
Binary Classifica-on

Alan Ri1er
(many slides from Greg Durrett and Vivek Srikumar)

This Lecture

‣ Linear classifica-on fundamentals

‣ Three discrimina-ve models: logis-c regression, perceptron, SVM

‣ Naive Bayes, maximum likelihood in genera-ve models

‣ Different mo-va-ons but very similar update rules / inference!

Classifica-on

Classifica-on

Classifica-on

x y 2 {0, 1}‣ Datapoint with label

Classifica-on

‣ Embed datapoint in a feature space

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

Classifica-on

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

Classifica-on

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

Classifica-on

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

Classifica-on

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

w>f(x) > 0

Classifica-on

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

 = [0.5, 1.6, 0.3]

 [0.5, 1.6, 0.3, 1]

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

f(x)

‣ Can delete bias if we augment feature space:

w>f(x) > 0

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-

x1

x2

f(x) = [x1, x2]

Linear func-ons are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

x1

x2

f(x) = [x1, x2]

Linear func-ons are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

f(x) = [x1, x2]

Linear func-ons are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2 x1x2

x1

f(x) = [x1, x2]

Linear func-ons are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

+++ +
+ +
++

- - -
-

--
--

-

+++ +
+ +
++

- - -
-

--
--

-

x1x2

x1

f(x) = [x1, x2]

Linear func-ons are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

+++ +
+ +
++

- - -
-

--
--

-

+++ +
+ +
++

- - -
-

--
--

-

x1x2

x1

f(x) = [x1, x2]

Linear func-ons are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

+++ +
+ +
++

- - -
-

--
--

-

+++ +
+ +
++

- - -
-

--
--

-

x1x2

x1

f(x) = [x1, x2]

Linear func-ons are powerful!

‣ “Kernel trick” does this for “free,” but is too expensive to use in NLP
applica-ons, training is instead ofO(n2) O(n · (num feats))

Classifica-on: Sen-ment Analysis

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Classifica-on: Sen-ment Analysis

this movie was great! would watch again Posi-ve

Classifica-on: Sen-ment Analysis

this movie was great! would watch again Posi-ve

Classifica-on: Sen-ment Analysis

this movie was great! would watch again Posi-ve

that film was awful, I’ll never watch again

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classifica-on:

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classifica-on:

‣ Turn examples like this into feature vectors

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classifica-on:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm

Classifica-on: Sen-ment Analysis

this movie was great! would watch again

Nega-ve

Posi-ve

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classifica-on:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm

‣ Train weights on data to get our classifier

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film] …

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

…f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features (mapping them to axes)

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…

Feature Representa-on

this movie was great! would watch again Posi-ve

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features (mapping them to axes)

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0

‣ More sophis-cated feature mappings possible (f-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, …

posi-on 0 posi-on 1 posi-on 2 posi-on 3 posi-on 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…

Naive Bayes

Naive Bayes
‣ Data point , label x = (x1, ..., xn) y 2 {0, 1}

Naive Bayes
‣ Data point , label x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on P (x, y)

Naive Bayes
‣ Data point , label x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x) constant: irrelevant

for finding the max

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assump-on:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assump-on:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)

y

n
xi

‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assump-on:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

P (y|x)

y

n
xi

‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assump-on:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilis-c model that places a distribu-on

linear model!

P (y|x)

y

n
xi

‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Naive Bayes Example

P (y|x) / []it was great

P (y|x) / P (y)
nY

i=1

P (xi|y)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Maximum Likelihood Es-ma-on

Maximum Likelihood Es-ma-on
‣ Data points provided (j indexes over examples)(xj , yj)

Maximum Likelihood Es-ma-on
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (genera-ve):P (y), P (xi|y)

(xj , yj)

Maximum Likelihood Es-ma-on
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (genera-ve):P (y), P (xi|y)

(xj , yj)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

Maximum Likelihood Es-ma-on
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (genera-ve):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

