Binary Classification

Alan Ritter

(many slides from Greg Durrett and Vivek Srikumar)

This Lecture

» Linear classification fundamentals

> Naive Bayes, maximum likelihood in generative models

» Three discriminative models: logistic regression, perceptron, SVM

- Different motivations but very similar update rules / inference!

Classification

Classification

Classification

- Datapoint g with label y € {0, 1}

Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"

but in this lecture f(x)and x are interchangeable

Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"

but in this lecture f(x)and x are interchangeable

Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"
but in this lecture f(x)and x are interchangeable

~ Linear decision rule: wa(x) +b6> 0

Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"

but in this lecture f(x)and x are interchangeable

> Linear decision rule: wa(x) +b6> 0

Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"

but in this lecture f(x)and x are interchangeable

> Linear decision rule: wa(x) +b6> 0
w' f(z) >0

Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"
but in this lecture f(x)and x are interchangeable

> Linear decision rule: wa(x) +b6> 0

w' f(z) >0

> Can delete bias if we augment feature space:

f(x)=10.5,1.6,0.3]
'
0.5, 1.6, 0.3, 1]

Linear functions are powerful!

fix) = [x1, x2]

Linear functions are powerful!

277

fx) = [x2, x2]

Linear functions are powerful!

277

fix) = [x1, x2] f(x) = [x1, X2, X12, X22, X1X2]

Linear functions are powerful!

2?7

(X1, X2]

X1X2

flx) = [x1, X2, X12, X22, X1X2]

Linear functions are powerful!

2?7

(X1, X2]

X1X2

Fo

++ + n ++
+ F oy

flx) = [x1, X2, X12, X22, X1X2]

Linear functions are powerful!

X1X2

—
—
—
—
—
—
—
—
—
—
—
—
— -
— -

—
—
—
—
—
—
—
—
—
—
—
—
—
— -
—
—

flx) = [x1, X2, X12, X22, X1X2]

Linear functions are powerful!

+ \
T 4
++_|_++

fix) =

(X1, X2]

X1X2

—
—
—
—
—
—
—
—
—
—
—
—
— -
— -

—
—
—
—
—
—
—
—
—
—
—
—
—
— -
—
—

flx) = [x1, X2, X12, X22, X1X2]

- “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n*) instead of O(n - (num feats))

Classification: Sentiment Analysis

Classification: Sentiment Analysis

this movie was great! would watch again

Classification: Sentiment Analysis

this movie was great! would watch again Positive

Classification: Sentiment Analysis

this movie was great! would watch again Positive

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again 'Negative

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again 'Negative

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:

» Turn examples like this into feature vectors

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors

> Pick a model / learning algorithm

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
- Pick a model / learning algorithm

» Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =1

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =0 0 1 1

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

~ Very large vector space (size of vocabulary), sparse features

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

~ Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)

Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

~ Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)

» More sophisticated feature mappings possible (tf-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, ...

Naive Bayes

Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z) predict argma,xyP(y\az) to classify

Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}
» Formulate a probabilistic model that places a distribution P(x,y)
» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y)P(x|y) Bayes’ Rule
P(x)

P(y|lx) =

Naive Bayes

- Data point = (x4, ...,2,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)
- Compute p(y|z), predict argmax, P(y|z) to classify
P(y)P(x|y) Bayes’ Rule

P(CC) - _ constant: irrelevant
for finding the max

P(y|lx) =

Naive Bayes

- Data point = (x4, ...,2,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)
- Compute p(y|z), predict argmax, P(y|z) to classify
P(y)P(x|y) Bayes’ Rule

P(y|xr) =
] P(x) «___ constant: irrelevant
~ P(y)P(z]y) for finding the max

Naive Bayes

- Data point = (x4, ...,2,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)
- Compute p(y|z), predict argmax, P(y|z) to classify
P(y)P(x|y) Bayes’ Rule

P(y|z) =
P(r) « _ constant: irrelevant
x P(y)P(x|y) for finding the max
= P(y) | | P(x:ly)

1=1

Naive Bayes

- Data point = (x4, ...,2,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)
- Compute p(y|z), predict argmax, P(y|z) to classify
P(y)P(x|y) Bayes’ Rule

