
Binary Classification

Alan Ritter
(many slides from Greg Durrett and Vivek Srikumar)

This Lecture

‣ Linear classification fundamentals

‣ Three discriminative models: logistic regression, perceptron, SVM

‣ Naive Bayes, maximum likelihood in generative models

‣ Different motivations but very similar update rules / inference!

Classification

Classification

Classification

x y 2 {0, 1}‣ Datapoint with label

Classification

‣ Embed datapoint in a feature space

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

Classification

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

Classification

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

Classification

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

Classification

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

w>f(x) > 0

Classification

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

 = [0.5, 1.6, 0.3]

 [0.5, 1.6, 0.3, 1]

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

f(x)

‣ Can delete bias if we augment feature space:

w>f(x) > 0

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-

x1

x2

f(x) = [x1, x2]

Linear functions are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

x1

x2

f(x) = [x1, x2]

Linear functions are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

f(x) = [x1, x2]

Linear functions are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2 x1x2

x1

f(x) = [x1, x2]

Linear functions are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

+++ +
+ +
++

- - -
-

--
--

-

+++ +
+ +
++

- - -
-

--
--

-

x1x2

x1

f(x) = [x1, x2]

Linear functions are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

+++ +
+ +
++

- - -
-

--
--

-

+++ +
+ +
++

- - -
-

--
--

-

x1x2

x1

f(x) = [x1, x2]

Linear functions are powerful!

+++ +
+ +
++

- - -
-

--
--

-+++ +
+ +
++

- - -
-

--
--

-
???

f(x) = [x1, x2, x12, x22, x1x2]

x1

x2

+++ +
+ +
++

- - -
-

--
--

-

+++ +
+ +
++

- - -
-

--
--

-

x1x2

x1

f(x) = [x1, x2]

Linear functions are powerful!

‣ “Kernel trick” does this for “free,” but is too expensive to use in NLP
applications, training is instead ofO(n2) O(n · (num feats))

Classification: Sentiment Analysis

Classification: Sentiment Analysis

this movie was great! would watch again

Classification: Sentiment Analysis

this movie was great! would watch again Positive

Classification: Sentiment Analysis

this movie was great! would watch again Positive

Classification: Sentiment Analysis

this movie was great! would watch again Positive

that film was awful, I’ll never watch again

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classification:

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classification:

‣ Turn examples like this into feature vectors

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classification:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm

Classification: Sentiment Analysis

this movie was great! would watch again

Negative

Positive

that film was awful, I’ll never watch again

‣ Surface cues can basically tell you what’s going on here: presence or
absence of certain words (great, awful)

‣ Steps to classification:

‣ Turn examples like this into feature vectors

‣ Pick a model / learning algorithm

‣ Train weights on data to get our classifier

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film] …

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]
position 0 position 1 position 2 position 3 position 4

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]
position 0 position 1 position 2 position 3 position 4

f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0
position 0 position 1 position 2 position 3 position 4

f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0
position 0 position 1 position 2 position 3 position 4

f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1
position 0 position 1 position 2 position 3 position 4

f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1
position 0 position 1 position 2 position 3 position 4

f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
position 0 position 1 position 2 position 3 position 4

f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
position 0 position 1 position 2 position 3 position 4

…f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
position 0 position 1 position 2 position 3 position 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features (mapping them to axes)

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0
position 0 position 1 position 2 position 3 position 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…

Feature Representation

this movie was great! would watch again Positive

‣ Convert this example to a vector using bag-of-words features

‣ Requires indexing the features (mapping them to axes)

[contains the] [contains a] [contains was] [contains movie] [contains film]

0 0 1 1 0

‣ More sophisticated feature mappings possible (tf-idf), as well as lots
of other features: character n-grams, parts of speech, lemmas, …

position 0 position 1 position 2 position 3 position 4

‣ Very large vector space (size of vocabulary), sparse features
…f(x) = [

…

Naive Bayes

Naive Bayes
‣ Data point , label x = (x1, ..., xn) y 2 {0, 1}

Naive Bayes
‣ Data point , label x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution P (x, y)

