Lecture 6: Neural Networks

Alan Ritter

(many slides from Greg Durrett)
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Neural network history
Neural network basics

Feedforward neural networks + backpropagation
Applications

Implementing neural networks (if time)
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» Henderson (2003): neural shift-reduce parser, not SOTA
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2008-2013: A glimmer of light...

Input Window e o e
Text cat sat on the mat

> Collobert and Weston 2011: “NLP (almost) from scratch” = muwer wiwi o ui

K ,.K K
Feature K wy; wy ... Wy

» Feedforward neural nets induce features for ¢
sequential CRFs (“neural CRF”)

LTywx AN\~

» 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

» Krizhevskey et al. (2012): AlexNet for vision

» Socher 2011-2014: tree-structured RNNs working okay

.. not very good..
a b C
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2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

- Sutskever et al. + Bahdanau et al.: seg2seq for neural MT (LSTMs work
for NLP?)

» Chen and Manning transition-based dependency parser (even feedforward
networks work well for NLP?)

» 2015: explosion of neural nets for everything under the sun
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Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

> Regularization: dropout is pretty helpful

» Computers not big enough: can’t run for enough iterations

> Inputs: need word representations to have the right continuous semantics
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~ Linear classification: argmaxwaf(aj,y)
» How can we do nonlinear classification? Kernels are too slow...

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

l[contains not & contains good]
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Neural Networks: XOR

» Let’s see how we can use neural nets

to learn a simple nonlinear function L2
1 0
>~ Inputs L1, T2
(generally x = (x1,...,2m)) . .
- OQutput g
(generally Y = (ylv cee 7yn)) L1 Lo Y =2 XOR L9

0 0

1 1
0 1
1 0
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Y = ai1x1 + a2 X
0
Yy = a1T1 + asxo + az tanh(xzq, + xo) ~/
Yy — —I1 — T2 -+ Ztanh(xl -+ .CIZ‘Q)
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Inot]

the movie was not all that good



XOR

Neural Networks

Y = —22131 — Lo + Qtanh(azl -+ ZEQ)
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Linear model: Yy = W - X + b

yzg(W-X+b>
Wx+b

7NN

Nonlinear Warp Shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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...possible because
Linear classifier Neural network we transformed the

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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y =g9(Wz +b)
z = g(Vy + ¢)

z =g(Vg(Wx +b) + ¢)

W_/

output of first layer

“Feedforward” computation (not

recurrent)

Check: what happens if no nonlinearity?
More powerful than basic linear models?

z = V(Wx

b)

C

Adopted from Chris Dyer
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Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability

>, exp(w’ f(x,y)) |
» Compute scores for all possible
P(y|x) = softmax ([wa(pg y)]yey) labels at once (returns vector)

P(ylx) =

exp(pi) » softmax: exps and normalizes a
softmax(p); = |
ny exp(pi’) given vector
P(y|x) = softmax(W f(x)) ~ Weight vector per class;

W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) > Now one hidden layer
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P(y|x) = softmax(Wgqg(V f(x)))
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P(y|x) = softmax(Wgqg(V f(x)))

num classes
d hidden units probs

H_._w

d X n matrix nonlmearlty num classes x d
n features (tanh, relu, . matrix
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P(y|x) = softmax(Wz) z = g(V f(x))

. Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - ¢;«)
- I*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index
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Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,

J
- Gradient with respect to W W
O . zj — Py =i|x)z; ifi=i* i
L(x,1") = .
8Wij —P(y — Z‘X)Z] otherwise

» Looks like logistic regression with z as the features!
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Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

; Activations at

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1") Oz
oV | 0z |0V
w‘e math...]

err(root) = e;« — P(y|x) OL(x, 7"
dim = num classes

hidden layer
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P(y|x) = softmax(Wgqg(V f(x)))

err(z)

- Can forget everything after z, treat AN
it as the output and keep backpropping
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) o Waen —log S o) =9I
L(x,i") =Wz e;» —log J_Zl exp(Wz - ¢;) Activations at

| | | hidden layer
» Gradient with respect to V: apply the chain rule
OL(x,i*)  OL(x,i*) 0z 0z  Jdg(a) Oa o=V F(x)
OV, 0z Vi Vij oa a‘/;j
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Tr
L(x,17)=Wz-e; —log Z exp(Wz-e;)
7=1
» Gradient with respect to V: apply the chain rule
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Activations at
hidden layer
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Computing Gradients: Backpropagation

,C(X, Z*) — Wz - Cij*x — log Z exp(WZ : 63) 2 g(Vf(X))

Activations at

I=1 hidden layer

» Gradient with respect to V: apply the chain rule

0z Ogla)j da | V£ (x)
V;'j oa 6’1/;3

> First term: gradient of nonlinear activation function at a (depends on
current value)