P(ylr) =
P(CC) - _ constant: irrelevant
for finding the max
x P(y)P(x|y) 5
no— Nalve™ assumption:
= P(y) | | P(x:ly)
i=1

Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y|x) _ P(y)P(x|y) Bayes’ Rule @
P(CC) - _ constant: irrelevant
x P(y)P(x|y) for finding the max n

N Nalve™ assumption:
= P(y) | | P(zily)
i=1

Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y)P(x|y) Bayes’ Rule

P(y|lx) =

(“ -) . .
N Nalve™ assumption:

= P(y) Hp(xi\y)

argmax, P(y|r) = argmax, log P(y|r) = argmax

Yy

P(CC) - _ constant: irrelevant
for finding the max
x P(y)P(x|y) 5

(),

log P(y +ZlogP z;|y)

Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y)P(x|y) Bayes’ Rule

P(y|lx) =

(“ -) . .
N Nalve™ assumption:

= P(y) Hp(xi\y)

argmax, P(y|r) = argmax, log P(y|r) = argmax

Yy

P(CC) - _ constant: irrelevant
for finding the max
x P(y)P(x|y) 5

(),

linear model!

log P(y +ZlogP z;|y)

Naive Bayes Example

it was great —— P (y|x) o []

Maximum Likelihood Estimation

Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)

Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)

- Find values of P(y), P(z;|y) that maximize data likelihood (generative):

Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)

> Find values of P(y), P(x;|y) that maximize data likelihood (generative):

H xjiyj)]

1—=1

)

HP(yj,af] HP
j=1 J=1

Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)
> Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(yja% = | [P(y)) HP(xjiyj)]

J=1

— R

data points (j) features (/)

Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)
> Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(yja% = | [P(y)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example

Maximum Likelihood Estimation

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood:

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p3(1 — D)
j=1

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

- Observe (H, H, H, T) and maximize likelihood: H P(y;) = p°(1 — p)
j=1
- Easier: maximize log likelihood

Zlog P(y;) = 3logp + log(1 — p)
j=1

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p3(1 — D)
j=1

- Easier: maximize log likelihood log likelihood

Zlog P(y;) = 3logp + log(1 — p)
j=1 of _—

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

» Observe (H, H, H, T) and maximize likelihood: H P(y;) = p3(1 — D)
j=1

- Easier: maximize log likelihood log likelihood

Z 10g P(?Jj) — 3 lggp -+ 1Qg(1 _ p) P(H):= 0.75
j=1 0 1 P

”~ o

Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

> Observe (H, H, H, T) and maximize likelihood: H P(y;) = p° (1 — p)

j=1

- Easier: maximize log likelihood og likelihood
Z 10g P(?Jj) — 3 lggp -+ 1Qg(1 _ p) P(H):= 0.75
j=1 0 1 P

”~ o

- Maximum likelihood parameters for binomial/
multinomial = read counts off of the data + normalize

Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)
> Find values of P(y), P(x;|y) that maximize data likelihood (generative):

L P@sz) = 1 Py)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example

» Equivalent to maximizing logarithm of data likelihood:

(4L

Zlog P(y;,z;) Z

71=1 71=1

log P(y;) ZlogP 5'732?17)]

Maximum Likelihood for Naive Bayes

--

' this movie was great! would watch again (&

| liked it well enough for an action flick +
| expected a great film and left happy +
brilliant directing and stunning visuals +
that film was awful, I'll never watch again |—
| didn’t really like that movie |
dry and a bit distasteful, it misses the mark [—

great potential but ended up being a flop |[—

--

Maximum Likelihood for Naive Bayes

--

this movie was great! would watch again [P(+) = 1
| liked it well enough for an action flick + 2
| expected a great film and left happy + P(—) = %
- brilliant directing and stunning visuals + |

that film was awful, I'll never watch again |—
| didn’t really like that movie —
dry and a bit distasteful, it misses the mark [—

great potential but ended up being a flop |[—

--

Maximum Likelihood for Naive Bayes

--

this movie was great! would watch again + P(+) = 1
| liked it well enough for an action flick + . :21
| expected a great film and left happy + . P(—) = 5
brilliant directing and stunning visuals + 1
i | | . P(great|+) = =
- that film was awful, I'll never watch again [—| 2

