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En$ty Linking

‣ 4,500,000 classes (all ar$cles in Wikipedia)
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Reading Comprehension

‣ Mul$ple choice ques$ons, 4 classes (but classes change per example)

Richardson (2013)



Binary Classifica$on

‣ Binary classifica$on: one weight vector defines posi$ve and nega$ve 
classes
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‣ Can we just use binary classifiers here?
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‣ How do we reconcile mul$ple posi$ve predic$ons? Highest score?
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Mul$class Classifica$on
‣ Not all classes may even be separable using this approach
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1 1
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3 3
3 3

‣ Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others 
(with these features)
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‣ Again, how to reconcile?
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‣ Binary classifica$on: one weight 
vector defines both classes

‣ Mul$class classifica$on: different 
weights and/or features per class
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Mul$class Classifica$on

‣ Decision rule: 

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space      containing 
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output 
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ The single weight vector approach will generalize to structured output 
spaces, whereas per-class weight vectors won’t

‣ Mul$ple feature vectors, one weight vector

features depend on choice 
of label now! note: this 
isn’t the gold label
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Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y = ) =Health

f(x, y = ) =Sports

‣ Equivalent to having three weight vectors in this case

feature vector blocks for each label

‣ Base feature func$on:

I[contains drug & label = Health]
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Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

argmax

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y = ) =Health

f(x, y = ) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)
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Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ], 
                       I[prev_word=router & tag = VBZ] 
                       I[next_word=the & tag = VBZ] 
                       I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case, 
blocks) highlighted

‣ Extract features with respect to this word:

not saying that the is 
tagged as VBZ! saying that 
the follows the VBZ word

the router  the packets
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Logis$c Regression: Summary

‣ Model:

‣ Learning: gradient ascent on the discrimina$ve log-likelihood

‣ Inference:

“towards gold feature value, away from expecta$on of feature value”

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)
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is more explicit 
now

slack variables > 0 iff 
example is support vector
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‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`( , ) =HealthSports

HealthScience`( , ) =

3

1
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2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every 
label + loss? No!

‣       = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint 
is Sports; what is      ?

8j8y 2 Y w>f(xj , y
⇤
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‣ Perceptron would make 
no update here
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⇤
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‣ Plug in the gold y and you get 0, so slack is always nonnega$ve!
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‣ If            , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise, 

(update looks backwards — 
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j )

‣ Perceptron-like, but we update away from *loss-augmented* predic$on
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Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j

‣ (Unregularized) gradients:

‣ SVM: 

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

‣ SVM: max over    s to compute gradient. LR: need to sum over    s`(y, y⇤) `(y, y⇤)
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Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Inference: just maxes and simple expecta$ons so far, but will get harder

‣ Training: gradient descent?

‣ Objec$ve:
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‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient
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‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient
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‣ Stochas$c gradient *ascent*
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Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op$mizes quadra$c instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Sezng step size is hard (decrease when held-out performance worsens?)
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AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters 
that get updated frequently
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³3HU�SDUDPHWHU�OHDUQLQJ�UDWHV´�
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AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters 
that get updated frequently

(smoothed) sum of squared 
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

‣ Other techniques for op$mizing deep models — more later!
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Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize 
likelihood

‣ …but not always: a linear model or neural network can be trained to 
minimize any differen$able loss func$on 

‣ Inference governs what learning: need to be able to compute 
expecta$ons to use logis$c regression


