
Multiclass Classification

Alan Ritter
(many slides from Greg Durrett, Vivek Srikumar, Stanford CS231n)

This Lecture

‣ Multiclass fundamentals

‣ Multiclass logistic regression

‣ Multiclass SVM

‣ Feature extraction

‣ Optimization

Multiclass Fundamentals

Text Classification

~20 classes

Sports

Health

Image Classification

‣ Thousands of classes (ImageNet)

Car

Dog

Entity Linking

Entity Linking

Although he originally won the
event, the United States Anti-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecutive Tour de
France wins from 1999–2005.

Entity Linking

Although he originally won the
event, the United States Anti-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecutive Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Entity Linking

Although he originally won the
event, the United States Anti-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecutive Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

Entity Linking

Although he originally won the
event, the United States Anti-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecutive Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

?
?

Entity Linking

‣ 4,500,000 classes (all articles in Wikipedia)

Although he originally won the
event, the United States Anti-
Doping Agency announced in
August 2012 that they had
disqualified Armstrong from
his seven consecutive Tour de
France wins from 1999–2005.

Lance Edward Armstrong is
an American former
professional road cyclist

Armstrong County
is a county in
Pennsylvania…

?
?

Reading Comprehension

‣ Multiple choice questions, 4 classes (but classes change per example)

Richardson (2013)

Binary Classification

‣ Binary classification: one weight vector defines positive and negative
classes

+++ +
+ +
++

- - -
-

--
--

-

Multiclass Classification

1 1
1 1

1 12
2

22

33 3
3

Multiclass Classification

1 1
1 1

1 12
2

22

33 3
3

‣ Can we just use binary classifiers here?

Multiclass Classification
‣ One-vs-all: train k classifiers, one to distinguish each class from all the rest

Multiclass Classification
‣ One-vs-all: train k classifiers, one to distinguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

Multiclass Classification
‣ One-vs-all: train k classifiers, one to distinguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

1 1
1 1

1 12
2

22

33 3
3

Multiclass Classification
‣ One-vs-all: train k classifiers, one to distinguish each class from all the rest

1 1
1 1

1 12
2

22

33 3
3

1 1
1 1

1 12
2

22

33 3
3

‣ How do we reconcile multiple positive predictions? Highest score?

Multiclass Classification
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Multiclass Classification
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Multiclass Classification
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

Multiclass Classification
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

‣ Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others
(with these features)

Multiclass Classification
‣ All-vs-all: train n(n-1)/2 classifiers to differentiate each pair of classes

Multiclass Classification
‣ All-vs-all: train n(n-1)/2 classifiers to differentiate each pair of classes

1 1
1 1

1 12
2

22

Multiclass Classification
‣ All-vs-all: train n(n-1)/2 classifiers to differentiate each pair of classes

1 1
1 1

1 1

33 3
3

1 1
1 1

1 12
2

22

Multiclass Classification
‣ All-vs-all: train n(n-1)/2 classifiers to differentiate each pair of classes

1 1
1 1

1 1

33 3
3

1 1
1 1

1 12
2

22

‣ Again, how to reconcile?

Multiclass Classification

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classification: one weight
vector defines both classes

Multiclass Classification

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classification: one weight
vector defines both classes

‣ Multiclass classification: different
weights and/or features per class

Multiclass Classification

+++ +
+ +
++

- - -
-

--
--

-

1 1
1 1

1 12
2

22

33 3
3

‣ Binary classification: one weight
vector defines both classes

‣ Multiclass classification: different
weights and/or features per class

Multiclass Classification

Multiclass Classification
‣ Formally: instead of two labels, we have an output space containing

a number of possible classes
Y

‣ Same machinery that we’ll use later for exponentially large output
spaces, including sequences and trees

Multiclass Classification

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponentially large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

Multiclass Classification

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponentially large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

features depend on choice 
of label now! note: this
isn’t the gold label

Multiclass Classification

‣ Decision rule:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponentially large output
spaces, including sequences and trees

argmaxy2Yw
>f(x, y)