| didn’t really like that movie —
dry and a bit distasteful, it misses the mark [—

great potential but ended up being a flop |[—

--

Maximum Likelihood for Naive Bayes

--

' this movie was great! would watch again ~ [4] P(+) = 1

| liked it well enough for an action flick + :21

| expected a great film and left happy + | P(—) = 5
brilliant directing and stunning visuals + |
5 . , | . P(great|+) = =
- that film was awful, I'll never watch again [—| 2
| didn’t really like that movie o P(great|—)

dry and a bit distasteful, it misses the mark [—

great potential but ended up being a flop [—

--

Maximum Likelihood for Naive Bayes

--

' this movie was great! would watch again ~ [4] P(+) = 1

| liked it well enough for an action flick + ?

| expected a great film and left happy + | P(—)= 5

brilliant directing and stunning visuals + | 1

i | , | . P(great|+) = =

 that film was awful, I'll never watch again == 2

| didn’t really like that movie B : P(great|—) = 1
5 4

dry and a bit distasteful, it misses the mark |—

great potential but ended up being a flop |[—

--

Maximum Likelihood for Naive Bayes

--

' this movie was great! would watch again ~ [4] P(+) = 1

| liked it well enough for an action flick + 221

| expected a great film and left happy + | P(—) = 5

brilliant directing and stunning visuals + |

i . , . - P(great|+) = 5

- that film was awful, I'll never watch again [—| 2

| didn’t really like that movie = | plgreat|_) =
5 4

dry and a bit distasteful, it misses the mark [—
. great potential but ended up being a flop ==

--

it was great

Maximum Likelihood for Naive Bayes

--

' this movie was great! would watch again ~ [4] P(+) = 1

| liked it well enough for an action flick + 221

| expected a great film and left happy + | P(—) = 5

brilliant directing and stunning visuals + |

i . , . - P(great|+) = 5

- that film was awful, I'll never watch again [—| 2

| didn’t really like that movie = | plgreat|_) =
5 4

dry and a bit distasteful, it misses the mark '—

great potential but ended up being a flop [—

--

P(+)P(great|+)]

itwasgreat — P
(y|:1:) > [P()P(great)

Maximum Likelihood for Naive Bayes

--

' this movie was great! would watch again ~ [4] P(+) = 1

| liked it well enough for an action flick + 221

| expected a great film and left happy + | P(—) = 5

brilliant directing and stunning visuals + |

i . , . - P(great|+) = 5

- that film was awful, I'll never watch again [—| 2

| didn’t really like that movie = | plgreat|_) =
5 4

dry and a bit distasteful, it misses the mark '—

great potential but ended up being a flop [—

--

Nalve Bayes: Summary

O

Nalve Bayes: Summary

» Model @
T

P(z,y) = P(y) | | P(xily) ©

1=1

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

Nalve Bayes: Summary

» Model @
T

P(z,y) = P(y) | | P(xily) 0

1=1

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

- Alternatively: 10 P(y = +]2) — log P(y = —|z) > 0

Nalve Bayes: Summary

» Model @
T

P(z,y) = P(y) | | P(xily) ©

1=1

> Inference .

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)
i=1

» Alternatively: log P(y = +|z) —log P(y = —|z) > 0

=+) P(xily = +)
) IZIOgP(% — > ()

Nalve Bayes: Summary

» Model @
P(z,y) = P(y) HP(:ri\y) 0

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)

- Alternatively: 10 P(y = +]2) — log P(y = —|z) > 0

Ply=+) <, Plaly=1
Py=—) t 2=y =

> Learning: maximize e P(x,y) by reading counts off the data

& log

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring |—

mbeautiful‘_I_) — O]- P $beaut1ful|_) 0.01

((

(xstunning‘+) = 0.1 P(sttunnmg|)
P(mgorgeousH_) — 0.1 P(xgorgeous|) = (.01
P($boring‘) = (.01 P(mbormg‘_) —

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring |—

P mbeautiful‘_I_) — O]- P $beaut1ful|_) 0.01

((

(xStUHHng‘+) = 0.1 P(mstunmng|) 0.01
(mgorgeousH_) — 0.1 (xgorgeous|_) — 0.01
(SCboring‘) — 0.01 P(mbgring‘_) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