Maximum Likelihood Es-ma-on
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (genera-ve):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

ith feature of jth example

Maximum Likelihood Es-ma-on

Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

‣ Observe (H, H, H, T) and maximize likelihood:

Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Es-ma-on
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Maximum likelihood parameters for binomial/
mul-nomial = read counts off of the data + normalize

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Es-ma-on
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (genera-ve):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

‣ Equivalent to maximizing logarithm of data likelihood:
mX

j=1

logP (yj , xj) =
mX

j=1

"
logP (yj) +

nX

i=1

logP (xji|yj)
#

ith feature of jth example

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals

P (+) =
1

2

P (�) =
1

2

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (great|+) =

1

2

P (+) =
1

2

P (�) =
1

2

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

P (great|�) =
1

4

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

it was great

P (great|�) =
1

4

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[]it was great

P (great|�) =
1

4

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potenCal but ended up being a flop —

+I liked it well enough for an acCon flick
I expected a great film and leE happy +

+brilliant direcCng and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[] =
1/4
1/8[]=

2/3
1/3[]it was great

P (great|�) =
1

4

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0

<latexit sha1_base64="FZr/riCBo1+PNx2P5vFNKKQzJnQ=">AAACc3icbZDfTtswFMbdDBhk/CnbJTcWZVIrRJUwJHbDhNgNF1wUiUKlpkSO66QWjh3ZJ2xVlsfbQ+wZuB2XSDhtkSjlSJY/fec78vEvygQ34Hn/as6HpeWVj6tr7qf1jc2t+vbna6NyTVmXKqF0LyKGCS5ZFzgI1ss0I2kk2E1097Pq39wzbbiSVzDO2CAlieQxpwSsFdbD4ILFoHkyAqK1+oUDoRIcxJrQotMcn+y3ysl90CrxPg5MnoYFP/HLWzmf/B3yPy/pqa4mfnhhveG1vUnhReHPRAPNqhPWn4KhonnKJFBBjOn7XgaDgmjgVLDSDXLDMkLvSML6VkqSMjMoJiBK/NU6QxwrbY8EPHFfTxQkNWacRjaZEhiZt73KfK/XzyH+Pii4zHJgkk4finOBQeGKKh5yzSiIsRWEam53xXRELBqw7N25Z4am2m3uI0WWxHbp0nVdy8t/S2dRXB+2/W/tw8ujxunZjNwq2kG7qIl8dIxO0TnqoC6i6C96QP/RY+3R2XF2nb1p1KnNZr6guXIOngEgn75t</latexit>

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Learning: maximize by reading counts off the data

‣ Inference

P (x, y)

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alterna-vely: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0

<latexit sha1_base64="FZr/riCBo1+PNx2P5vFNKKQzJnQ=">AAACc3icbZDfTtswFMbdDBhk/CnbJTcWZVIrRJUwJHbDhNgNF1wUiUKlpkSO66QWjh3ZJ2xVlsfbQ+wZuB2XSDhtkSjlSJY/fec78vEvygQ34Hn/as6HpeWVj6tr7qf1jc2t+vbna6NyTVmXKqF0LyKGCS5ZFzgI1ss0I2kk2E1097Pq39wzbbiSVzDO2CAlieQxpwSsFdbD4ILFoHkyAqK1+oUDoRIcxJrQotMcn+y3ysl90CrxPg5MnoYFP/HLWzmf/B3yPy/pqa4mfnhhveG1vUnhReHPRAPNqhPWn4KhonnKJFBBjOn7XgaDgmjgVLDSDXLDMkLvSML6VkqSMjMoJiBK/NU6QxwrbY8EPHFfTxQkNWacRjaZEhiZt73KfK/XzyH+Pii4zHJgkk4finOBQeGKKh5yzSiIsRWEam53xXRELBqw7N25Z4am2m3uI0WWxHbp0nVdy8t/S2dRXB+2/W/tw8ujxunZjNwq2kG7qIl8dIxO0TnqoC6i6C96QP/RY+3R2XF2nb1p1KnNZr6guXIOngEgn75t</latexit>

Problems with Naive Bayes
the film was beauCful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