‣ Multiple feature vectors, one weight vector

features depend on choice 
of label now! note: this
isn’t the gold label

Multiclass Classification

‣ Decision rule:

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponentially large output
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ Multiple feature vectors, one weight vector

features depend on choice 
of label now! note: this
isn’t the gold label

Multiclass Classification

‣ Decision rule:

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space containing
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponentially large output
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ The single weight vector approach will generalize to structured output
spaces, whereas per-class weight vectors won’t

‣ Multiple feature vectors, one weight vector

features depend on choice 
of label now! note: this
isn’t the gold label

Feature Extraction

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science‣ Base feature function:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball]
‣ Base feature function:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]
‣ Base feature function:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

f(x, y =) =Health

‣ Base feature function:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]f(x, y =) =Health

‣ Base feature function:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]f(x, y =) =Health

feature vector blocks for each label

‣ Base feature function:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

feature vector blocks for each label

‣ Base feature function:

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

feature vector blocks for each label

‣ Base feature function:

I[contains drug & label = Health]

Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

‣ Equivalent to having three weight vectors in this case

feature vector blocks for each label

‣ Base feature function:

I[contains drug & label = Health]

Making Decisions

f(x) = I[contains drug], I[contains patients], I[contains baseball]

too many drug trials, too few patients

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

Making Decisions

f(x) = I[contains drug], I[contains patients], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

too many drug trials, too few patients

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

Making Decisions

f(x) = I[contains drug], I[contains patients], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

too many drug trials, too few patients

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science article” = +1.1

Making Decisions

f(x) = I[contains drug], I[contains patients], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

=

too many drug trials, too few patients

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science article” = +1.1

w>f(x, y)

Making Decisions

f(x) = I[contains drug], I[contains patients], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

too many drug trials, too few patients

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science article” = +1.1

w>f(x, y)

Making Decisions

f(x) = I[contains drug], I[contains patients], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

argmax

too many drug trials, too few patients

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports “word drug in Science article” = +1.1

w>f(x, y)

Another example: POS tagging
blocks

Another example: POS tagging
blocksthe router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ], 
 I[prev_word=router & tag = VBZ] 
 I[next_word=the & tag = VBZ] 
 I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

the router the packets

Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ], 
 I[prev_word=router & tag = VBZ] 
 I[next_word=the & tag = VBZ] 
 I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case,
blocks) highlighted

‣ Extract features with respect to this word:

not saying that the is
tagged as VBZ! saying that
the follows the VBZ word

the router the packets

Multiclass Logistic Regression

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Multiclass Logistic Regression

‣ Compare to binary:

sum over output
space to normalize

P (y = 1|x) = exp(w>f(x))

1 + exp(w>f(x))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Multiclass Logistic Regression

‣ Compare to binary:

negative class implicitly had
f(x, y=0) = the zero vector

sum over output
space to normalize

P (y = 1|x) = exp(w>f(x))

1 + exp(w>f(x))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Softmax
function

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Why? Interpret raw classifier scores as probabilities

Softmax
function

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Why? Interpret raw classifier scores as probabilities

Softmax
function

too many drug trials,

too few patients

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabilities

Softmax
function

too many drug trials,

too few patients

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabilities

exp
6.05
22.2
0.55

probabilities

must be >= 0

unnormalized

probabilities

Softmax
function

too many drug trials,

too few patients

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabilities

exp
6.05
22.2
0.55

probabilities

must be >= 0

unnormalized

probabilities

normalize
 0.21

 0.77
 0.02

probabilities

must sum to 1

probabilities

Softmax
function

too many drug trials,

too few patients

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabilities

exp
6.05
22.2
0.55

probabilities

must be >= 0

unnormalized

probabilities

normalize
 0.21

 0.77
 0.02

probabilities

must sum to 1

probabilities

Softmax
function

1.00
0.00
0.00

correct (gold)

probabilities

too many drug trials,

too few patients

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabilities

exp
6.05
22.2
0.55

probabilities

must be >= 0

unnormalized

probabilities

normalize
 0.21

 0.77
 0.02

probabilities

must sum to 1

probabilities

Softmax
function

1.00
0.00
0.00

correct (gold)