Naive Bayes
‣ Data point , label x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x) constant: irrelevant

for finding the max

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assumption:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assumption:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)

y

n
xi

‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assumption:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

P (y|x)

y

n
xi

‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Naive Bayes
‣ Data point , label

P (y|x) = P (y)P (x|y)
P (x)

/ P (y)P (x|y)

constant: irrelevant
for finding the max

= P (y)
nY

i=1

P (xi|y)

Bayes’ Rule

“Naive” assumption:

x = (x1, ..., xn) y 2 {0, 1}
‣ Formulate a probabilistic model that places a distribution

linear model!

P (y|x)

y

n
xi

‣ Compute , predict to classify
P (x, y)

argmaxyP (y|x)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Naive Bayes Example

P (y|x) / []it was great

P (y|x) / P (y)
nY

i=1

P (xi|y)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Maximum Likelihood Estimation

Maximum Likelihood Estimation
‣ Data points provided (j indexes over examples)(xj , yj)

Maximum Likelihood Estimation
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (generative):P (y), P (xi|y)

(xj , yj)

Maximum Likelihood Estimation
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (generative):P (y), P (xi|y)

(xj , yj)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

Maximum Likelihood Estimation
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (generative):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

Maximum Likelihood Estimation
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (generative):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

ith feature of jth example

Maximum Likelihood Estimation

Maximum Likelihood Estimation
‣ Imagine a coin flip which is heads with probability p

Maximum Likelihood Estimation
‣ Imagine a coin flip which is heads with probability p

‣ Observe (H, H, H, T) and maximize likelihood:

Maximum Likelihood Estimation
‣ Imagine a coin flip which is heads with probability p

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

Maximum Likelihood Estimation
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Estimation
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Estimation
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Estimation
‣ Imagine a coin flip which is heads with probability p

mX

j=1

logP (yj) = 3 log p+ log(1� p)

log likelihood

p
0 1

P(H) = 0.75

‣ Maximum likelihood parameters for binomial/
multinomial = read counts off of the data + normalize

‣ Observe (H, H, H, T) and maximize likelihood:
mY

j=1

P (yj) = p3(1� p)

‣ Easier: maximize log likelihood

Maximum Likelihood Estimation
‣ Data points provided (j indexes over examples)

‣ Find values of that maximize data likelihood (generative):P (y), P (xi|y)

(xj , yj)

data points (j) features (i)

mY

j=1

P (yj , xj) =
mY

j=1

P (yj)

"
nY

i=1

P (xji|yj)
#

‣ Equivalent to maximizing logarithm of data likelihood:
mX

j=1

logP (yj , xj) =
mX

j=1

"
logP (yj) +

nX

i=1

logP (xji|yj)
#

ith feature of jth example

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals

P (+) =
1

2

P (�) =
1

2

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals
P (great|+) =

1

2

P (+) =
1

2

P (�) =
1

2

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

P (great|�) =
1

4

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

it was great

P (great|�) =
1

4

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[]it was great

P (great|�) =
1

4

Maximum Likelihood for Naive Bayes

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great potential but ended up being a flop —

+I liked it well enough for an action flick
I expected a great film and left happy +

+brilliant directing and stunning visuals
P (great|+) =

1

2

P (great|�) =
1

4

P (+) =
1

2

P (�) =
1

2

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[] =
1/4
1/8[]=

2/3
1/3[]it was great

P (great|�) =
1

4

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alternatively: logP (y = +|x)� logP (y = �|x) > 0

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Inference

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alternatively: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0