OL(x,*) O0L(x,1")
ov.. 0z

» Second term: gradient of linear function

» Straightforward computation once we have err(z)
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Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

- Step 1: compute  err(root) = e;« — P(y|x) (vector)

- Step 2: compute derivatives of W using err(root)  (matrix)

- Step 3: compute 5’£(§<,Z ) _ err(z) = W
Z
- Step 4: compute derivatives of V using err(z) (matrix)

err(root)  (vector)

- Step 5+: continue backpropagation (compute err(f(x)) if necessary...)
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Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

> Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

> Need to remember the values from the forward computation
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NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs
f(x)

Fed raises interest rates in order to .. previous word

> Word embeddings for each word form input

(sasipJ)quia

» ~¥1000 features here — smaller feature vector curr word
than in sparse models, but every feature fires on

every example
next word

™
=
=
S.
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®
P
)
n
=
™
=
=
P
Q
~
M)
2

» Weight matrix learns position-dependent

processing of the words other words, feats, etc. L~
Botha et al. (2017)




NLP with Feedforward Networks

COe00 Py

QOO0 OOOOO0Q) hi

R E L Ao -

D D
! |

T s
- L -

V| —ma;

eu I

Ebl:l

igrams

at E trigrams

no queue at

» Hidden layer mixes these
different signals and learns
feature conjunctions

Botha et al. (2017)



NLP with Feedforward Networks

~ Multilingual tagging results:

Model Acc. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k -  6.63m
Small FF 9476 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.31m

2 Dim. 95.39 143k 0.7 0.18m

> Gillick used LSTMs: this is smaller, faster, and better

Botha et al. (2017)



Sentiment Analysis

- Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

[ [ ] //I\ -

Predator 1S a masterpiece

C1 C2 C3 C4 lyyer et al. (2015)



Sentiment Analysis

Model RT SST SST IMDB Time
fine  bin (S)
DAN-ROOT — 46.9 85.7 — 31
DAN-RAND 773 454 83.2 88.8 136
DAN 80.3 47.7 863 894  136| lyyer et al. (2015)
NBOW-RAND 76.2 423 814 88.9 01
Bao-of-words NBOW 790 436 836 8.0 91
5 BiNB — 419 83.1 — — Wang and
NBSVM-b1 79.4 — — 01.2 — :
Manning (2012)
RecNN™ 7177 432 824 — —
RecNTN™ — 457 854 — —
Tree RNNs / DRecNN — 498 86.6 — 431
TreeLSTM — 50.6 86.9 — —
CNNS / LSTMS DCNN* _ 485 869 894  —
PVEC™ — 48.77 &7.8 92.6 — :
CNN-MC 811 474 881 — 245 Kim (2014)

WRRBM* — — — 89.2 —
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» Feedforward networks identify coreference arcs
President Obama signed...

/?

He later gave a speech...

Clark and Manning (2015), Wiseman et al. (2015)



Coreference Resolution

» Feedforward networks identify coreference arcs

Mention-Pair Representation 7,

President Obama signed... [OOOOOOOOOOOOOOO]
Hidden Layer h, TRGLU(Wth + bs)
5 (cle]ele]ele]olo]olololo]0l0)e)
| Hidden Layer h; TRGLU(thl + by)
He later gave a speech... [OOOOOOOOOOOOQOOJ
Input Layer hg ReLU(Wlho + b)
|OO - 00|00 |OO - 00|00 (O O]
Candidate Candidate Mention Mention Pair and
Antecedent  Antecedent Embeddings Features Document
Embeddings Features Features

Clark and Manning (2015), Wiseman et al. (2015)



Implementation Details
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Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

y =X *x =% (y,dy) = (X * X, 2 * x * dX)
codegen

» Computation is now something we need to reason about symbolically

~ Use a library like Pytorch or Tensorflow. This class: Pytorch



Computation Graphs in Pytorch

» Define forward pass for P(y|X) — SoftmaX(Wg(Vf(X)))

class FFNN(nn.Module):
def 1nit (self, inp, hid, out):
super (FFNN, self). 1init ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self .W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))
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Computation Graphs in Pytorch

el*: one-hot vector

P(y|X) — SOftmaX(Wg(Vf(X))) of the label
(e.g., [0, 1, 0])
ffnn = FFNN() ,//
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

loss.backward ()

optimizer.step()
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Training a Model

Define a computation graph

For each epoch:
For each batch of data:

Compute loss on batch

Autograd to compute gradients and take step

Decode test set



Batching

» Batching data gives speedups due to more efficient matrix operations



Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time



Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

# input is [batch size, num feats]
# gold label is [batch size, num classes]

def make update(input, gold label)



Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

# input is [batch size, num feats]
# gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]



Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

# input is [batch size, num feats]
# gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))



Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

# input is [batch size, num feats]
# gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well