probabilities

too many drug trials,

too few patients

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabilities

exp
6.05
22.2
0.55

probabilities

must be >= 0

unnormalized

probabilities

normalize
 0.21

 0.77
 0.02

probabilities

must sum to 1

probabilities

Softmax
function

1.00
0.00
0.00

correct (gold)

probabilities

too many drug trials,

too few patients

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

log(0.21) = - 1.56

Multiclass Logistic Regression

sum over output
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Multiclass Logistic Regression

sum over output
space to normalize

‣ Training: maximize L(x, y) =
nX

j=1

logP (y⇤j |xj)

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Multiclass Logistic Regression

sum over output
space to normalize

‣ Training: maximize

=
nX

j=1

w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

!
L(x, y) =

nX

j=1

logP (y⇤j |xj)

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Training
‣ Multiclass logistic regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Training
‣ Multiclass logistic regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Multiclass logistic regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Multiclass logistic regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

gold feature value

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training
‣ Multiclass logistic regression

‣ Likelihood L(xj , y
⇤
j) = w>f(xj , y

⇤
j)� log

X

y

exp(w>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

P
y fi(xj , y) exp(w>f(xj , y))P

y exp(w
>f(xj , y))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)� Ey[fi(xj , y)]

gold feature value

model’s expectation of
feature value

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

gradient:

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0]gradient:

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]gradient:

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

gradient:

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3]
update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]

update :w>f(x, y) + `(y, y⇤)

Training

too many drug trials, too few patients
[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y =) =Health

f(x, y =) =Sports

y* = Health

Pw(y|x) = [0.21, 0.77, 0.02]

@

@wi
L(xj , y

⇤
j) = fi(xj , y

⇤
j)�

X

y

fi(xj , y)Pw(y|xj)

[1, 1, 0, 0, 0, 0, 0, 0, 0] — 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0]
— 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] — 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0]

= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]

gradient:

[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]

new Pw(y|x) = [0.89, 0.10, 0.01]

update :w>f(x, y) + `(y, y⇤)

Logistic Regression: Summary

‣ Model: Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Logistic Regression: Summary

‣ Model:

‣ Inference:

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)

Logistic Regression: Summary

‣ Model:

‣ Learning: gradient ascent on the discriminative log-likelihood

‣ Inference:

“towards gold feature value, away from expectation of feature value”

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)

Multiclass SVM

Soft Margin SVM

Soft Margin SVM

Minimize �kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Soft Margin SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Soft Margin SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Image credit: Lang Van Tran

Multiclass SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Multiclass SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j
slack variables > 0 iff
example is support vector

Multiclass SVM

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

slack variables > 0 iff
example is support vector

Multiclass SVM

Correct prediction now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

slack variables > 0 iff
example is support vector

Multiclass SVM

Correct prediction now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Score comparison
is more explicit
now

slack variables > 0 iff
example is support vector

Multiclass SVM

Correct prediction now
has to beat every other
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j

8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

The 1 that was here is
replaced by a loss
function

Score comparison
is more explicit
now

slack variables > 0 iff
example is support vector

Training (loss-augmented)

Training (loss-augmented)

‣ Are all decisions equally costly?

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few patients

Health

SportsSports

Science

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few patients

Health

SportsSports

ScienceSportsPredicted : bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

too many drug trials, too few patients

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss function `(y, y⇤)

too many drug trials, too few patients

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss function `(y, y⇤)

too many drug trials, too few patients

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`(,) =HealthSports 3

Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss function `(y, y⇤)

too many drug trials, too few patients

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`(,) =HealthSports

HealthScience`(,) =

3

1

Multiclass SVM
8j8y 2 Y w>f(xj , y

⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Multiclass SVM

Health Science Sports Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Multiclass SVM

Health Science Sports

2.4+0

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Multiclass SVM

Health Science Sports

2.4+0
1.8+1

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Multiclass SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Multiclass SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

Multiclass SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

⇠j

Multiclass SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

⇠j

Multiclass SVM

Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every
label + loss? No!

