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Administrivia

Instructor
» Course website:

https://aritter.github.io/CS-7650-sp22/

Alan Ritter

alan.ritter@cc.gatech.edu

» Piazza and Gradescope: links on the course website
» We will do our best to answer questions within 24
hours (or Monday/Tuesday for questions asked over
the weekend).

Teaching Assistants

Jan Vijay Singh

lamjanvijay@gatech.edu

Mukund Rungta
mrungta8@gatech.edu

- TA Office hours: .
> See SpreadSheet vsammangi3@gatech.edu

Xurui Zhang

Xuruizhang@gatech.edu
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in 6 people who live in Fulton County have been infected, and at
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Please wear a mask while you are In this class!
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There will be a lot of math and programming!
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Problem Set 1 (Background Review)

» Due Jan 14 (this Friday).

» Background review on probability, linear algebra, calculus.

- Waitlisted students: please submit PS1 by Friday if you plan to enroll in the

course.

» We can’t predict whether or not you will get in, as this depends on other
students dropping the class...

» Submit on Gradescope

Schedule

Jan 10:

Jan 12:

Jan 13:

Jan 1/:

TBD:

Course Introduction Eisenstein Chapter 1

Machine Learning Eisenstein 2.0-2.5, 4.1,4.3-4.5

Problem Set 1 due

MLK Holiday

Project 1



oo

Project 1 is also out (please look!)

M TextClassification_release.ipynb ¢

File Edit View Insert Runtime Tools Help Lastsaved at January 8

+ Code + Text

Project #1: Text Classification

In this assignment, you will implement the perceptron algorithm, and a simple, but competitive neural bag-of-words model, as described in
for text classification. You will train your models on a (provided) dataset of positive and negative movie reviews and report accuracy on a
test set.

In this notebook, we provide you with starter code to read in the data and evaluate the performance of your models. After completing the
instructions below, please follow the instructions at the end to submit your notebook and other files to Gradescope.

Make sure to make a copy of this notebook, so your changes are saved.

Schedule

Jan 10:

Jan 12:

Jan 13:

Jan 17:

TBD:

Course Introduction
Machine Learning
Problem Set 1 due
MLK Holiday

Project 1

Eisenstein Chapter 1

Eisenstein 2.0-2.5, 4.1,4.3-4.5



Free Textbooks!

- 2 really awesome free textbooks available
» There will be assignhed readings from both

- Both freely available online

Natural Language Processing

Speech and Language Processing (rd ed. draft)
Dan Jurafsky and James H. Martin

Jacob Eisenstein


https://web.stanford.edu/~jurafsky/slp3/
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf

Programming Projects: Computation

» Modern NLP methods require non-trivial computation

» Training neural networks with many parameters can take a long time (it is a very
good idea to start working on the assignments early!)

> You probably want to use a GPU
» Google Colab: free GPUs (some limitations)
» The programming projects are designed with Colab in mind

- Colab Pro subscription (510/month). This is highly recommended once we start
working with PyTorch.
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- Be able to solve problems that require deep understanding of text

» Example: dialogue systems

recognize
predicate

Siri, what’s the most
_, valuable American
company?

recognize marketCap
is the target value  ~
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- Be able to solve problems that require deep understanding of text

» Example: dial stems -
ample: dialogue sy do computation

| Siri, what’s the most recognize
recognize marketCap , . coenize
| —{_, valuable American P
s the target value
company?
®®ul@

resolve
references
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POLITICS

Google Critic Ousted From Think Tank Funded by the Tech Giant

WASHINGTON — In the hours after European antitrust regulators levied a
record $2.7 billion fine against Google in late June, an influential
Washington think tank learned what can happen when a tech giant that

shapes public policy debates with its enormous wealth is criticized.
00

But not long after one of New America’s scholars posted a statement on the

think tank’s website praising the European Union’s penalty against Google,
Mr. Schmidt, who had been chairman of New America until 2016,
communicated his displeasure with the statement to the group’s president,
Anne-Marie Slaughter, according to the scholar.