T

T T

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring |—

P(xbeautiful‘_I_) = 0.1 P(ajbeautifu”_) — 0.01
P(ajstunning“'_) = 0.1 P(ajstunning|_) = (.01
(mgorgeousH_) — O]. P(mgorgeous|_) — 0.01

T T

(2horing|+) = 0.0 P(boring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

- Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring |—

P(Zpbeautiful|+) = 0.1 P(xpeautitul] —) = 0.01
P(Zstunning|+) = 0.1 P(Zstunning| —) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

- Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

> Discriminative models model P(y|x) directly (SVMs, most neural networks, ...)

Logistic Regression

Logistic Regression

Logistic Regression

P(y = +|z) = logistic(w ' z)

Logistic Regression

P(y = +|z) = logistic(w ' z)

g
Lg

)
w

)

|

.) ,/
.a’/'z
n w; $Z) l
p(Zi%Ll "
eXeXp(Zz_

T 1+
He) = -

Logistic Regression

P(y = +|z) = logistic(w ' z) /
EXP ?: w;x; 0.5
Py = +|z) = iy W)
1 +exp(D_,_; wix;)

—0 -4 —2 0 2 4 6

> To learn weights: maximize discriminative log likelihood of data P(y|x)

Logistic Regression

P(y = +|z) = logistic(w ' z) /
EXP ?: w;x; 0.5
Py = +|z) = iy W)
1 +exp(D_,_; wix;)

—0 -4 —2 0 2 4 6

> To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +|z;)

Logistic Regression

P(y = +|z) = logistic(w ' z) /
EXP ?: w;x; 0.5
Py = +|z) = iy W)
1 +exp(D_,_; wix;)

—0 -4 —2 0 2 4 6

> To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +|z;)

— Zn: Wil jq — 10g (1 -+ EXP (zn: UJZZCJZ))
1=1 1=1

Logistic Regression

P(y = +|z) = logistic(w ' z) /
EXP ?: w;x; 0.5
Py = +|z) = iy W)
1 +exp(D_,_; wix;)

W/

—0 -4 —2 0 2 4 6

> To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +lz;)

— szmﬂ log (1 + exp (Z wzxﬂ))
— i=1

sum over features

Logistic Regression

Logistic Regression

= +|z,) szxﬂ log (1 + exp (Z wzxjfL))

Logistic Regression

= +|z,) szxﬂ log (1 + exp (Z wzxjfL))

Logistic Regression

ﬁ(a;j7 Y = +) — IQgP —|—|£Ej szxﬂ log (1 + exXp (Z wzxjf&))

0L(xj,y;)

8 T
o log (1 + exp (; wam))

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

> Recall that y; = 1 for positive instances, y; = 0 for negative instances.

- Gradient of w; on positive example = z:;,(1 — P(y; = +|z;))

Logistic Regression

> Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example — ;Uji(’| — P(yj — +|;(;j))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;j;, which will increase P(+)

Logistic Regression

> Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example — ;Uji(’| — P(yj — +|;(;j))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;j;, which will increase P(+)

- Gradient of w; on negative example — rii(—P(y; = +|x;))

Logistic Regression

> Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example — ;Uji(’| — P(yj — +|;(;j))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;j;, which will increase P(+)

- Gradient of w; on negative example — rii(—P(y; = +|x;))

If P(+) is close to 0, make very little update
Otherwise make w; look less like x;, which will decrease P(+)

» Can combine these gradients as T (yj — P(yj — 1|.73j))

Regularization

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

- Keeping weights small can prevent overfitting

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

- Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

- Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary

~ Early stopping

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

- Keeping weights small can prevent overfitting
» For most of the NLP models we build, explicit regularization isn’t necessary
~ Early stopping

> Large numbers of sparse features are hard to overfit in a really bad way

Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

- Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
~ Early stopping
> Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping

Logistic Regression: Summary

B eXP(Z?:1 W;T;)
L+ exp(Q_;_; wit;)

Logistic Regression: Summary

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference

argmaxyP(y\x) fundamentally same as Naive Bayes

Logistic Regression: Summary

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference

argmaxyP(y\x) fundamentally same as Naive Bayes

Ply=1lz) >05<w' 2 >0

Logistic Regression: Summary

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference
argmaxyP(y\x) fundamentally same as Naive Bayes

Ply=1lz) >05<w' 2 >0

» Learning: gradient ascent on the (regularized) discriminative log-
likelihood

Perceptron/SVM

Perceptron

* Invented in 1958
* By Frank Rosenblatt

* At the Cornell Aeronautical Laboratory

* Implemented in custom-built hardware

» Connected to a camera with 20x20 cadmium
sulfide photocells to make a 400-pixel image.

