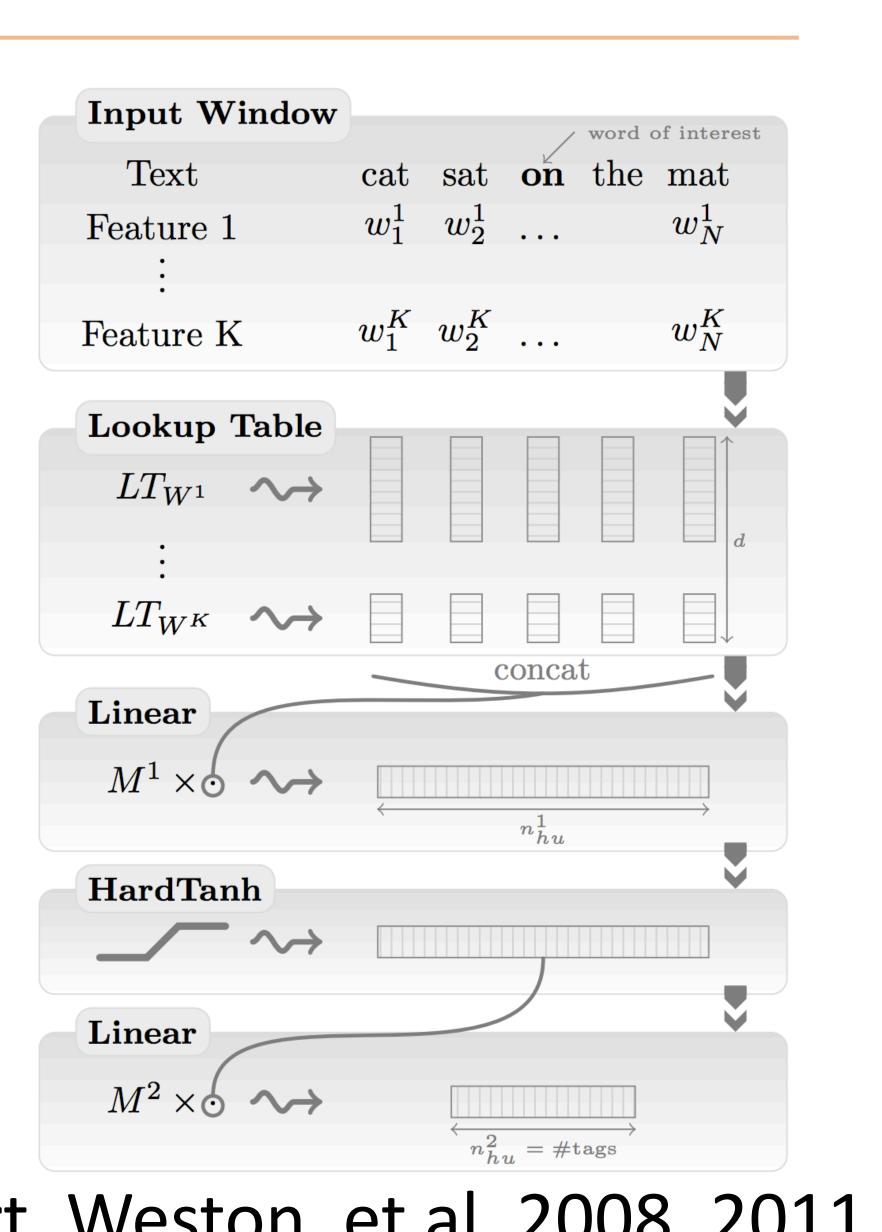
B-PER I-PER

PERSON