Ms. Slaughter told Mr. Lynn that “the time has come for Open Markets and
New America to part ways,” according to an email from Ms. Slaughter to
Mr. Lynn. The email suggested that the entire Open Markets team — nearly

10 full-time employees and unpaid fellows — would be exiled from New
America.
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Trump-family watch_. the White House balcony
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NLP Analysis Pipeline

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Text ~ Text Analysis ~ Annotations |  Applications

Syntactic parses Summarize

Coreference resolution

Extract informationg
Entity disambiguation

~ Answer questions

Discourse analysis

ldentify sentiment

Translate
>~ NLP is about building these pieces! ’

> All of these components are modeled with statistical
approaches trained with machine learning
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How do we represent language?

Text Labels
- the movie was good ~ +

Beyonce had one of the best videos of all time subjective

" Sequences/tags

---------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

/\VBZ NN "~ Ax. flight(x) A dest(x)=Miami
| eat cake with icing flights to Miami
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How do we use these representations?

Text Text Analy5|s Appllcatlons

 Extract syntactic features

Tree-structured neural networks

: ; ~Tree transducers (for machine

end-to-end models

» Main question: What representations do we need for language? What do
we want to know about it?

>~ Boils down to: what ambiguities do we need to resolve?



Why is language hard?

(and how can we handle that?)
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Language is Ambiguous!

» Hector Levesque (2011): “Winograd schema challenge” (named after Terry
Winograd, the creator of SHRDLU)

they advocated

The city council refused the demonstrators a permit because they violence

they feared

> This is so complicated that it’s an Al challenge problem! (Al-complete)

- Referential/semantic ambiguity
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» Ambiguous News Headlines:

» Teacher Strikes ldle Kids

» Hospitals Sued by 7 Foot Doctors

> Ban on Nude Dancing on Governor’s Desk
> Iraqi Head Seeks Arms

» Stolen Painting Found by Tree

» Kids Make Nutritious Snacks

> Local HS Dropouts Cut in Half

» Syntactic/semantic ambiguity: parsing needed to resolve these, but need context
to figure out which parse is correct

slide credit: Dan Klein
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Language is Really Ambiguous!

» There aren’t just one or two possibilities which are resolved pragmatically

It is really nice out

il fait vraiment beau _ It’s really nice
The weather is beautiful

It is really beautiful outside
He makes truly beautiful

He makes truly boyfriend
It fact actually handsome

» Combinatorially many possibilities, many you won’t even register as ambiguities,
but systems still have to resolve them



What do we need to understand language?

» Lots of datal

SOURCE Cela constituerait une solution transitoire qui permettrait de

conduire a terme a une charte a valeur contraignante.

That would be an interim solution which would make it possible to

HUMAN work towards a binding charter in the long term .
[this] [constitueralit] [assistance] [transitoire] [who] [permettrait]
1x DATA [licences] [to] [terme] [to] [a] [charter] [to] [value] [contraignhante] [.]
1 Ox DATA [itf] [would] [a solution] [transitional] [which] [would] [of] [lead]
% [to] [term] [to a] [charter] [to] [value] [binding] [.]
100x DATA [this] [would be] [a transitional solution] [which would] [lead to] [a

charter] [legally binding] [.]

1000x DATA [that would pe]_[a transitional solution] [which would] [eventually
lead to] [a binding charter] [.]

slide credit: Dan Klein
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What do we need to understand language?

» World knowledge: have access to information beyond the training data

'DOJ breenlightsj [Disne)ﬂ- Fox\merger

Department of Justice \ A
o & FOX
metaphor; [ == == |
“approves” ®?5NEP

» What is a green light? How do we understand what
“green lighting” does?
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» Grounding: learn what fundamental concepts actually mean in a data-driven way

¢H ue
— YellowishGreen

0 Yellowish Green data

Question: What object 1s right of 7
OZ

o
o

Probability

Golland et al. (2010) McMahan and Stone (2015)
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What do we need to understand language?