Problems with Naive Bayes

‣ Correlated features compound: beauCful and gorgeous are not independent!

the film was beauCful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s generaCve:
spends capacity modeling P(x,y), when what we care about is P(y|x)

‣ Correlated features compound: beauCful and gorgeous are not independent!

the film was beauCful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s generaCve:
spends capacity modeling P(x,y), when what we care about is P(y|x)

‣ Correlated features compound: beauCful and gorgeous are not independent!

the film was beauCful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

‣ Discrimina-ve models model P(y|x) directly (SVMs, most neural networks, …)

Logis-c Regression

Logis-c Regression

Logis-c Regression

P (y = +|x) = logistic(w>x)

Logis-c Regression

P (y = +|x) = logistic(w>x)

Logis-c Regression

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logis-c Regression

‣ To learn weights: maximize discrimina-ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logis-c Regression

‣ To learn weights: maximize discrimina-ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

Logis-c Regression

‣ To learn weights: maximize discrimina-ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

‣ To learn weights: maximize discrimina-ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

sum over features

Logis-c Regression

Logis-c Regression

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
=

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!
deriv
of log

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv
of log

deriv
of exp

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv
of log

deriv
of exp

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv
of log

deriv
of exp

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv
of log

deriv
of exp

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)
= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logis-c Regression

‣ Gradient of wi on posi-ve example = xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for posi-ve instances, yj = 0 for nega-ve instances.

1

Logis-c Regression

If P(+) is close to 1, make very li1le update
Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi-ve example = xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for posi-ve instances, yj = 0 for nega-ve instances.

1

Logis-c Regression

If P(+) is close to 1, make very li1le update
Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi-ve example

‣ Gradient of wi on nega-ve example = xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for posi-ve instances, yj = 0 for nega-ve instances.

1

Logis-c Regression

If P(+) is close to 1, make very li1le update
Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi-ve example

‣ Gradient of wi on nega-ve example

If P(+) is close to 0, make very li1le update
Otherwise make wi look less like xji, which will decrease P(+)

xj(yj � P (yj = 1|xj))

= xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Can combine these gradients as

‣ Recall that yj = 1 for posi-ve instances, yj = 0 for nega-ve instances.

1

Regulariza-on

Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfiqng

Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfiqng

‣ For most of the NLP models we build, explicit regulariza-on isn’t necessary

Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfiqng

‣ For most of the NLP models we build, explicit regulariza-on isn’t necessary

‣ Early stopping

Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfiqng

‣ For most of the NLP models we build, explicit regulariza-on isn’t necessary

‣ Early stopping

‣ Large numbers of sparse features are hard to overfit in a really bad way

Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfiqng

‣ For most of the NLP models we build, explicit regulariza-on isn’t necessary

‣ Early stopping

‣ For neural networks: dropout and gradient clipping
‣ Large numbers of sparse features are hard to overfit in a really bad way

Logis-c Regression: Summary
‣ Model

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logis-c Regression: Summary
‣ Model

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logis-c Regression: Summary
‣ Model

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logis-c Regression: Summary
‣ Model

‣ Learning: gradient ascent on the (regularized) discrimina-ve log-
likelihood

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Perceptron/SVM

Perceptron

• Invented in 1958
• By Frank Rosenblatt
• At the Cornell Aeronautical Laboratory

• Implemented in custom-built hardware

• Connected to a camera with 20×20 cadmium
sulfide photocells to make a 400-pixel image.

• Weights were encoded in potentiometers, and
weight updates during learning were
performed by electric motors.

Source: Wikipedia

https://en.wikipedia.org/wiki/Frank_Rosenblatt
https://en.wikipedia.org/wiki/Cornell_Aeronautical_Laboratory
https://en.wikipedia.org/wiki/Potentiometer

Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

‣ Decision rule: w>x > 0

Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

‣ Decision rule:

‣ If incorrect: if posi-ve,

if nega-ve,
w w + x

w w � x

w>x > 0

Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

‣ Decision rule:

‣ If incorrect: if posi-ve,

if nega-ve,
w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

Logis-c Regressionw>x > 0

Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

‣ Decision rule:

‣ Guaranteed to eventually separate the data if the data are separable

‣ If incorrect: if posi-ve,

if nega-ve,
w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

Logis-c Regressionw>x > 0

Support Vector Machines

‣ Many separa-ng hyperplanes — is there a best one?