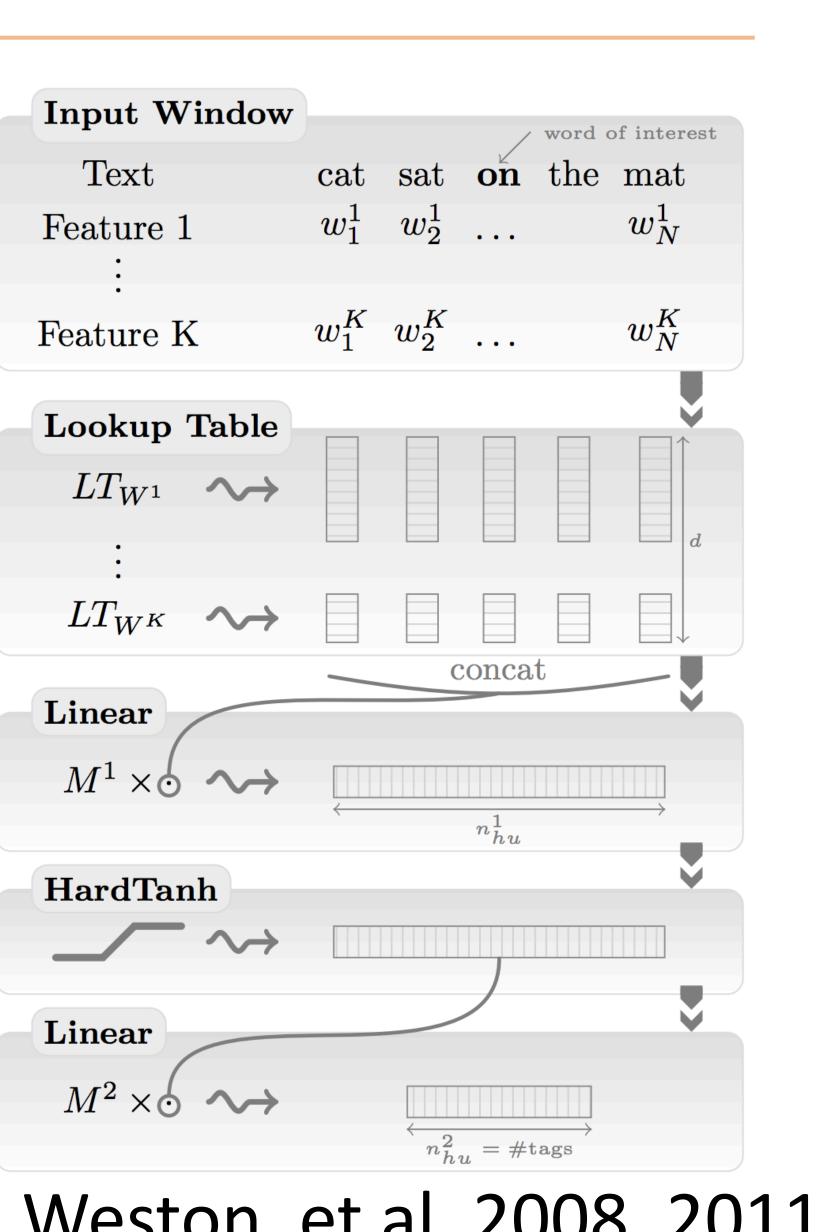




How does this compare to neural CRF?

