
Mul$class Classifica$on

Alan Ri0er
(many slides from Greg Durrett, Vivek Srikumar, Stanford CS231n)

This Lecture

‣ Mul$class fundamentals

‣ Mul$class logis$c regression

‣ Mul$class SVM

‣ Feature extrac$on

‣ Op$miza$on

Mul$class Fundamentals

Text Classifica$on

~20 classes

Sports

Health

Image Classifica$on

‣ Thousands of classes (ImageNet)

Car

Dog

En$ty Linking

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

En$ty Linking

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

?
?

En$ty Linking

‣ 4,500,000 classes (all ar$cles in Wikipedia)

Although he originally won the
event, the United States An$-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecu$ve Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

?
?

Reading Comprehension

‣ Mul$ple choice ques$ons, 4 classes (but classes change per example)

Richardson (2013)

Binary Classifica$on

‣ Binary classifica$on: one weight vector defines posi$ve and nega$ve
classes

+++ +
+ +
++

- - -
-

--
--

-

Mul$class Classifica$on

1 1
1 1

1 12
2

22

33 3
3

Mul$class Classifica$on

1 1
1 1

1 12
2

22

33 3
3

‣ Can we just use binary classifiers here?

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

1 1
1 1

1 12
2

22

33 3
3

Mul$class Classifica$on
‣ One-vs-all: train k classifiers, one to dis$nguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

1 1
1 1

1 12
2

22

33 3
3

‣ How do we reconcile mul$ple posi$ve predic$ons? Highest score?

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Mul$class Classifica$on
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

‣ Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others
(with these features)

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

1 1
1 1

1 12
2

22

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

1 1
1 1

1 1

33 3
3

1 1
1 1

1 12
2

22

Mul$class Classifica$on
‣ All-vs-all: train n(n-1)/2 classifiers to differen$ate each pair of classes

1 1
1 1

1 1

33 3
3

1 1
1 1

1 12
2

22

‣ Again, how to reconcile?

Mul$class Classifica$on

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classifica$on: one weight
vector defines both classes

Mul$class Classifica$on

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classifica$on: one weight
vector defines both classes

‣ Mul$class classifica$on: different
weights and/or features per class

Mul$class Classifica$on

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classifica$on: one weight
vector defines both classes

‣ Mul$class classifica$on: different
weights and/or features per class

Mul$class Classifica$on

Mul$class Classifica$on
‣ Formally: instead of two labels, we have an output space containing

a number of possible classes
Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

Mul$class Classifica$on

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

Mul$class Classifica$on

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

features depend on choice
of label now! note: this
isn’t the gold label

Mul$class Classifica$on

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

‣ Mul$ple feature vectors, one weight vector

features depend on choice
of label now! note: this
isn’t the gold label

Mul$class Classifica$on

‣ Decision rule:

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ Mul$ple feature vectors, one weight vector

features depend on choice
of label now! note: this
isn’t the gold label

Mul$class Classifica$on

‣ Decision rule:

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponen$ally large output
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ The single weight vector approach will generalize to structured output
spaces, whereas per-class weight vectors won’t

‣ Mul$ple feature vectors, one weight vector

features depend on choice
of label now! note: this
isn’t the gold label

Feature Extrac$on

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball]
‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]
‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

f(x, y =) =Health

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]f(x, y =) =Health

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]f(x, y =) =Health

feature vector blocks for each label

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

feature vector blocks for each label

‣ Base feature func$on:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

feature vector blocks for each label

‣ Base feature func$on:

I[contains drug & label = Health]

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few pa5ents

Health

Sports

Science

f(x)= I[contains drug], I[contains pa5ents], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

‣ Equivalent to having three weight vectors in this case

feature vector blocks for each label

‣ Base feature func$on:

I[contains drug & label = Health]

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

=

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)

Making Decisions

f(x) = I[contains drug], I[contains pa5ents], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

argmax

too many drug trials, too few pa5ents

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science ar$cle” = +1.1

w>f(x, y)

Another example: POS tagging
blocks

Another example: POS tagging
blocksthe router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ],
 I[prev_word=router & tag = VBZ]
 I[next_word=the & tag = VBZ]
 I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ],
 I[prev_word=router & tag = VBZ]
 I[next_word=the & tag = VBZ]
 I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

not saying that the is
tagged as VBZ! saying that
the follows the VBZ word

the router the packets

Mul$class Logis$c Regression

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

‣ Compare to binary:

sum over output
space to normalize

P (y = 1|x) = exp(w>f(x))