+++ +
+ +
++

- - -
-

--
--

-

Support Vector Machines

‣ Many separa-ng hyperplanes — is there a best one?

++
+ +

+
+

++

- - -
-

--
--

-
margin

Support Vector Machines

Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Minimize kwk22

Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Minimize minimizing norm with
fixed margin <=>
maximizing margin

kwk22

Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Minimize

s.t.
minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj �1 if yj = 0

Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj �1 if yj = 0

Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

Support Vector Machines
‣ Constraint formula-on: find w via following quadra-c program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally no solu-on (data is generally non-separable) — need slack!

N-Slack SVMs

N-Slack SVMs

Minimize �kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j

�kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks like the perceptron! But updates more frequently

Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

x if w>x < 1, else 0

Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Perceptron
Lo

ss
w>xx if w>x < 1, else 0

Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logis-c
Perceptron

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logis-c
Perceptron

0-1

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Posi-ve Examples
Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logis-c
Perceptron

0-1

Lo
ss

w>x

*gradients are for maximizing things,
which is why they are flipped

x if w>x < 1, else 0

Comparing Gradient Updates (Reference)

x(y � P (y = 1|x)) x(y � logistic(w>x))

Perceptron
if classified incorrectly

0 else

SVM
if not classified correctly with margin of 1

0 else

(2y � 1)x

(2y � 1)x

=

y = 1 for pos,
 0 for neg

Logis-c regression (unregularized)

Op-miza-on — next -me…

‣ Range of techniques from simple gradient descent (works pre1y well)
to more complex methods (can work be1er)

‣ Most methods boil down to: take a gradient and a step size, apply the
gradient update -mes step size, incorporate es-mated curvature
informa-on to make the update more effec-ve

Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

this movie was great! would watch again +

Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

this movie was not really very enjoyable

+
+
—

Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, nega-on)

this movie was not really very enjoyable

+
+
—

Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, nega-on)

this movie was not really very enjoyable

‣ There are some ways around this: extract bigram feature for “not X” for
all X following the not

+
+
—

Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sen-ment Analysis

‣ Simple feature sets can do pre1y well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sen-ment Analysis

Wang and Manning (2012)

Sen-ment Analysis

Wang and Manning (2012)

Sen-ment Analysis

Wang and Manning (2012)

Naive Bayes is doing well!

Sen-ment Analysis

Wang and Manning (2012)

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be be1er for small data

Sen-ment Analysis

Wang and Manning (2012)

Before neural nets had taken off
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be be1er for small data

Sen-ment Analysis

Wang and Manning (2012)

Before neural nets had taken off
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be be1er for small data

81.5 89.5Kim (2014) CNNs

Recap

Recap

‣ Logis-c regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

Decision rule: P (y = 1|x) � 0.5 , w>x � 0

x(y � P (y = 1|x))

Recap

‣ Logis-c regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

‣ SVM:

Decision rule:

Decision rule: w>x � 0

P (y = 1|x) � 0.5 , w>x � 0

(Sub)gradient (unregularized): 0 if correct with margin of 1, else

x(y � P (y = 1|x))

x(2y � 1)

Recap

Recap

‣ Logis-c regression, SVM, and perceptron are closely related

Recap

‣ Logis-c regression, SVM, and perceptron are closely related

‣ SVM and perceptron inference require taking maxes, logis-c regression
has a similar update but is “sozer” due to its probabilis-c nature

Recap

‣ Logis-c regression, SVM, and perceptron are closely related

‣ SVM and perceptron inference require taking maxes, logis-c regression
has a similar update but is “sozer” due to its probabilis-c nature

‣ All gradient updates: “make it look more like the right thing and less
like the wrong thing”