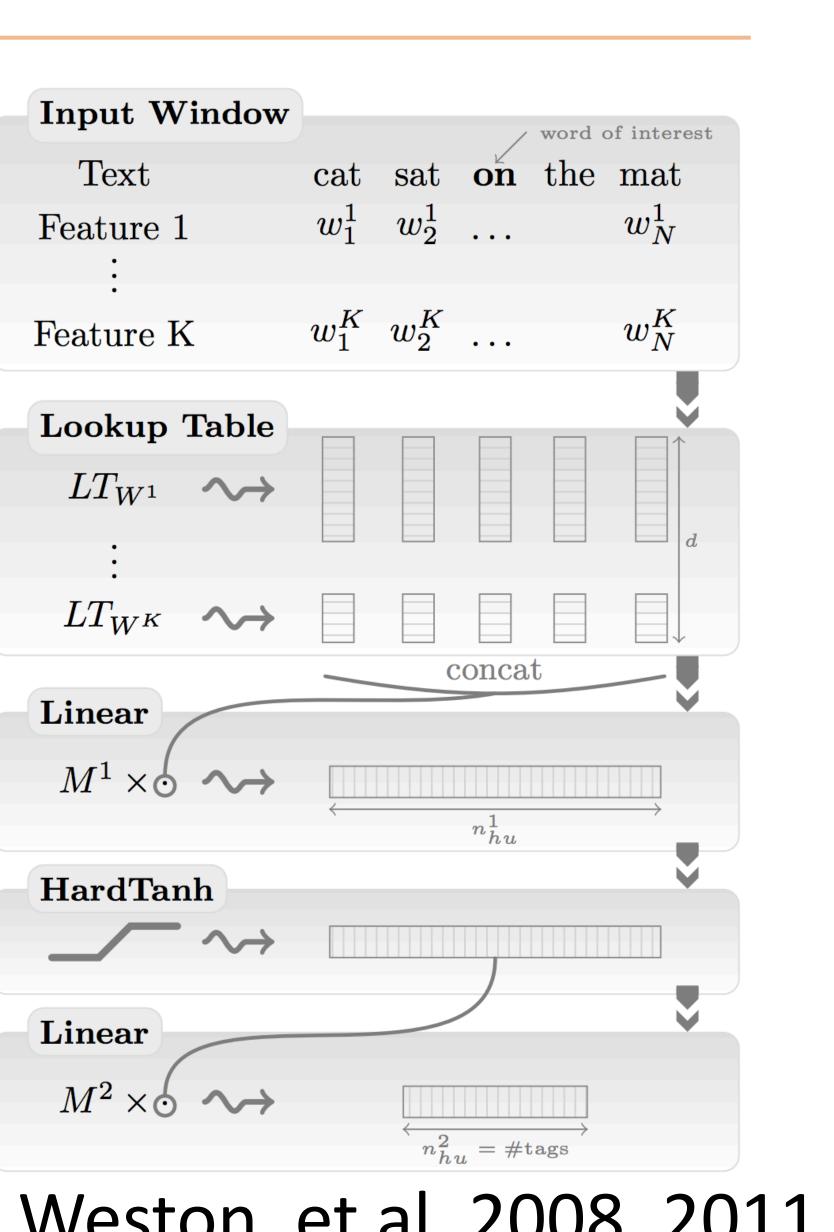


Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99
NN+WLL+LM1	97.05	91.91	85.68	58.18
NN+SLL+LM1	97.10	93.65	87.58	73.84
NN+WLL+LM2	97.14	92.04	86.96	58.34
NN+SLL+LM2	97.20	93.63	88.67	74.15



Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99
NN+WLL+LM1	97.05	91.91	85.68	58.18
NN+SLL+LM1	97.10	93.65	87.58	73.84
NN+WLL+LM2	97.14	92.04	86.96	58.34
NN+SLL+LM2	97.20	93.63	88.67	74.15

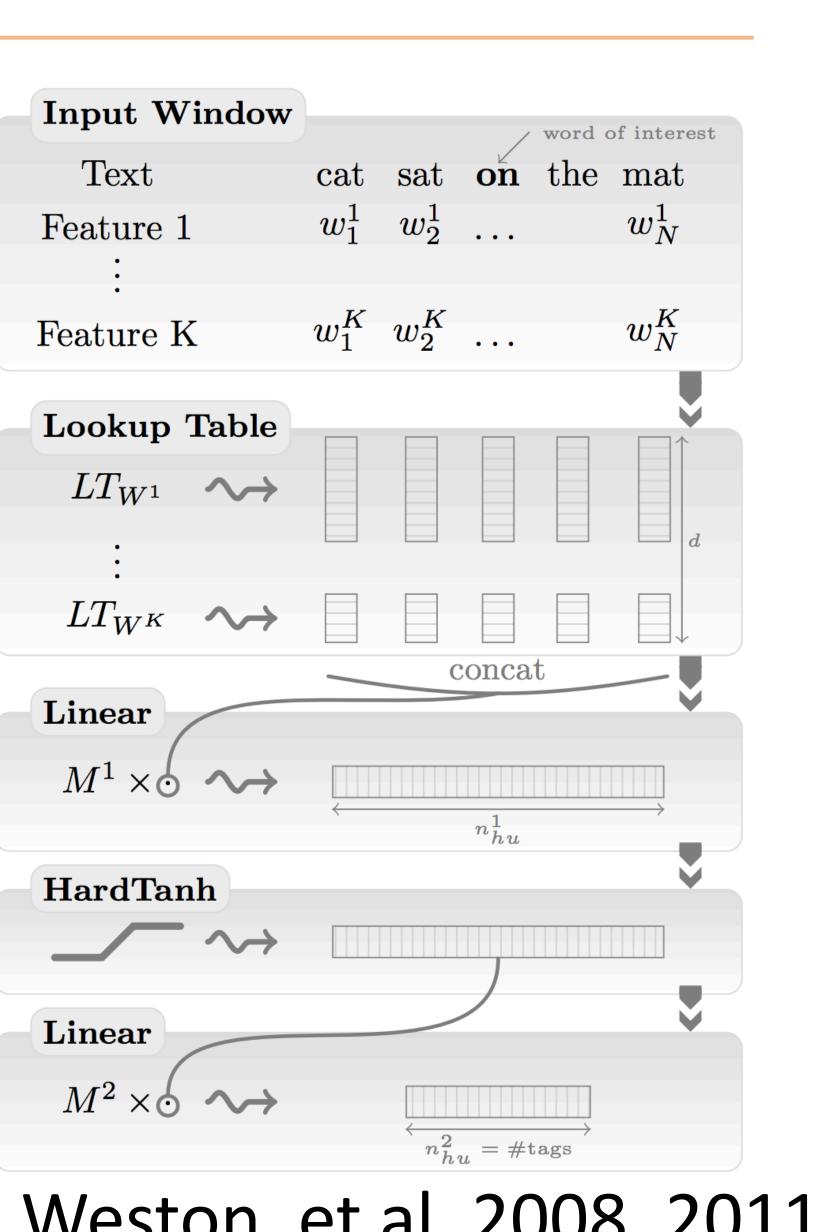
WLL: independent classification; SLL: neural CRF