<latexit sha1_base64="FZr/riCBo1+PNx2P5vFNKKQzJnQ=">AAACc3icbZDfTtswFMbdDBhk/CnbJTcWZVIrRJUwJHbDhNgNF1wUiUKlpkSO66QWjh3ZJ2xVlsfbQ+wZuB2XSDhtkSjlSJY/fec78vEvygQ34Hn/as6HpeWVj6tr7qf1jc2t+vbna6NyTVmXKqF0LyKGCS5ZFzgI1ss0I2kk2E1097Pq39wzbbiSVzDO2CAlieQxpwSsFdbD4ILFoHkyAqK1+oUDoRIcxJrQotMcn+y3ysl90CrxPg5MnoYFP/HLWzmf/B3yPy/pqa4mfnhhveG1vUnhReHPRAPNqhPWn4KhonnKJFBBjOn7XgaDgmjgVLDSDXLDMkLvSML6VkqSMjMoJiBK/NU6QxwrbY8EPHFfTxQkNWacRjaZEhiZt73KfK/XzyH+Pii4zHJgkk4finOBQeGKKh5yzSiIsRWEam53xXRELBqw7N25Z4am2m3uI0WWxHbp0nVdy8t/S2dRXB+2/W/tw8ujxunZjNwq2kG7qIl8dIxO0TnqoC6i6C96QP/RY+3R2XF2nb1p1KnNZr6guXIOngEgn75t</latexit>

Naive Bayes: Summary
‣ Model y

n
xi

P (x, y) = P (y)
nY

i=1

P (xi|y)

‣ Learning: maximize by reading counts off the data

‣ Inference

P (x, y)

argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Alternatively: logP (y = +|x)� logP (y = �|x) > 0

, log
P (y = +)

P (y = �)
+

nX

i=1

log
P (xi|y = +)

P (xi|y = �)
> 0

<latexit sha1_base64="FZr/riCBo1+PNx2P5vFNKKQzJnQ=">AAACc3icbZDfTtswFMbdDBhk/CnbJTcWZVIrRJUwJHbDhNgNF1wUiUKlpkSO66QWjh3ZJ2xVlsfbQ+wZuB2XSDhtkSjlSJY/fec78vEvygQ34Hn/as6HpeWVj6tr7qf1jc2t+vbna6NyTVmXKqF0LyKGCS5ZFzgI1ss0I2kk2E1097Pq39wzbbiSVzDO2CAlieQxpwSsFdbD4ILFoHkyAqK1+oUDoRIcxJrQotMcn+y3ysl90CrxPg5MnoYFP/HLWzmf/B3yPy/pqa4mfnhhveG1vUnhReHPRAPNqhPWn4KhonnKJFBBjOn7XgaDgmjgVLDSDXLDMkLvSML6VkqSMjMoJiBK/NU6QxwrbY8EPHFfTxQkNWacRjaZEhiZt73KfK/XzyH+Pii4zHJgkk4finOBQeGKKh5yzSiIsRWEam53xXRELBqw7N25Z4am2m3uI0WWxHbp0nVdy8t/S2dRXB+2/W/tw8ujxunZjNwq2kG7qIl8dIxO0TnqoC6i6C96QP/RY+3R2XF2nb1p1KnNZr6guXIOngEgn75t</latexit>

Problems with Naive Bayes
the film was beautiful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

Problems with Naive Bayes

‣ Correlated features compound: beautiful and gorgeous are not independent!

the film was beautiful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

‣ Correlated features compound: beautiful and gorgeous are not independent!

the film was beautiful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s generative:
spends capacity modeling P(x,y), when what we care about is P(y|x)

‣ Correlated features compound: beautiful and gorgeous are not independent!

the film was beautiful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

‣ Discriminative models model P(y|x) directly (SVMs, most neural networks, …)

Logistic Regression

Logistic Regression

Logistic Regression

P (y = +|x) = logistic(w>x)

Logistic Regression

P (y = +|x) = logistic(w>x)

Logistic Regression

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logistic Regression

‣ To learn weights: maximize discriminative log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logistic Regression

‣ To learn weights: maximize discriminative log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

Logistic Regression

‣ To learn weights: maximize discriminative log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

‣ To learn weights: maximize discriminative log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

sum over features

Logistic Regression

Logistic Regression

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
=

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!
deriv

of log

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv

of log

deriv

of exp

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv

of log

deriv

of exp

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv

of log

deriv

of exp

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv

of log

deriv

of exp

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)
= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

Logistic Regression

‣ Gradient of wi on positive example = xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for positive instances, yj = 0 for negative instances.

