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This Lecture

‣ Multiclass fundamentals

‣ Multiclass logistic regression

‣ Multiclass SVM

‣ Feature extraction

‣ Optimization
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Text Classification

~20 classes

Sports

Health



Image Classification

‣ Thousands of classes (ImageNet)

Car

Dog
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Entity Linking

‣ 4,500,000 classes (all articles in Wikipedia)

Although he originally won the 
event, the United States Anti-
Doping Agency announced in 
August 2012 that they had 
disqualified  Armstrong  from 
his seven consecutive Tour de 
France wins from 1999–2005.

Lance Edward Armstrong is 
an American former 
professional road cyclist

Armstrong County 
is a county in 
Pennsylvania…

?
?



Reading Comprehension

‣ Multiple choice questions, 4 classes (but classes change per example)

Richardson (2013)



Binary Classification

‣ Binary classification: one weight vector defines positive and negative 
classes
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‣ Can we just use binary classifiers here?
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‣ How do we reconcile multiple positive predictions? Highest score?
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Multiclass Classification
‣ Not all classes may even be separable using this approach

1 1
1 1

1 12 2
22
2 2

3 3

3 3
3 3

‣ Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others 
(with these features)
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Multiclass Classification
‣ All-vs-all: train n(n-1)/2 classifiers to differentiate each pair of classes

1 1
1 1

1 1

33 3
3

1 1
1 1

1 12
2

22

‣ Again, how to reconcile?
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Multiclass Classification

‣ Decision rule: 

‣ Can also have one weight vector per class:

‣ Formally: instead of two labels, we have an output space      containing 
a number of possible classes

Y

‣ Same machinery that we’ll use later for exponentially large output 
spaces, including sequences and trees

argmaxy2Yw
>
y f(x)

argmaxy2Yw
>f(x, y)

‣ The single weight vector approach will generalize to structured output 
spaces, whereas per-class weight vectors won’t

‣ Multiple feature vectors, one weight vector

features depend on choice 
of label now! note: this 
isn’t the gold label
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Block Feature Vectors
‣ Decision rule: argmaxy2Yw

>f(x, y)

too many drug trials, too few patients

Health

Sports

Science

f(x)= I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y = ) =Health

f(x, y = ) =Sports

‣ Equivalent to having three weight vectors in this case

feature vector blocks for each label

‣ Base feature function:

I[contains drug & label = Health]
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Making Decisions

f(x) = I[contains drug], I[contains patients], I[contains baseball]

w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3]

= Health: +4.4 Sports: -5.9 Science: -0.6

argmax

too many drug trials, too few patients

Health

Sports

Science

[1, 1, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 1, 0, 0, 0, 0]

f(x, y = ) =Health

f(x, y = ) =Sports “word drug in Science article” = +1.1

w>f(x, y)
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Another example: POS tagging
blocks
NNS
VBZ
NN
DT
…

f(x, y=VBZ) = I[curr_word=blocks & tag = VBZ], 
                       I[prev_word=router & tag = VBZ] 
                       I[next_word=the & tag = VBZ] 
                       I[curr_suffix=s & tag = VBZ]

‣ Classify blocks as one of 36 POS tags

‣ Example x: sentence with a word (in this case, 
blocks) highlighted

‣ Extract features with respect to this word:

not saying that the is 
tagged as VBZ! saying that 
the follows the VBZ word

the router  the packets
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Logistic Regression: Summary

‣ Model:

‣ Learning: gradient ascent on the discriminative log-likelihood

‣ Inference:

“towards gold feature value, away from expectation of feature value”

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

argmaxyPw(y|x)
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Correct prediction now 
has to beat every other 
class

Minimize

s.t.

8j (2yj � 1)(w>xj) � 1� ⇠j
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8j8y 2 Y w>f(xj , y
⇤
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The 1 that was here is 
replaced by a loss 
function

Score comparison 
is more explicit 
now

slack variables > 0 iff 
example is support vector
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Training (loss-augmented)

‣ Are all decisions equally costly?

‣ We can define a loss function `(y, y⇤)

too many drug trials, too few patients

Health

SportsSports

ScienceSports
Science

Predicted
Predicted : not so bad

: bad error

`( , ) =HealthSports

HealthScience`( , ) =

3

1
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Health Science Sports

2.4+0

1.3+3

1.8+1

Y

‣ Does gold beat every 
label + loss? No!

‣       = 4.3 - 2.4 = 1.9⇠j

‣ Most violated constraint 
is Sports; what is      ?

8j8y 2 Y w>f(xj , y
⇤
j ) � w>f(xj , y) + `(y, y⇤j )� ⇠j

w>f(x, y) + `(y, y⇤)

‣ Perceptron would make 
no update here
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‣ Plug in the gold y and you get 0, so slack is always nonnegative!
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‣ Otherwise, 

(update looks backwards — 
we’re minimizing here!)
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Minimize
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‣ (Unregularized) gradients:

‣ SVM: 

f(x, y⇤)� Ey[f(x, y)] = f(x, y⇤)�
X

y

[Pw(y|x)f(x, y)]‣ Log reg:
f(x, y⇤)� f(x, ymax) (loss-augmented max)

‣ SVM: max over    s to compute gradient. LR: need to sum over    s`(y, y⇤) `(y, y⇤)
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Recap
‣ Four elements of a machine learning method:

‣ Model: probabilistic, max-margin, deep neural network

‣ Inference: just maxes and simple expectations so far, but will get harder

‣ Training: gradient descent?

‣ Objective:
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‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient
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Optimization

‣ Stochastic gradient *ascent*

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

‣ Newton’s method
‣ Second-order technique

Inverse Hessian: n x n mat, expensive!‣ Optimizes quadratic instantly

‣ Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Setting step size is hard (decrease when held-out performance worsens?)
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AdaGrad

Duchi et al. (2011)

‣ Optimized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters 
that get updated frequently
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AdaGrad

Duchi et al. (2011)

‣ Optimized for problems with sparse features

‣ Per-parameter learning rate: smaller updates are made to parameters 
that get updated frequently

(smoothed) sum of squared 
gradients from all updates

‣ Generally more robust than SGD, requires less tuning of learning rate

‣ Other techniques for optimizing deep models — more later!
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Summary
‣ Design tradeoffs need to reflect interactions:

‣ Model and objective are coupled: probabilistic model <-> maximize 
likelihood

‣ …but not always: a linear model or neural network can be trained to 
minimize any differentiable loss function 

‣ Inference governs what learning: need to be able to compute 
expectations to use logistic regression