Approach	POS	CHUNK	NER	SRL
	(PWA)	(F1)	(F1)	(F1)
Benchmark Systems	97.24	94.29	89.31	77.92
NN+WLL	96.31	89.13	79.53	55.40
NN+SLL	96.37	90.33	81.47	70.99
NN+WLL+LM1	97.05	91.91	85.68	58.18
NN+SLL+LM1	97.10	93.65	87.58	73.84
NN+WLL+LM2	97.14	92.04	86.96	58.34
NN+SLL+LM2	97.20	93.63	88.67	74.15

WLL: independent classification; SLL: neural CRF

 LM2: word vectors learned from a precursor to word2vec/GloVe, trained for 2 weeks (!) on Wikipedia

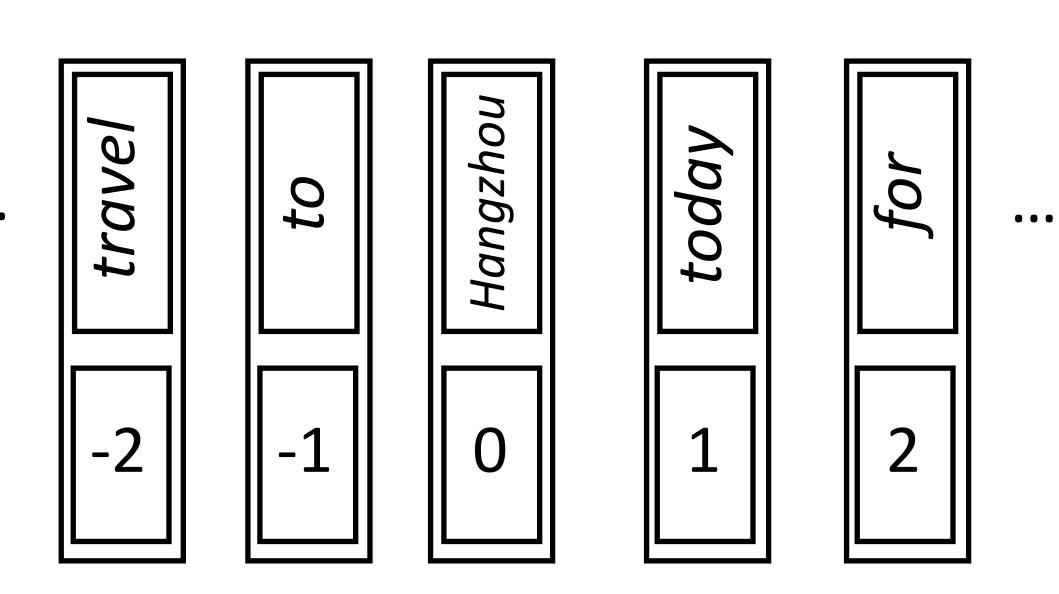


travel to Hangzhou today for

travel to Hangzhou today for

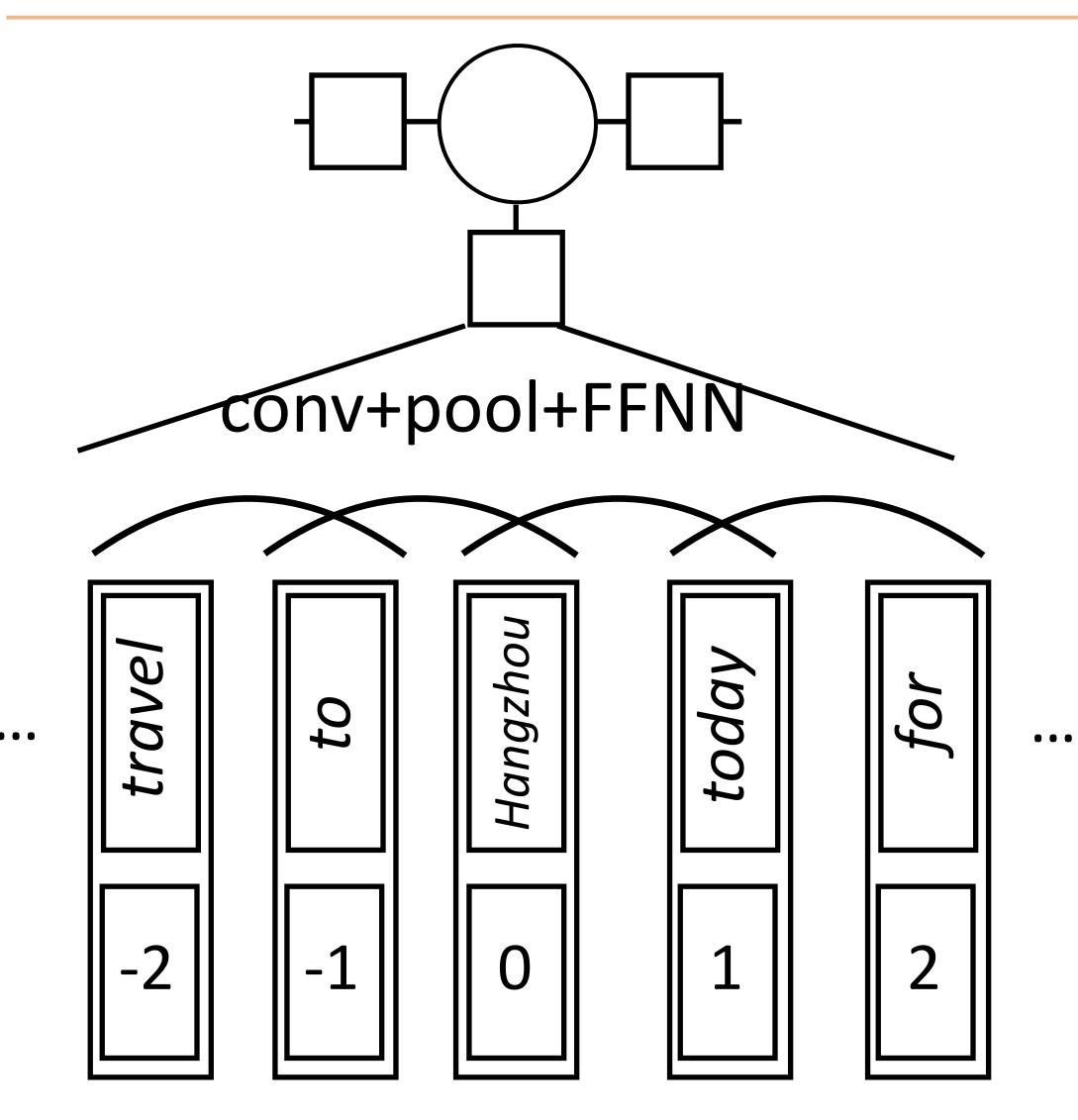
 Append to each word vector an embedding of the relative position of that word