‣ = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint
is Sports; what is ?

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

w>f(x, y) + `(y, y⇤)

‣ Perceptron would make 
no update here

⇠j

Multiclass SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Multiclass SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

Multiclass SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Multiclass SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Multiclass SVM

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ One slack variable per example, so it’s set to be whatever the most
violated constraint is for that example

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

‣ Plug in the gold y and you get 0, so slack is always nonnegative!

Computing the Subgradient

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Computing the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Computing the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Computing the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,
@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Computing the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

(update looks backwards —
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Computing the Subgradient

‣ If , the example is not a support vector, gradient is zero⇠j = 0

‣ Otherwise,

(update looks backwards —
we’re minimizing here!)

@

@wi
⇠j = fi(xj , ymax)� fi(xj , y

⇤
j)

‣ Perceptron-like, but we update away from *loss-augmented* prediction

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

⇠j = max
y2Y

w>f(xj , y) + `(y, y⇤j)� w>f(xj , y
⇤
j)

Putting it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

Putting it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

Putting it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM: f(x, y⇤)� f(x, ymax) (loss-augmented max)

Putting it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM:

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

Putting it Together

Minimize

s.t. 8j ⇠j � 0

�kwk22 +
mX

j=1

⇠j

8j8y 2 Y w>f(xj , y
⇤
j) � w>f(xj , y) + `(y, y⇤j)� ⇠j

‣ (Unregularized) gradients:

‣ SVM:

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

‣ SVM: max over s to compute gradient. LR: need to sum over s`(y, y⇤) `(y, y⇤)

Optimization

Recap
‣ Four elements of a machine learning method:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilistic, max-margin, deep neural network

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilistic, max-margin, deep neural network

‣ Objective:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilistic, max-margin, deep neural network

‣ Inference: just maxes and simple expectations so far, but will get harder

‣ Objective:

Recap
‣ Four elements of a machine learning method:

‣ Model: probabilistic, max-margin, deep neural network

‣ Inference: just maxes and simple expectations so far, but will get harder

‣ Training: gradient descent?

‣ Objective:

Optimization

Optimization

‣ Stochastic gradient *ascent*

Optimization

‣ Stochastic gradient *ascent*
w w + ↵g, g =

@

@w
L

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ

:B�

:B�

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

‣ What if loss changes quickly in one direction and slowly in
another direction?

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

‣ What if loss changes quickly in one direction and slowly in
another direction?

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ What if loss changes quickly in one direction and slowly in
another direction?

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"
9HU\�VORZ�SURJUHVV�DORQJ�VKDOORZ�GLPHQVLRQ��MLWWHU�DORQJ�VWHHS�GLUHFWLRQ

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

‣ What if loss changes quickly in one direction and slowly in
another direction?

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"
9HU\�VORZ�SURJUHVV�DORQJ�VKDOORZ�GLPHQVLRQ��MLWWHU�DORQJ�VWHHS�GLUHFWLRQ

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

Optimization

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'

:KDW�LI�WKH�ORVV�
IXQFWLRQ�KDV�D�
ORFDO�PLQLPD�RU�
VDGGOH�SRLQW"

6DGGOH�SRLQWV�PXFK�
PRUH�FRPPRQ�LQ�
KLJK�GLPHQVLRQ

'DXSKLQ�HW�DO��³,GHQWLI\LQJ�DQG�DWWDFNLQJ�WKH�VDGGOH�SRLQW�SUREOHP�LQ�KLJK�GLPHQVLRQDO�QRQ�FRQYH[�RSWLPL]DWLRQ´��1,36�����

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ What if the loss function has a local minima or saddle point?

Optimization

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'

:KDW�LI�WKH�ORVV�
IXQFWLRQ�KDV�D�
ORFDO�PLQLPD�RU�
VDGGOH�SRLQW"

6DGGOH�SRLQWV�PXFK�
PRUH�FRPPRQ�LQ�
KLJK�GLPHQVLRQ

'DXSKLQ�HW�DO��³,GHQWLI\LQJ�DQG�DWWDFNLQJ�WKH�VDGGOH�SRLQW�SUREOHP�LQ�KLJK�GLPHQVLRQDO�QRQ�FRQYH[�RSWLPL]DWLRQ´��1,36�����

‣ Stochastic gradient *ascent*

‣ Very simple to code up
w w + ↵g, g =

@

@w
L

‣ What if the loss function has a local minima or saddle point?

