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This Lecture

‣ Linear classifica-on fundamentals

‣ Three discrimina-ve models: logis-c regression, perceptron, SVM

‣ Naive Bayes, maximum likelihood in genera-ve models

‣ Different mo-va-ons but very similar update rules / inference!
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x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint      with label 

but in this lecture           and     are interchangeablexf(x)

w>f(x) + b > 0

f(x)

‣ Can delete bias if we augment feature space:

w>f(x) > 0
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Linear func-ons are powerful!

‣ “Kernel trick” does this for “free,” but  is too expensive to use in NLP 
applica-ons, training is              instead ofO(n2) O(n · (num feats))



Classifica-on: Sen-ment Analysis



Classifica-on: Sen-ment Analysis

this movie was great! would watch again



Classifica-on: Sen-ment Analysis

this movie was great! would watch again Posi-ve



Classifica-on: Sen-ment Analysis

this movie was great! would watch again Posi-ve



Classifica-on: Sen-ment Analysis

this movie was great! would watch again Posi-ve

that film was awful, I’ll never watch again



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or 
absence of certain words (great, awful)



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or 
absence of certain words (great, awful)

‣ Steps to classifica-on:



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or 
absence of certain words (great, awful)

‣ Steps to classifica-on:

‣ Turn examples like this into feature vectors



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or 
absence of certain words (great, awful)

‣ Steps to classifica-on:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm



Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or 
absence of certain words (great, awful)

‣ Steps to classifica-on:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm

‣ Train weights on data to get our classifier
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this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features (mapping them to axes)

[contains the]   [contains a]   [contains was]  [contains movie]  [contains film]

0 0 1 1 0

‣ More sophis-cated feature mappings possible (f-idf), as well as lots 
of other features: character n-grams, parts of speech, lemmas, …

posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…
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= P (y)
nY
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P (xi|y)

Bayes’ Rule

“Naive” assump-on: 

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on 

linear model!

P (y|x)

y

n
xi

‣ Compute              , predict                               to classify
P (x, y)

argmaxyP (y|x)
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‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Maximum likelihood parameters for binomial/
mul-nomial = read counts off of the data + normalize

‣ Observe (H, H, H, T) and maximize likelihood:
mY
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‣ Easier: maximize log likelihood
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dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[ ] =
1/4
1/8[ ]=

2/3
1/3[ ]it was great

P (great|�) =
1

4



Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)



Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#



Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0



Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0
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Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Learning: maximize                 by reading counts off the data

‣ Inference

P (x, y)

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0

<latexit sha1_base64="FZr/riCBo1+PNx2P5vFNKKQzJnQ="></latexit>
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Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s generaCve: 
spends capacity modeling P(x,y), when what we care about is P(y|x)

‣ Correlated features compound: beauCful and gorgeous are not independent!

the film was beauCful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

‣ Discrimina-ve models model P(y|x) directly (SVMs, most neural networks, …)
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‣ To learn weights: maximize discrimina-ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(
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1 + exp(
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Logis-c Regression

If P(+) is close to 1, make very li1le update 
Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi-ve example

‣ Gradient of wi on nega-ve example

If P(+) is close to 0, make very li1le update 
Otherwise make wi look less like xji, which will decrease P(+)

xj(yj � P (yj = 1|xj))

= xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Can combine these gradients as

‣ Recall that yj = 1 for posi-ve instances, yj = 0 for nega-ve instances. 

1
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Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfiqng

‣ For most of the NLP models we build, explicit regulariza-on isn’t necessary

‣ Early stopping

‣ For neural networks: dropout and gradient clipping
‣ Large numbers of sparse features are hard to overfit in a really bad way
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Logis-c Regression: Summary
‣ Model

‣ Learning: gradient ascent on the (regularized) discrimina-ve log-
likelihood

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)
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Perceptron

• Invented in 1958  
• By Frank Rosenblatt 
• At the Cornell Aeronautical Laboratory  

• Implemented in custom-built hardware 

• Connected to a camera with 20×20 cadmium 
sulfide photocells to make a 400-pixel image.  

• Weights were encoded in potentiometers, and 
weight updates during learning were 
performed by electric motors.

Source: Wikipedia

https://en.wikipedia.org/wiki/Frank_Rosenblatt
https://en.wikipedia.org/wiki/Cornell_Aeronautical_Laboratory
https://en.wikipedia.org/wiki/Potentiometer
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Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

‣ Decision rule:

‣ Guaranteed to eventually separate the data if the data are separable

‣ If incorrect: if posi-ve, 

if nega-ve, 
w  w + x

w  w � x w  w � xP (y = 1|x)
w  w + x(1� P (y = 1|x))

Logis-c Regressionw>x > 0
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Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Minimize

s.t.

As a single constraint:

minimizing norm with 
fixed margin <=> 
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally no solu-on (data is generally non-separable) — need slack!
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N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The      are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks like the perceptron! But updates more frequently
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Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logis-c
Perceptron

0-1

Lo
ss

w>x

*gradients are for maximizing things, 
which is why they are flipped

x if w>x < 1, else 0



Comparing Gradient Updates (Reference)

x(y � P (y = 1|x)) x(y � logistic(w>x))

Perceptron
if classified incorrectly

0 else

SVM
if not classified correctly with margin of 1

0 else

(2y � 1)x

(2y � 1)x

=

y = 1 for pos, 
      0 for neg

Logis-c regression (unregularized)



Op-miza-on — next -me…

‣ Range of techniques from simple gradient descent (works pre1y well) 
to more complex methods (can work be1er)

‣ Most methods boil down to: take a gradient and a step size, apply the 
gradient update -mes step size, incorporate es-mated curvature 
informa-on to make the update more effec-ve
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Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, nega-on)

this movie was not really very enjoyable

‣ There are some ways around this: extract bigram feature for “not X” for 
all X following the not

+
+
—
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Sen-ment Analysis

‣ Simple feature sets can do pre1y well! 

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)
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Sen-ment Analysis

Wang and Manning (2012)

Before neural nets had taken off 
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB 
can be be1er for small data

81.5    89.5Kim (2014) CNNs
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Recap

‣ Logis-c regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

‣ SVM:

Decision rule: 

Decision rule: w>x � 0

P (y = 1|x) � 0.5 , w>x � 0

(Sub)gradient (unregularized): 0 if correct with margin of 1, else

x(y � P (y = 1|x))

x(2y � 1)
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Recap

‣ Logis-c regression, SVM, and perceptron are closely related

‣ SVM and perceptron inference require taking maxes, logis-c regression 
has a similar update but is “sozer” due to its probabilis-c nature

‣ All gradient updates: “make it look more like the right thing and less 
like the wrong thing”