* Weights were encoded in potentiometers, and
weight updates during learning were
performed by electric motors.

Source: Wikipedia

https://en.wikipedia.org/wiki/Frank_Rosenblatt
https://en.wikipedia.org/wiki/Cornell_Aeronautical_Laboratory
https://en.wikipedia.org/wiki/Potentiometer

Perceptron

» Simple error-driven learning approach similar to logistic regression

Perceptron

» Simple error-driven learning approach similar to logistic regression

- Decisionrule: ' > ()

Perceptron

» Simple error-driven learning approach similar to logistic regression

- Decisionrule: ¢p' £ > ()
- If incorrect: if positive, 1y «— w + o

if negative, v — w —

Perceptron

» Simple error-driven learning approach similar to logistic regression

- Decisionrule: ¢p' 1+ > () Logistic Regression

- If incorrect: if positive, o« w+2 w w+z(1— Py =1|z))

if negative, y «+ w — =z w <+ w — Py = 1|x)

Perceptron

» Simple error-driven learning approach similar to logistic regression

- Decisionrule: ¢p' 1+ > () Logistic Regression

- If incorrect: if positive, 1y « w + 2 w w4+ x(1— Ply = 1|z))

if negative, y «+ w — =z w <+ w — Py = 1|x)

» Guaranteed to eventually separate the data if the data are separable

Support Vector Machines

» Many separating hyperplanes — is there a best one?

\ +
T~ \ + .|.
~ - -
. LN
-~ _ \ +
- ~ < \
~ ~
~ = QA
\\ \\\
~ <
S o \ ~ <
=~ o \ = <
\\ \ \\\
\\ \ =~
- h\ \ \\\
- ~ ~
- _\\\
- v T
- - \ S

Support Vector Machines

» Many separating hyperplanes — is there a best one?

~
RS
~
~
~
RS
~
s
~
~
~
~
~
~~~
~ I
S
~'
~
~ RS
S
~ S
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ ~~~
~ ~
"~~ ~ S
"~~ ~ S
~~~ ~
s ~ “a
~ RS
~~~ ~ S
~~~ ~ ~~~
~~~ ~ ~~~
~~~ ~ ~“~
~~~ ~, ~~~
~~~ ~ ~~~
~~~ ~ ~~~
~~~ ~, ~~~
~ o N ~~~
ST, < ~..
~~~ ~ ~~~
e ~ ~~~
Sl ~ S
~ ~
~s o,
~ ~
~~~ ~,
- ~~~ ~
~~~ ~
~
- - ~. ~
~s ~,
~§~ ~
-— ~
- ~~~ =~
~~~ -~
- ~o ~
~
~
S
- S
~
~
~
~
~
RS
~
S
~
~
~
~
s
S
~

Support Vector Machines

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w||%

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w||%

minimizing norm with
fixed margin <=>
maximizing margin

Support Vector Machines

» Constraint formulation: find w via following quadratic program:

Minimize ||w||%

minimizing norm with
st. Vi w' x; fixed margin <=>
maximizing margin

-
w Xy

Support Vector Machines

» Constraint formulation: find w via following quadratic program:
° ° ° 2
Minimize [[qp||3 minimizing norm with

stV w'z; >1ify;, =1 fixed margin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Support Vector Machines

» Constraint formulation: find w via following quadratic program:
° ° ° 2
Minimize [[qp||3 minimizing norm with

stV w'z; >1ify;, =1 fixed margin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Vi (2y; — D)(w ' z;) > 1

Support Vector Machines

» Constraint formulation: find w via following quadratic program:
° ° ° 2
Minimize [[qp||3 minimizing norm with

stV w'z; >1ify;, =1 fixed margin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!

