Binary Classification

Alan Ritter

(many slides from Greg Durrett and Vivek Srikumar)



This Lecture

» Linear classification fundamentals

> Naive Bayes, maximum likelihood in generative models

» Three discriminative models: logistic regression, perceptron, SVM

- Different motivations but very similar update rules / inference!
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Classification

- Datapoint g with label y € {0, 1}

- Embed datapoint in a feature space f(x) ¢ R"
but in this lecture f(x)and x are interchangeable

> Linear decision rule: wa(x) +b6> 0

w' f(z) >0

> Can delete bias if we augment feature space:

f(x)=10.5,1.6,0.3]
'
0.5, 1.6, 0.3, 1]
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- “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is O(n*) instead of O(n - (num feats))
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Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again Negative

> Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

» Steps to classification:
» Turn examples like this into feature vectors
- Pick a model / learning algorithm

» Train weights on data to get our classifier
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Feature Representation

this movie was great! would watch again Positive

» Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains fiim] ...

fix) =10 0 1 1 0

~ Very large vector space (size of vocabulary), sparse features

» Requires indexing the features (mapping them to axes)

» More sophisticated feature mappings possible (tf-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, ...
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Naive Bayes

- Data point o = (x4, ..., z,,), label y € {0, 1}

» Formulate a probabilistic model that places a distribution P(x,y)

» Compute P(y|z) predict argma,xyP(y\az) to classify

P(y)P(x|y) Bayes’ Rule

P(y|lx) =

(“ - ) . .
N Nalve™ assumption:

= P(y) Hp(xi\y)

argmax, P(y|r) = argmax, log P(y|r) = argmax

Yy

P(CC) - _ constant: irrelevant
for finding the max
x P(y)P(x|y) 5

(),

linear model!

log P(y +ZlogP z;|y)




Naive Bayes Example

it was great —— P (y|x) o [ ]
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Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)
> Find values of P(y), P(x;|y) that maximize data likelihood (generative):

HP(yja% = | [ P(y)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example
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Maximum Likelihood Estimation

» Imagine a coin flip which is heads with probability p

> Observe (H, H, H, T) and maximize likelihood: H P(y;) = p° (1 — p)

j=1

- Easier: maximize log likelihood og likelihood
Z 10g P(?Jj) — 3 lggp -+ 1Qg(1 _ p) P(H):= 0.75
j=1 0 1 P

”~ o

- Maximum likelihood parameters for binomial/
multinomial = read counts off of the data + normalize



Maximum Likelihood Estimation

- Data points (1, y;) provided (j indexes over examples)
> Find values of P(y), P(x;|y) that maximize data likelihood (generative):

L P@sz) = 1 Py)) HP(xjiyj)]

J=1

— R

data points (j) features (i) ith feature of jth example

» Equivalent to maximizing logarithm of data likelihood:

(4L

Zlog P(y;,z;) Z

71=1 71=1

log P(y;) ZlogP 5'732?17)]
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Nalve Bayes: Summary

» Model @
P(z,y) = P(y) HP(:ri\y) 0

» Inference

argmax, log P(y|r) = argmax, |log P(y) + Z log P(x;|y)

- Alternatively: 10 P(y = +]2) — log P(y = —|z) > 0

Ply=+) <, Plaly=1
Py=—) t 2=y =

> Learning: maximize e P(x,y) by reading counts off the data

& log
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Problems with Naive Bayes

the film was beautiful, stunning cinematography and gorgeous sets, but boring |—

P(Zpbeautiful|+) = 0.1  P(xpeautitul] —) = 0.01
P(Zstunning|+) = 0.1 P(Zstunning| —) = 0.01
P(Zgorgeous|+) = 0.1 P(Zgorgeous|—) = 0.01
P(Zporing|+) = 0.01 P(Zboring|—) = 0.1

» Correlated features compound: beautiful and gorgeous are not independent!

- Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

> Discriminative models model P(y|x) directly (SVMs, most neural networks, ...)
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Logistic Regression

P(y = +|z) = logistic(w ' z) /
EXP ?: w;x; 0.5
Py = +|z) = iy W)
1 +exp(D_,_; wix;)

W/

—0 -4 —2 0 2 4 6

> To learn weights: maximize discriminative log likelihood of data P(y|x)

L(zj,y; = +) = log P(y; = +lz;)

— szmﬂ log (1 + exp (Z wzxﬂ))
— i=1

sum over features
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Logistic Regression
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- Gradient of w; on positive example = z:;,(1 — P(y; = +|z;))
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Logistic Regression

> Recall that y; = 1 for positive instances, y; = 0 for negative instances.
» Gradient of w; on positive example — ;Uji(’| — P(yj — +|;(;j))

If P(+) is close to 1, make very little update
Otherwise make w;look more like x;j;, which will increase P(+)

- Gradient of w; on negative example — rii(—P(y; = +|x;))

If P(+) is close to 0, make very little update
Otherwise make w; look less like x;, which will decrease P(+)

» Can combine these gradients as T (yj — P(yj — 1|.73j))
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Regularization

» Regularizing an objective can mean many things, including an L2-
norm penalty to the weights:

> L(xj,y5) = Alwl3
j=1

- Keeping weights small can prevent overfitting

» For most of the NLP models we build, explicit regularization isn’t necessary
~ Early stopping
> Large numbers of sparse features are hard to overfit in a really bad way

» For neural networks: dropout and gradient clipping



Logistic Regression: Summary

B eXP(Z?:1 W;T; )
L+ exp(Q_;_; wit;)
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Logistic Regression: Summary

P(y __ |ZE) __ eXp(Z?:l w’bx”&)
1+ GXp(Z?Zl QUZCIZZ)

» Inference
argmaxyP(y\x) fundamentally same as Naive Bayes

Ply=1lz) >05<w' 2 >0

» Learning: gradient ascent on the (regularized) discriminative log-
likelihood



Perceptron/SVM



Perceptron

* Invented in 1958
* By Frank Rosenblatt

* At the Cornell Aeronautical Laboratory

* Implemented in custom-built hardware

» Connected to a camera with 20x20 cadmium
sulfide photocells to make a 400-pixel image.

* Weights were encoded in potentiometers, and
weight updates during learning were
performed by electric motors.

Source: Wikipedia


https://en.wikipedia.org/wiki/Frank_Rosenblatt
https://en.wikipedia.org/wiki/Cornell_Aeronautical_Laboratory
https://en.wikipedia.org/wiki/Potentiometer

Perceptron

» Simple error-driven learning approach similar to logistic regression
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Perceptron

» Simple error-driven learning approach similar to logistic regression

- Decisionrule: ¢p' 1+ > () Logistic Regression

- If incorrect: if positive, 1y « w + 2 w w4+ x(1— Ply = 1|z))

if negative, y «+ w — =z w <+ w — Py = 1|x)

» Guaranteed to eventually separate the data if the data are separable



Support Vector Machines

» Many separating hyperplanes — is there a best one?
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» Many separating hyperplanes — is there a best one?
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Support Vector Machines

» Constraint formulation: find w via following quadratic program:
° ° ° 2
Minimize [[qp||3 minimizing norm with

stV w'z; >1ify;, =1 fixed margin <=>
maximizing margin

wTa:j < -lity; =0

As a single constraint:

Vi (2y; — D)(w ' z;) > 1

» Generally no solution (data is generally non-separable) — need slack!
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Tr
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N-Slack SVMs

Tr
Minimize ) |lqp]|2 + Z@'
j=1

St (2 - D) 2 1-¢

- The ¢, are a "fudge factor” to make all constraints satisfied

» Take the gradient of the objective:

0 , 9, .
821}7; g] — O lf gj — O awz fj — (2yj — 1)$ﬂ lf fj > 0




N-Slack SVMs
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» Take the gradient of the objective:
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N-Slack SVMs

Tr
Minimize ) |lqp]|2 + Z@'
j=1

StV (2~ D) 21—
- The ¢, are a "fudge factor” to make all constraints satisfied
» Take the gradient of the objective:

Y . 0 |

» Looks like the perceptron! But updates more frequently
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Gradients on Positive Examples

Logistic regression

az(l — logistic(w ' x)) .5 |
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3

. Perceptron 25 |
Y
zifw' 'z <0, else 0 O 7
f—'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-E — 5
SVM (ignoring regularizer) 1

a: if w' 'z <1, else 0 O-1|)_'