1 + exp(w>f(x))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

‣ Compare to binary:

nega$ve class implicitly had
f(x, y=0) = the zero vector

sum over output
space to normalize

P (y = 1|x) = exp(w>f(x))

1 + exp(w>f(x))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Softmax
function

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Why? Interpret raw classifier scores as probabili/es

Softmax
function

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Why? Interpret raw classifier scores as probabili/es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

1.00
0.00
0.00

correct (gold)
probabili$es

too many drug trials,
too few pa5ents

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

1.00
0.00
0.00

correct (gold)
probabili$es

too many drug trials,
too few pa5ents

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili/es

exp
6.05
22.2
0.55

probabili$es
must be >= 0

unnormalized
probabili$es

normalize
 0.21

 0.77
 0.02

probabili$es
must sum to 1

probabili$es

Softmax
function

1.00
0.00
0.00

correct (gold)
probabili$es

too many drug trials,
too few pa5ents

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

log(0.21) = - 1.56

Mul$class Logis$c Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

‣ Training: maximize L(x, y) =
nX

j=1

logP (y⇤j |xj)

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Mul$class Logis$c Regression

sum over output
space to normalize

‣ Training: maximize

=
nX

j=1

w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

!
L(x, y) =

nX

j=1

logP (y⇤j |xj)

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

gold feature value

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Mul$class logis$c regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

gold feature value

model’s expecta$on of
feature value

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0]gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3]
update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]

update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few pa5ents
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]

new Pw(y|x) = [0.89, 0.10, 0.01]

update :w>f(x, y) + `(y, y⇤)

Logis$c Regression: Summary

‣ Model: Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Logis$c Regression: Summary

‣ Model:

‣ Inference:

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)

Logis$c Regression: Summary

‣ Model:

‣ Learning: gradient ascent on the discrimina$ve log-likelihood

‣ Inference:

“towards gold feature value, away from expecta$on of feature value”

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)

Mul$class SVM

Sox Margin SVM

Sox Margin SVM

Minimize �kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Sox Margin SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Sox Margin SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Image credit: Lang Van Tran

Mul$class SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Mul$class SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Mul$class SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

slack variables > 0 iff
example is support vector

Mul$class SVM

Correct predic$on now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

slack variables > 0 iff
example is support vector

Mul$class SVM

Correct predic$on now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Score comparison
is more explicit
now

slack variables > 0 iff
example is support vector

Mul$class SVM

Correct predic$on now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

The 1 that was here is
replaced by a loss
func$on

Score comparison
is more explicit
now

slack variables > 0 iff
example is support vector

Training (loss-augmented)

Training (loss-augmented)

‣ Are all decisions equally costly?

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few pa5ents

Health

SportsSports

Science

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSportsPredicted : bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`(,) =HealthSports 3

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss func$on `(y, y⇤)

too many drug trials, too few pa5ents

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`(,) =HealthSports

HealthScience`(,) =

3

1

Mul$class SVM
8j8y 2 Y w>f(xj , y

⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Mul$class SVM

Health Science Sports Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0
1.8+1

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

⇠j

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

⇠j

Mul$class SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

‣ Perceptron would make
no update here

⇠j

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Mul$class SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

‣ Plug in the gold y and you get 0, so slack is always nonnega$ve!

Compu$ng the Subgradient

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,
@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

(update looks backwards —
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Compu$ng the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

(update looks backwards —
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

‣ Perceptron-like, but we update away from *loss-augmented* predic$on

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM: f(x, y⇤)� f(x, ymax) (loss-augmented max)

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM:

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

Puzng it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM:

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

‣ SVM: max over s to compute gradient. LR: need to sum over s`(y, y⇤) `(y, y⇤)

Op$miza$on

Recap
‣ Four elements of a machine learning method:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Objec$ve:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Inference: just maxes and simple expecta$ons so far, but will get harder

‣ Objec$ve:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilis$c, max-margin, deep neural network

‣ Inference: just maxes and simple expecta$ons so far, but will get harder

‣ Training: gradient descent?

‣ Objec$ve:

Op$miza$on

Op$miza$on

‣ Stochas$c gradient *ascent*

Op$miza$on

‣ Stochas$c gradient *ascent*
w w + ↵g, g =

@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ

:B�

:B�

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

‣ What if loss changes quickly in one direc$on and slowly in
another direc$on?