N-Slack SVMs

N-Slack SVMs

Tr
Minimize) ||qpl|2 +- ij
j=1

N-Slack SVMs

Tr
Minimize) ||qpl|2 +- ij
j=1

St (2 - D) 2 1-¢

N-Slack SVMs

Tr
Minimize) ||qpl|2 +- ij
j=1

UV 2y — D)(w' zj) > 1§ Vi & =0

N-Slack SVMs

Tr
Minimize) |lqp]|2 + Z@'
j=1

St (2 - D) 2 1-¢

- The ¢, are a "fudge factor” to make all constraints satisfied

N-Slack SVMs

Tr
Minimize) |lqp]|2 + Z@'
j=1

St (2 - D) 2 1-¢

- The ¢, are a "fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

N-Slack SVMs

Tr
Minimize) |lqp]|2 + Z@'
j=1

St (2 - D) 2 1-¢

- The ¢, are a "fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

0
821}7;

& =01t =0

N-Slack SVMs

Tr
Minimize) |lqp]|2 + Z@'
j=1

St (2 - D) 2 1-¢

- The ¢, are a "fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

0 , 9, .
821}7; g] — O lf gj — O awz fj — (2yj — 1)$ﬂ lf fj > 0

N-Slack SVMs

T
Minimize)\Hng 4 Zgﬂ
j=1

StV (2~ D) 21—
- The ¢, are a "fudge factor” to make all constraints satisfied
» Take the gradient of the objective:

Y . 0 |

N-Slack SVMs

Tr
Minimize) |lqp]|2 + Z@'
j=1

StV (2~ D) 21—
- The ¢, are a "fudge factor” to make all constraints satisfied
» Take the gradient of the objective:

Y . 0 |

» Looks like the perceptron! But updates more frequently

Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' x))

Perceptron

x if w'x <0, else 0

' SVM (ignoring regularizer)

a: if w'xz <1, else 0

Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' x)) .5 |

Perceptron

x if w'x <0, else 0

' SVM (ignoring regularizer)

a: if w'xz <1, else 0

Gradients on Positive Examples

Logistic regression

az(l — logistic(wT:E)) - /|Hinge SYM)

Perceptron

x if w'z <0, else 0

' SVM (ignoring regularizer)

a: if w' 'z <1, else 0

Gradients on Positive Examples

Logistic regression

e - 4 . . .
az(l — logistic(w ' x)) .5 | /|Hinge SYM)
I:: 3

Perceptron 25 |

Y

T 1L w'r < 0, else O O 2T

SVM (ignoring regularizer) 1

e T i |
1w x <1, else 0 05 Perceptronr' | T—

-3 -2 -1 0 1

Gradients on Positive Examples

Logistic regression

e - 4 . . .
az(l — logistic(w ' x)) .5 | /|Hinge SYM)
I:: 3

Perceptron 25 |

Y

T 1L w'r < 0, else O O 2T

SVM (ignoring regularizer) 1

K]Logistic

e T i |
£ ifw x <1, else 0 05 Perceptronr' BN

-3 -2 -1 0 1 2

Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' x)) .5 |
::: 3

. Perceptron 25 |
Y
zifw' 'z <0, else 0 O 7
f—'-E — 5
SVM (ignoring regularizer) 1

a: if w' 'z <1, else 0 O-1|)_'

‘(IHinge (SVM)

Perceptron |,

Logistic

-3 2

-1

Gradients on Positive Examples

Logistic regression
’ T

az(l — logistic(w ' x)) .5 |

‘(IHinge (SVM)

L 3
Perceptron 25 |
Y
zifw'z <0, else 0 O ?
E—'-? — 5]
' SVM (ignoring regularizer) | 1
- [o-1 Logistic
& if w'x <1, else 0 |, Perceptronr' ~ K-
- -2 -1 0 2

*gradients are for maximizing things,
which is why they are flipped

Comparing Gradient Updates (Reference)

-~ Logistic regression (unregularized) ~ y=1for pos,

r(y — P(y = 1|x)) = z(y — logistic(w ' z)) 0 for neg

- Perceptron
(2y — 1)z if classified incorrectly

(2y — 1)z if not classified correctly with margin of 1

Oelse

Optimization — next time...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better)