‘(IHinge (SVM)

Perceptron |,

Logistic

-3 2

-1




Gradients on Positive Examples

Logistic regression
’ T

az(l — logistic(w ' x)) .5 |

‘(IHinge (SVM)

L 3
Perceptron 25 |
Y
zifw'z <0, else 0 O ?
E—'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-? — 5]
' SVM (ignoring regularizer) | 1
-  [o-1 Logistic
& if w'x <1, else 0 |, Perceptronr' ~ K-
- -2 -1 0 2

*gradients are for maximizing things,
which is why they are flipped



Comparing Gradient Updates (Reference)

-~ Logistic regression (unregularized) ~ y=1for pos,

r(y — P(y = 1|x)) = z(y — logistic(w ' z)) 0 for neg

- Perceptron
(2y — 1)z if classified incorrectly

(2y — 1)z if not classified correctly with margin of 1

Oelse



Optimization — next time...

» Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better)

» Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective
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Sentiment Analysis

this movie was great! would watch again +

the movie was gross and overwrought, but | liked it ==+

this movie was not really very enjoyable —

- Bag-of-words doesn’t seem sufficient (discourse structure, negation)

» There are some ways around this: extract bigram feature for “not X" for
all X following the not

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Features | # of | frequencyor || NB | ME | SVM
| features | presence? || | |

(1) unigrams 16165 freq. 78.7 | N/A 72.8
3| vumgrams | " | pres | 810 | 804 829
MO e B T W

(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1

(5) unigrams-l—POS 16695 pres. | 81.5 | 80.4 81.9

(7) | top 2633 unigrams 2633 pres. 80 3 81 0 81.4

| 8) ‘ unigrams-+position ‘ 22430 ‘ pres. H 81.0 ‘ 80.1 ‘ 81.6 |

N

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)



Sentiment Analysis

Features # of | frequency or [[ NB | ME SVM
| | features | presence? || | |

(1) ‘ unigrams ‘ 16165 ‘ freq. H 78.7 ‘ N/A ‘ 72.8 |
)] vungiams | | pres. | 810 | 804] 829
() | anigrams bigrams | 32330 | pres. [ 806 | 808 ] 82.7
(4) DIgrams 16165 pres. | 77.3 | 77.4 77.1
(5) unigrams+POS 16695 pres. | 81.5 | 80.4 81.9
(6) adjectives 2633 pres. | 77.0 | 77.7 75.1
(7) | top 2633 unigrams | 2633 pres. | 80.3 | 81.0 | 81.4 |
(8) l unigrams-position l 22430 l pres. I] 81.0 l 80.1 I 81.6 |

» Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)
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Sentiment Analysis

Method RT-s MPQA

MNB-uni 779  85.3

MNB-bi 79.0  86.3| «—— Naive Bayes is doing well!
SVM-uni 762  86.1

SVM-bi 777  86.7

NBSVM-uni | 78.1  85.3

NBSVM_bi 104 863 Ng and Jordan (2002) — NB
RAE 76.8 857 can be better for small data

RAE-pretrain | [77.7  86.4

Voting-w/Rev. | 63.1 81.7
Rule 62.9  81.8
BoF-noDic. 757  81.8 Before neural nets had taken off
BoF-w/Rev. 76.4 84.1
Tree-CRF 77.3 86.1

BoWSVM - —
Kim (2014) CNNs |81.5 89.5 Wang and Manning (2012)

— results weren’t that great
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exp (D wii)

-~ Logistic regression: p(y = 1|z) = (1+exp (3_;—; wizi))
=1 e
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Gradient (unregularized): z(y — P(y = 1|x))



Recap

B o exp (D wimg)
y = 1jz) = (1 +exp (3o wiz;))

Decisionrule:  py, = 1]2) > 05 < w' 'z >0

- Logistic regression: P(

Gradient (unregularized): z(y — P(y = 1|x))

» SVM:

Decision rule: ¢y " 22 > (

(Sub)gradient (unregularized): O if correct with margin of 1, else gj(zy _ 1)
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Recap

> Logistic regression, SVM, and perceptron are closely related

» SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

- All gradient updates: “make it look more like the right thing and less
like the wrong thing”