1

Logistic Regression

If P(+) is close to 1, make very little update

Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on positive example = xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for positive instances, yj = 0 for negative instances.

1

Logistic Regression

If P(+) is close to 1, make very little update

Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on positive example

‣ Gradient of wi on negative example = xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for positive instances, yj = 0 for negative instances.

1

Logistic Regression

If P(+) is close to 1, make very little update

Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on positive example

‣ Gradient of wi on negative example

If P(+) is close to 0, make very little update

Otherwise make wi look less like xji, which will decrease P(+)

xj(yj � P (yj = 1|xj))

= xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Can combine these gradients as

‣ Recall that yj = 1 for positive instances, yj = 0 for negative instances.

1

Regularization

Regularization
‣ Regularizing an objective can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

Regularization
‣ Regularizing an objective can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfitting

Regularization
‣ Regularizing an objective can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfitting

‣ For most of the NLP models we build, explicit regularization isn’t necessary

Regularization
‣ Regularizing an objective can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfitting

‣ For most of the NLP models we build, explicit regularization isn’t necessary

‣ Early stopping

Regularization
‣ Regularizing an objective can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfitting

‣ For most of the NLP models we build, explicit regularization isn’t necessary

‣ Early stopping

‣ Large numbers of sparse features are hard to overfit in a really bad way

Regularization
‣ Regularizing an objective can mean many things, including an L2-

norm penalty to the weights:
mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfitting

‣ For most of the NLP models we build, explicit regularization isn’t necessary

‣ Early stopping

‣ For neural networks: dropout and gradient clipping
‣ Large numbers of sparse features are hard to overfit in a really bad way

Logistic Regression: Summary
‣ Model

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logistic Regression: Summary
‣ Model

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logistic Regression: Summary
‣ Model

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logistic Regression: Summary
‣ Model

‣ Learning: gradient ascent on the (regularized) discriminative log-
likelihood

‣ Inference

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Perceptron/SVM

Perceptron

• Invented in 1958

• By Frank Rosenblatt

• At the Cornell Aeronautical Laboratory

• Implemented in custom-built hardware

• Connected to a camera with 20×20 cadmium
sulfide photocells to make a 400-pixel image.

• Weights were encoded in potentiometers, and
weight updates during learning were
performed by electric motors.

Source: Wikipedia

https://en.wikipedia.org/wiki/Frank_Rosenblatt
https://en.wikipedia.org/wiki/Cornell_Aeronautical_Laboratory
https://en.wikipedia.org/wiki/Potentiometer

Perceptron

‣ Simple error-driven learning approach similar to logistic regression

Perceptron

‣ Simple error-driven learning approach similar to logistic regression

‣ Decision rule: w>x > 0

Perceptron

‣ Simple error-driven learning approach similar to logistic regression

‣ Decision rule:

‣ If incorrect: if positive,

if negative,
w w + x

w w � x

w>x > 0

Perceptron

‣ Simple error-driven learning approach similar to logistic regression

‣ Decision rule:

‣ If incorrect: if positive,

if negative,
w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

Logistic Regressionw>x > 0

Perceptron

‣ Simple error-driven learning approach similar to logistic regression

‣ Decision rule:

‣ Guaranteed to eventually separate the data if the data are separable

‣ If incorrect: if positive,

if negative,
w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

Logistic Regressionw>x > 0

Support Vector Machines

‣ Many separating hyperplanes — is there a best one?

+++ +
+ +
++

- - -
-

--
--

-

Support Vector Machines

‣ Many separating hyperplanes — is there a best one?