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective

Sentiment Analysis

this movie was great! would watch again +

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features | # of | frequencyor || NB | ME | SVM
| features | presence? || | |

(1) unigrams 16165 freq. 78.7 | N/A 72.8
3| vumgrams | " | pres | 810 | 804 829
MO e B T W

(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1

(5) unigrams-l—POS 16695 pres. | 81.5 | 80.4 81.9

(7) | top 2633 unigrams 2633 pres. 80 3 81 0 81.4

| 8) ‘ unigrams-+position ‘ 22430 ‘ pres. H 81.0 ‘ 80.1 ‘ 81.6 |

N

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Features # of | frequency or [[NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [806 | 808] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Wang and Manning (2012)

Sentiment Analysis

Method RT-s MPQA
MNB-uni 7719 853
MNB-bi1 79.0 86.3
SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-um1 | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Wang and Manning (2012)

Sentiment Analysis

79.0 86.3 | «— Naive Bayes is doing well!

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-um1 | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Wang and Manning (2012)

Sentiment Analysis

79.0 86.3 | «— Naive Bayes is doing well!

Method RT-s MPQA
MNB-uni 7719 8353
MNB-bi1

SVM-uni 76.2 86.1
SVM-bi 717 86.7
NBSVM-umm | 78.1 85.3
NBSVM-bi 794 86.3
RAE 76.8 85.7
RAE-pretrain | [77.7 86.4
Voting-w/Rev. | 63.1 81.7
Rule 629 81.8
BoF-noDic. 75.7 81.8
BoF-w/Rev. 764 84.1
Tree-CRF 71.3 86.1
BoWSVM — —

Ng and Jordan (2002) — NB
can be better for small data

Wang and Manning (2012)

Sentiment Analysis

Method RT-s MPQA

MNB-uni 779 85.3

MNB-bi «—— Naive Bayes is doing well!
SVM-uni 76.2 86.1

SVM-bi 777 86.7

NBSVM-uni | 78.1 85.3

NBEVALE: 04 $£3 Ng and Jordan (2002) — NB
RAE 76.8 857 can be better for small data
RAE-pretrain | [77.7 86.4

Voting-w/Rev. | 63.1 81.7

Rule 629 81.8 \

BoF-noDic. 75.7 81.8 Before neural nets had taken off
Bol-w/Rev. | 764 54.1 — results weren’t that great
Tree-CRF 77.3 86.1

BoWSVM _ —

Wang and Manning (2012)

Sentiment Analysis

Method RT-s MPQA

MNB-uni 779 85.3

MNB-bi 79.0 86.3| «—— Naive Bayes is doing well!
SVM-uni 762 86.1

SVM-bi 777 86.7

NBSVM-uni | 78.1 85.3

NBSVM_bi 104 863 Ng and Jordan (2002) — NB
RAE 76.8 857 can be better for small data

RAE-pretrain | [77.7 86.4

Voting-w/Rev. | 63.1 81.7
Rule 62.9 81.8
BoF-noDic. 757 81.8 Before neural nets had taken off
BoF-w/Rev. 76.4 84.1
Tree-CRF 77.3 86.1

BoWSVM - —
Kim (2014) CNNs |81.5 89.5 Wang and Manning (2012)

— results weren’t that great

Recap

Recap

exp (D wii)

-~ Logistic regression: p(y = 1|z) = (1+exp (3_;—; wizi))
=1 e

Decisionrule: py, = 1]2) > 05 < w' 'z >0

Gradient (unregularized): z(y — P(y = 1|x))

Recap

B o exp (D wimg)
y = 1jz) = (1 +exp (3o wiz;))

Decisionrule: py, = 1]2) > 05 < w' 'z >0

- Logistic regression: P(

Gradient (unregularized): z(y — P(y = 1|x))

» SVM:

Decision rule: ¢y " 22 > (

(Sub)gradient (unregularized): O if correct with margin of 1, else gj(zy _ 1)

Recap

Recap

> Logistic regression, SVM, and perceptron are closely related

Recap

> Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

Recap

> Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

- All gradient updates: “make it look more like the right thing and less
like the wrong thing”