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

w w + ↵g, g =
@

@w
L

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

)LUVW�2UGHU�2SWLPL]DWLRQ

/RVV

Z�

��� 8VH�JUDGLHQW�IRUP�OLQHDU�DSSUR[LPDWLRQ
��� 6WHS�WR�PLQLPL]H�WKH�DSSUR[LPDWLRQ

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

6HFRQG�2UGHU�2SWLPL]DWLRQ

/RVV

Z�

��� 8VH�JUDGLHQW�DQG�+HVVLDQ�WR�IRUP�TXDGUDWLF�DSSUR[LPDWLRQ
��� 6WHS�WR�WKH�PLQLPD�RI�WKH�DSSUR[LPDWLRQ

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient
‣ Setting step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Setting step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Setting step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

‣ Setting step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!

‣ Setting step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Optimizes quadratic instantly

‣ Setting step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Optimizes quadratic instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Setting step size is hard (decrease when held-out performance worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

AdaGrad

Duchi et al. (2011)

‣ Optimized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

$GD*UDG

$GGHG�HOHPHQW�ZLVH�VFDOLQJ�RI�WKH�JUDGLHQW�EDVHG�
RQ�WKH�KLVWRULFDO�VXP�RI�VTXDUHV�LQ�HDFK�GLPHQVLRQ

³3HU�SDUDPHWHU�OHDUQLQJ�UDWHV´�
RU�³DGDSWLYH�OHDUQLQJ�UDWHV´

'XFKL�HW�DO��³$GDSWLYH�VXEJUDGLHQW�PHWKRGV�IRU�RQOLQH�OHDUQLQJ�DQG�VWRFKDVWLF�RSWLPL]DWLRQ´��-0/5�����

)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO���������)HL�)HL�/L�	�-XVWLQ�-RKQVRQ�	�6HUHQD�<HXQJ /HFWXUH���� $SULO�����������

2SWLPL]DWLRQ��3UREOHPV�ZLWK�6*'
:KDW�LI�ORVV�FKDQJHV�TXLFNO\�LQ�RQH�GLUHFWLRQ�DQG�VORZO\�LQ�DQRWKHU"
:KDW�GRHV�JUDGLHQW�GHVFHQW�GR"

/RVV�IXQFWLRQ�KDV�KLJK�FRQGLWLRQ�QXPEHU��UDWLR�RI�ODUJHVW�WR�VPDOOHVW�
VLQJXODU�YDOXH�RI�WKH�+HVVLDQ�PDWUL[�LV�ODUJH

AdaGrad

Duchi et al. (2011)

‣ Optimized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

AdaGrad

Duchi et al. (2011)

‣ Optimized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

AdaGrad

Duchi et al. (2011)

‣ Optimized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

AdaGrad

Duchi et al. (2011)

‣ Optimized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters
that get updated frequently

(smoothed) sum of squared
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

‣ Other techniques for optimizing deep models — more later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

Summary

Summary
‣ Design tradeoffs need to reflect interactions:

Summary
‣ Design tradeoffs need to reflect interactions:

‣ Model and objective are coupled: probabilistic model <-> maximize
likelihood

Summary
‣ Design tradeoffs need to reflect interactions:

‣ Model and objective are coupled: probabilistic model <-> maximize
likelihood

‣ …but not always: a linear model or neural network can be trained to
minimize any differentiable loss function

Summary
‣ Design tradeoffs need to reflect interactions:

‣ Model and objective are coupled: probabilistic model <-> maximize
likelihood

‣ …but not always: a linear model or neural network can be trained to
minimize any differentiable loss function

‣ Inference governs what learning: need to be able to compute
expectations to use logistic regression