f



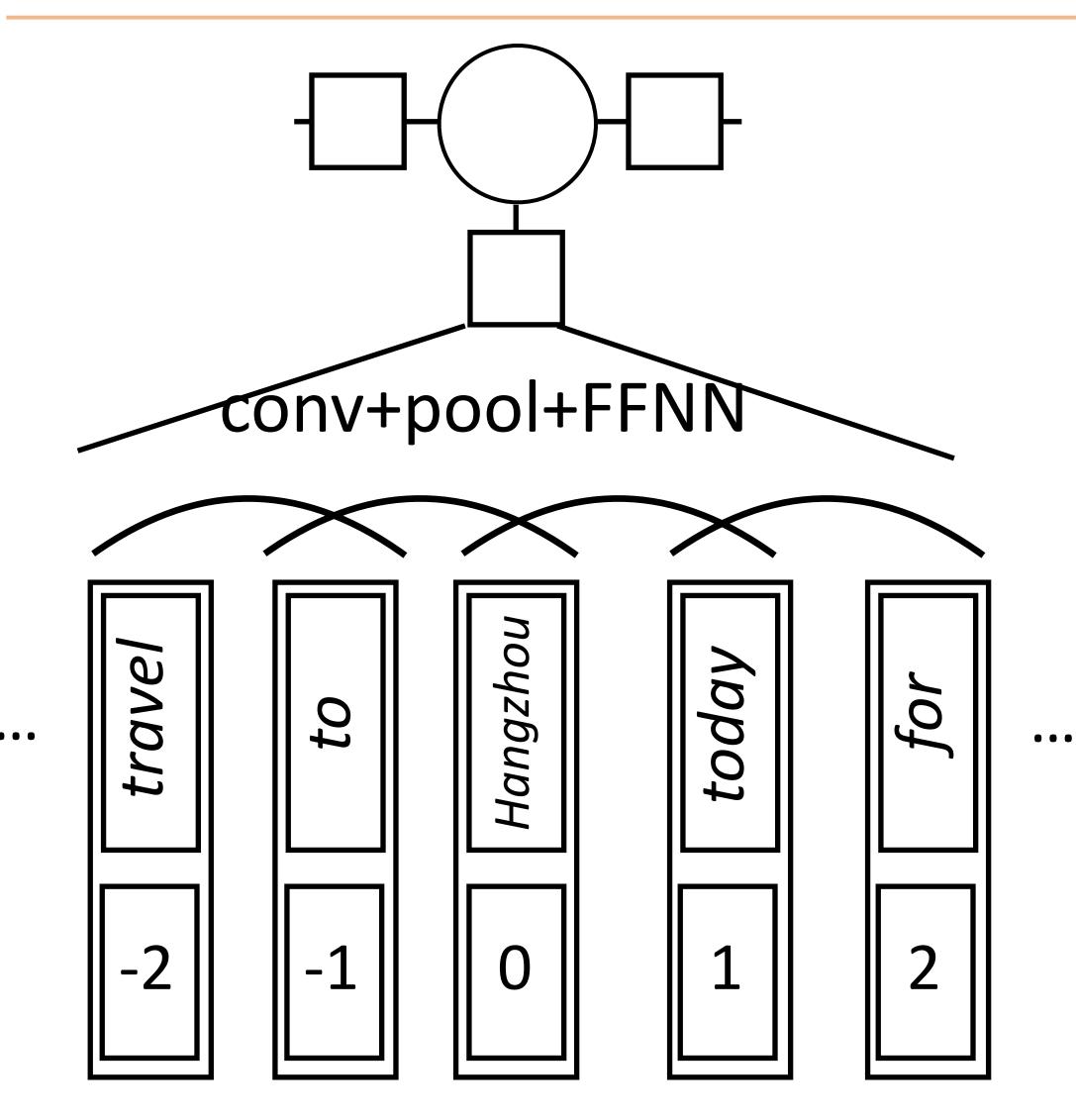
travel to Hangzhou today for

Append to each word vector an embedding of the relative position of that word



travel to Hangzhou today for

Append to each word vector an embedding of the relative position of that word

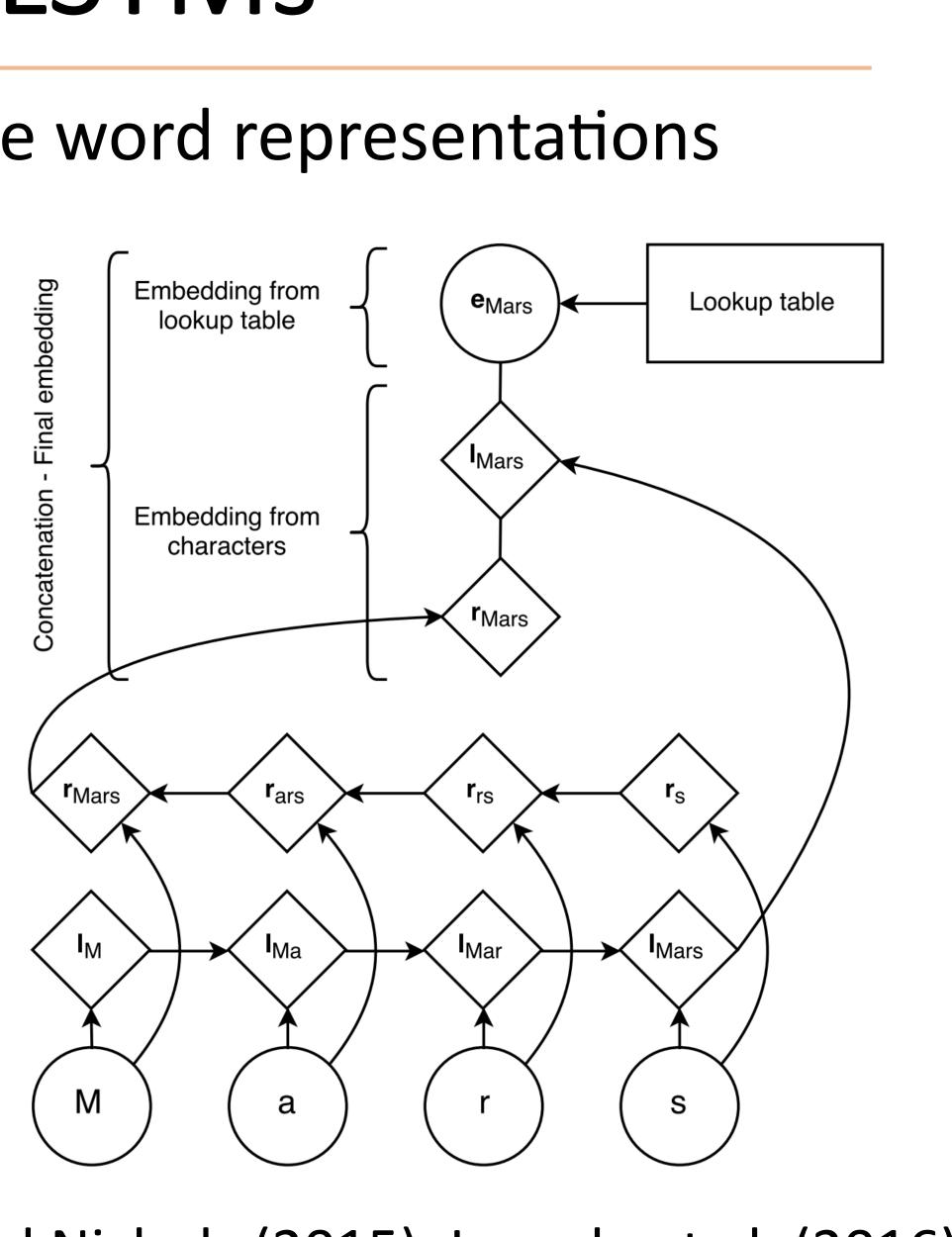


travel to Hangzhou today for

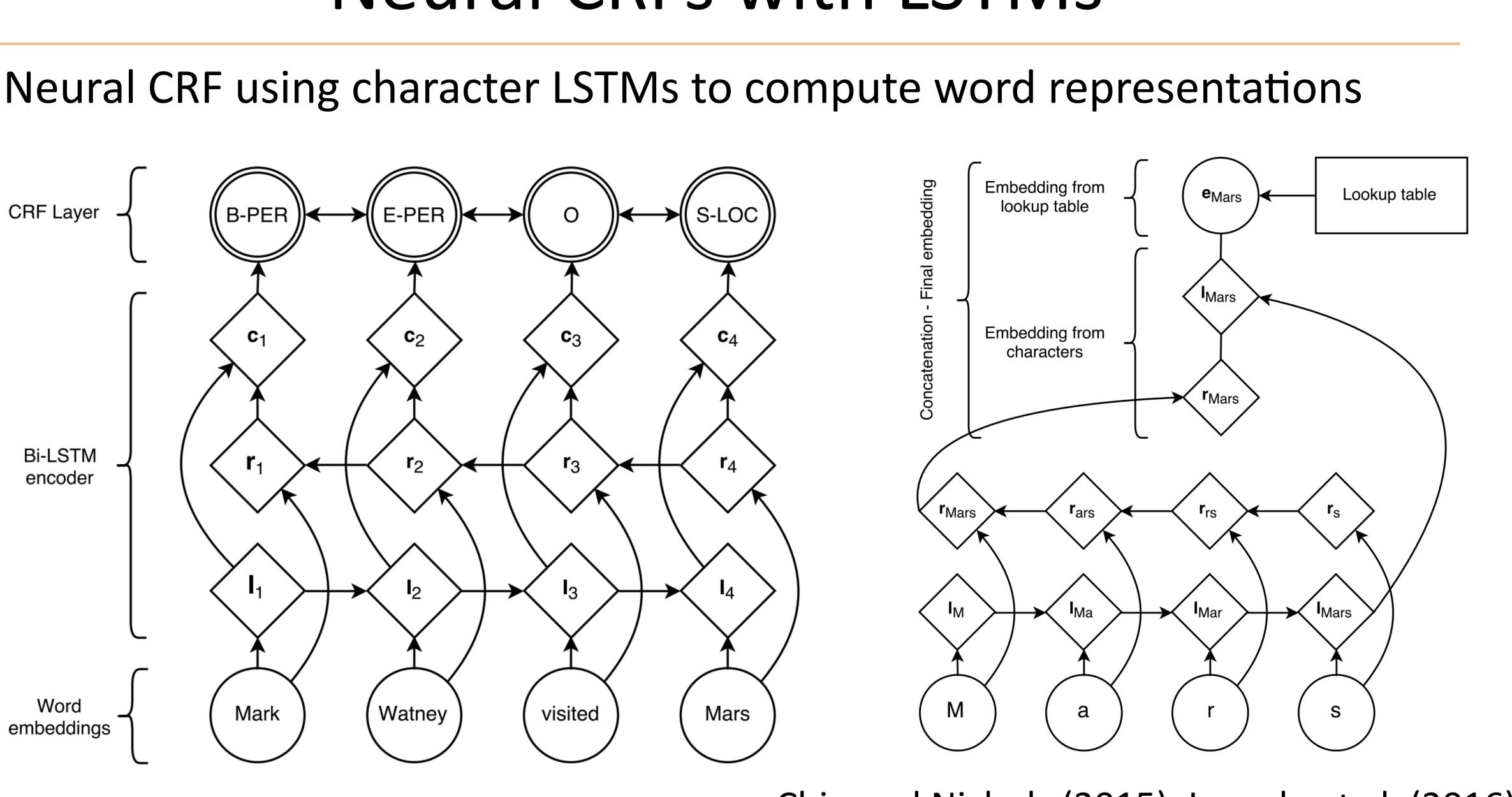
- Append to each word vector an embedding of the relative position of that word
- Convolution over the sentence produces a position-dependent representation

Neural CRF using character LSTMs to compute word representations

Neural CRF using character LSTMs to compute word representations



Neural CRF using character LSTMs to compute word representations



- Chiu+Nichols: character CNNs instead of LSTMs
- Lin/Passos/Luo: use external resources like Wikipedia
- LSTM-CRF captures the important aspects of NER: word context (LSTM), sub-word features (character LSTMs), outside knowledge (word embeddings)

Model	$\mathbf{F_1}$
Collobert et al. (2011)*	89.59
Lin and Wu (2009)	83.78
Lin and Wu (2009)*	90.90
Huang et al. (2015)*	90.10
Passos et al. (2014)	90.05
Passos et al. (2014)*	90.90
Luo et al. (2015)* + gaz	89.9
Luo et al. $(2015)^* + gaz + linking$	91.2
Chiu and Nichols (2015)	90.69
Chiu and Nichols (2015)*	90.77
LSTM-CRF (no char)	90.20
LSTM-CRF	90.94

Takeaways

- CNNs are a flexible way of extracting features analogous to bag of ngrams, can also encode positional information
- All kinds of NNs can be integrated into CRFs for structured inference. Can be applied to NER, other tagging, parsing, ...