» Linguistic structure

> ...but computers probably won’t understand language the same way humans do

» However, linguistics tells us what phenomena we need to be able to deal with
and gives us hints about how language works

d.

b.

John has been having a lot of trouble arranging his vacation.

He cannot find anyone to take over his responsibilities. (he = John)
Cp = John; C¢ = {John}

He called up Mike yesterday to work out a plan. (he = John)
Cp = John; C; = {John, Mike} (CONTINUE)

Mike has annoyed him a lot recently.
Cp = John; C; = {Mike, John} (RETAIN)

He called John at 5 AM on Friday last week. (he = Mike)

Cp, = Mike; C; = {Mike, John} (SHIFT) Centering Theory
Grosz et al. (1995)



What techniques do we use?
(to combine data, knowledge, linguistics, etc.)
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Structured Prediction

- All of these techniques are data-driven! Some data is naturally occurring, but may
need to label

» Supervised techniques work well on very little data

=3

» Even neural nets can do pretty well!

annotation g
(two hours!)

\ better system!

unsupervised
learning

“Learning a Part-of-Speech Tagger from Two Hours of Annotation”
Garrette and Baldridge (2013)



Pretraining

» Language modeling: predict the next word in a text P(wi |w1, Cee s w,,;_l)

P(w | | want to go to) = 0.01 Hawai’i
0.005 LA
0.0001 class

O

“ &’ : use this model for other purposes

(ﬁ‘ ./‘\

P(w | the acting was horrible, | think the movie was) = 0.1 bad

» Model understands some sentiment? 0.001 gooa

» Train a neural network to do language modeling on massive unlabeled text, fine-

tune it to do {tagging, sentiment, question answering, ...}
Peters et al. (2018), Devlin et al. (2019)



Less Manual Structure?
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(a) example word alignment (b) example phrase alignment

<end>

DeNero et al. (2008)

Bahdanau et al. (2014)
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Does manual structure have a place?

Neural nets don’t always work out of domain!

Coreference: rule-based systems are
still about as good as deep learning
out-of-domain

LORELEI: transition point below which phrase-
based systems are better

Why is this? Inductive bias!

Can multi-task learning help?

CoNLL
AVg. Fl
Newswire
rule-based 09.60
berkeley 61.24
cort 63.37
deep-coref [conll] 65.39
deep-coref [lea] 65.60
Wikipedia
perkeley 01.01
cort 49.94
deep-coref [conll] H2.65
deep-coref [lea] 53.14
deep-coref 51.01

Moosavi and Strube (2017)
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Does manual structure have a place?

Translate

Trump Pope family watch a hundred years a year in the White House balcony

» Maybe manual structure would help...
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Where are we?

NLP consists of: analyzing and building representations for text, solving problems
involving text

These problems are hard because language is ambiguous, requires drawing on
data, knowledge, and linguistics to solve

Knowing which techniques to use requires understanding dataset size, problem
complexity, and a lot of tricks!

NLP encompasses all of these things
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NLP vs. Computational Linguistics

» NLP: build systems that deal with language data

» CL: use computational tools to study language
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» Computational tools for other purposes: literary theory, political science...
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Bamman, O’Connor, Smith (2013)
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Course Goals

Cover fundamental machine learning techniques used in NLP

Understand how to look at language data and approach linguistic phenomena

Cover modern NLP problems encountered in the literature: what are the active
research topics in 20227

Make you a “producer” rather than a “consumer” of NLP tools

» The three assighments should teach you what you need to know to
understand nearly any system in the literature
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Assignments

» 3 Programming Assignments
- Implementation-oriented
- ~2 weeks per assignment, 3 “slip days” for automatic extensions

These projects require understanding of the concepts, ability to write performant
code, and ability to think about how to debug complex systems. They are
challenging, so start early!



Final Project

> Final project (20%)
» Groups of 3-4 preferred, 1 is possible.
- 4 page report + final project presentation.