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

‣ What if loss changes quickly in one direc$on and slowly in
another direc$on?

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ What if loss changes quickly in one direc$on and slowly in
another direc$on?

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"
9HU\�VORZ�SURJUHVV�DORQJ�VKDOORZ�GLPHQVLRQ��MLWWHU�DORQJ�VWHHS�GLUHFWLRQ

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

‣ What if loss changes quickly in one direc$on and slowly in
another direc$on?

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"
9HU\�VORZ�SURJUHVV�DORQJ�VKDOORZ�GLPHQVLRQ��MLWWHU�DORQJ�VWHHS�GLUHFWLRQ

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

Op$miza$on

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'

:KDW�LI�WKH�ORVV�
IXQFWLRQ�KDV�D�
ORFDO�PLQLPD�RU�
VDGGOH�SRLQW"

6DGGOH�SRLQWV�PXFK�
PRUH�FRPPRQ�LQ�
KLJK�GLPHQVLRQ

'DXSKLQ�HW�DO��³,GHQWLI\LQJ�DQG�DWWDFNLQJ�WKH�VDGGOH�SRLQW�SUREOHP�LQ�KLJK�GLPHQVLRQDO�QRQ�FRQYH[�RSWLPL]DWLRQ´��1,36�����

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ What if the loss func$on has a local minima or saddle point?

Op$miza$on

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'

:KDW�LI�WKH�ORVV�
IXQFWLRQ�KDV�D�
ORFDO�PLQLPD�RU�
VDGGOH�SRLQW"

6DGGOH�SRLQWV�PXFK�
PRUH�FRPPRQ�LQ�
KLJK�GLPHQVLRQ

'DXSKLQ�HW�DO��³,GHQWLI\LQJ�DQG�DWWDFNLQJ�WKH�VDGGOH�SRLQW�SUREOHP�LQ�KLJK�GLPHQVLRQDO�QRQ�FRQYH[�RSWLPL]DWLRQ´��1,36�����

‣ Stochas$c gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

‣ What if the loss func$on has a local minima or saddle point?

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

w w + ↵g, g =
@

@w
L

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

)LUVW�2UGHU�2SWLPL]DWLRQ

/RVV

Z�

��� 8VH�JUDGLHQW�IRUP�OLQHDU�DSSUR[LPDWLRQ
��� 6WHS�WR�PLQLPL]H�WKH�DSSUR[LPDWLRQ

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

6HFRQG�2UGHU�2SWLPL]DWLRQ

/RVV

Z�

��� 8VH�JUDGLHQW�DQG�+HVVLDQ�WR�IRUP�TXDGUDWLF�DSSUR[LPDWLRQ
��� 6WHS�WR�WKH�PLQLPD�RI�WKH�DSSUR[LPDWLRQ

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient
‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op$mizes quadra$c instantly

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Op$miza$on

‣ Stochas$c gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Op$mizes quadra$c instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Sezng step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

$GD*UDG

$GGHG�HOHPHQW�ZLVH�VFDOLQJ�RI�WKH�JUDGLHQW�EDVHG�
RQ�WKH�KLVWRULFDO�VXP�RI�VTXDUHV�LQ�HDFK�GLPHQVLRQ

³3HU�SDUDPHWHU�OHDUQLQJ�UDWHV´�
RU�³DGDSWLYH�OHDUQLQJ�UDWHV´

'XFKL�HW�DO��³$GDSWLYH�VXEJUDGLHQW�PHWKRGV�IRU�RQOLQH�OHDUQLQJ�DQG�VWRFKDVWLF�RSWLPL]DWLRQ´��-0/5�����

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

AdaGrad

Duchi et al. (2011)

‣ Op$mized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

‣ Other techniques for op$mizing deep models — more later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

Summary

Summary
‣ Design tradeoffs need to reflect interac$ons:

Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize
likelihood

Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize
likelihood

‣ …but not always: a linear model or neural network can be trained to
minimize any differen$able loss func$on

Summary
‣ Design tradeoffs need to reflect interac$ons:

‣ Model and objec$ve are coupled: probabilis$c model <-> maximize
likelihood

‣ …but not always: a linear model or neural network can be trained to
minimize any differen$able loss func$on

‣ Inference governs what learning: need to be able to compute
expecta$ons to use logis$c regression