++
+ +

+
+

++

- - -
-

--
--

-
margin

Support Vector Machines

Support Vector Machines
‣ Constraint formulation: find w via following quadratic program:

Support Vector Machines
‣ Constraint formulation: find w via following quadratic program:

Minimize kwk22

Support Vector Machines
‣ Constraint formulation: find w via following quadratic program:

Minimize minimizing norm with
fixed margin <=>
maximizing margin

kwk22

Support Vector Machines
‣ Constraint formulation: find w via following quadratic program:

Minimize

s.t.
minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

Support Vector Machines
‣ Constraint formulation: find w via following quadratic program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

Support Vector Machines
‣ Constraint formulation: find w via following quadratic program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

Support Vector Machines
‣ Constraint formulation: find w via following quadratic program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally no solution (data is generally non-separable) — need slack!

N-Slack SVMs

N-Slack SVMs

Minimize �kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j

�kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints satisfied⇠j

�kwk22 +
mX

j=1

⇠j

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints satisfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objective:

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints satisfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objective:
@

@wi
⇠j = 0 if ⇠j = 0

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints satisfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objective:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints satisfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objective:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

N-Slack SVMs

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints satisfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objective:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks like the perceptron! But updates more frequently

Gradients on Positive Examples
Logistic regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

x if w>x < 1, else 0

Gradients on Positive Examples
Logistic regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Positive Examples
Logistic regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Positive Examples
Logistic regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Perceptron
Lo

ss
w>xx if w>x < 1, else 0

Gradients on Positive Examples
Logistic regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logistic
Perceptron

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Positive Examples
Logistic regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logistic
Perceptron

0-1

Lo
ss

w>xx if w>x < 1, else 0

Gradients on Positive Examples
Logistic regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logistic
Perceptron

0-1

Lo
ss

w>x

*gradients are for maximizing things,
which is why they are flipped

x if w>x < 1, else 0

Comparing Gradient Updates (Reference)

x(y � P (y = 1|x)) x(y � logistic(w>x))

Perceptron
if classified incorrectly

0 else

SVM
if not classified correctly with margin of 1

0 else

(2y � 1)x

(2y � 1)x

=

y = 1 for pos,

 0 for neg

Logistic regression (unregularized)

Optimization — next time…

‣ Range of techniques from simple gradient descent (works pretty well)
to more complex methods (can work better)

‣ Most methods boil down to: take a gradient and a step size, apply the
gradient update times step size, incorporate estimated curvature
information to make the update more effective

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

this movie was great! would watch again +

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

this movie was not really very enjoyable

+
+
—

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, negation)

this movie was not really very enjoyable

+
+
—

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, negation)

this movie was not really very enjoyable

‣ There are some ways around this: extract bigram feature for “not X” for
all X following the not

+
+
—

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

‣ Simple feature sets can do pretty well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sentiment Analysis

Wang and Manning (2012)

Sentiment Analysis

Wang and Manning (2012)

Sentiment Analysis

Wang and Manning (2012)

Naive Bayes is doing well!

Sentiment Analysis

Wang and Manning (2012)

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be better for small data

Sentiment Analysis

Wang and Manning (2012)

Before neural nets had taken off
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be better for small data

Sentiment Analysis

Wang and Manning (2012)

Before neural nets had taken off
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be better for small data

81.5 89.5Kim (2014) CNNs

Recap

Recap

‣ Logistic regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

Decision rule: P (y = 1|x) � 0.5 , w>x � 0

x(y � P (y = 1|x))

Recap

‣ Logistic regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

‣ SVM:

Decision rule:

Decision rule: w>x � 0

P (y = 1|x) � 0.5 , w>x � 0

(Sub)gradient (unregularized): 0 if correct with margin of 1, else

x(y � P (y = 1|x))

x(2y � 1)

Recap

Recap

‣ Logistic regression, SVM, and perceptron are closely related

Recap

‣ Logistic regression, SVM, and perceptron are closely related

‣ SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

Recap

‣ Logistic regression, SVM, and perceptron are closely related

‣ SVM and perceptron inference require taking maxes, logistic regression
has a similar update but is “softer” due to its probabilistic nature

‣ All gradient updates: “make it look more like the right thing and less
like the wrong thing”

