Lecture 6: Neural Networks

Alan Ritter

(many slides from Greg Durrett)

This Lecture

Neural network history
Neural network basics

Feedforward neural networks + backpropagation
Applications

Implementing neural networks (if time)

History: NN “dark ages”

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
S2: f. maps C5: layer rg. layer OUTPUT

32x32

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 52: f. ma C5: layer
[
FuII conAectlon ‘ Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connection

net, s, =s tgy"

» LSTMs: Hochreiter and Schmidhuber (1997)

A\
e

History: NN “dark ages”

» Convnets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

3232 6@28x28 gcz@ f, maps rl_ C8: layer 76 layer OUTPUT
'T' r \
L B =
Full conr#ectnon ‘ Gau35|an connections
Convolutions Subsampling Convolutions Subsampllng Full connection
net_ S.=s.+gy” y
- LSTMs: Hochreiter and Schmidhuber (1997) ~—~ g o) n ny 5
—) —e—>0)>0)—e | =—
— R r
d @ netinj d i@ net
wo /AN W 7N

» Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

2008-2013: A glimmer of light...

Input Window e o e
Text cat sat on the mat

> Collobert and Weston 2011: “NLP (almost) from scratch” = muwer wiwi o ui
- Feedforward neural nets induce features for e
sequential CRFs (“neural CRF”) N
- 2008 version was marred by bad experiments, boer
claimed SOTA but wasn’t, 2011 version tied SOTA Hard Tanh

2008-2013: A glimmer of light...

» Collobert and Weston 2011: “NLP (almost) from scratch”

» Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

» 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

» Krizhevskey et al. (2012): AlexNet for vision

Input Window

Text cat sat on the mat
Feature 1 'w% w% w;lv

K ,.K K
Feature K wy; wy ... Wy

Lookup Table
LTW 1 N~

LTywx AN\~

2008-2013: A glimmer of light...

Input Window e o e
Text cat sat on the mat

> Collobert and Weston 2011: “NLP (almost) from scratch” = muwer wiwi o ui

K ,.K K
Feature K wy; wy ... Wy

» Feedforward neural nets induce features for ¢
sequential CRFs (“neural CRF”)

LTywx AN\~

» 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

» Krizhevskey et al. (2012): AlexNet for vision

» Socher 2011-2014: tree-structured RNNs working okay

.. not very good..
a b C

2014: Stuff starts working

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

- Sutskever et al. + Bahdanau et al.: seg2seq for neural MT (LSTMs work
for NLP?)

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

- Sutskever et al. + Bahdanau et al.: seg2seq for neural MT (LSTMs work
for NLP?)

» Chen and Manning transition-based dependency parser (even feedforward
networks work well for NLP?)

2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

- Sutskever et al. + Bahdanau et al.: seg2seq for neural MT (LSTMs work
for NLP?)

» Chen and Manning transition-based dependency parser (even feedforward
networks work well for NLP?)

» 2015: explosion of neural nets for everything under the sun

Why didn’t they work before?

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

> Regularization: dropout is pretty helpful

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

> Regularization: dropout is pretty helpful

» Computers not big enough: can’t run for enough iterations

Why didn’t they work before?

» Datasets too small: for MT, not really better until you have 1M+ parallel
sentences (and really need a lot more)

» Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

> Regularization: dropout is pretty helpful

» Computers not big enough: can’t run for enough iterations

> Inputs: need word representations to have the right continuous semantics

Neural Net Basics

Neural Networks

Y TSN T
Linear classification: argmax, w f(z,y)

Neural Networks

~ Linear classification: argmaxwaf(% y)

» How can we do nonlinear classification? Kernels are too slow...

Neural Networks

~ Linear classification: argmaxwaf(aj,y)
» How can we do nonlinear classification? Kernels are too slow...

» Want to learn intermediate conjunctive features of the input

Neural Networks

~ Linear classification: argmaxwaf(aj,y)
» How can we do nonlinear classification? Kernels are too slow...

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

Neural Networks

~ Linear classification: argmaxwaf(aj,y)
» How can we do nonlinear classification? Kernels are too slow...

» Want to learn intermediate conjunctive features of the input

the movie was not all that good

l[contains not & contains good]

Neural Networks: XOR

» Let’s see how we can use neural nets
to learn a simple nonlinear function

>~ Inputs

- Output

Neural Networks: XOR

» Let’s see how we can use neural nets
to learn a simple nonlinear function

> Inputs L1, I
(generally x = (z1,...,Tm))

- OQutput g
(generally y = (y1,...,Yn))

Neural Networks: XOR

» Let’s see how we can use neural nets
to learn a simple nonlinear function

(generally x = (z1,...,2Zm))
- OQutput g
(generally Y = (ylv cee 7yn)) L1 Lo Y =2 XOR L9
0 0
0 1
1 0
1 1

Neural Networks: XOR

» Let’s see how we can use neural nets
to learn a simple nonlinear function

(generally x = (z1,...,2Zm))
- OQutput g
(generally Y = (ylv cee 7yn)) L1 Lo Y =2 XOR L9
0 0 0
0 1 1
1 0 1
1 1 0

Neural Networks: XOR

» Let’s see how we can use neural nets

to learn a simple nonlinear function L2
1 0
>~ Inputs L1, T2
(generally x = (x1,...,2m)) . .
- OQutput g
(generally Y = (ylv cee 7yn)) L1 Lo Y =2 XOR L9

0 0

1 1
0 1
1 0

Neural Networks: XOR

Neural Networks: XOR

Y = a1xT1 + a2

Neural Networks: XOR

X9 Y = G121 + a2

Neural Networks: XOR

X9 Y = G121 + a2

Neural Networks: XOR

Y = a1xT1 + a2

Neural Networks: XOR

Y = a1xT1 + a2

Neural Networks: XOR

Y = a1xT1 + a2

Neural Networks: XOR

Y =a1xr1 + a2x2 X

Yy = a1T1 + asxo + az tanh(xzq, + xo) \/

Neural Networks: XOR

Y =a1xr1 + a2x2 X

Yy = a1T1 + asxo + az tanh(xzq, + xo) ~/
“Or”

L1 XOR L9 ' . //
0

Neural Networks: XOR

L2 Y = a171 + aaTs X
1 0
Y = a1r1 + a2 + a3 tanh(xl + LIZ‘Q) ¢
“Or”
T1 (looks like action

potential in neuron)

1 ! }

r1 T2 x1 XOR 25 /
0 0 0
0 1 1 -2 -1 1 2
1 0 1 /
1 1 0 | | | |

Neural Networks: XOR

Y =a1xr1 + a2x2 X

Yy = a1T1 + asxo + az tanh(xzq, + xo) \/

Neural Networks: XOR

Y = a1T1 + a2 X
0
Yy = a1T1 + asxo + az tanh(xzq, + xo) \/
Yy — —xr1 — X2 -+ Ztanh(xl -+ ZE‘Q)
1 T1 or
r1 XOR x5
0
1
1
0

Neural Networks: XOR

Y = ai1x1 + a2 X
0
Yy = a1T1 + asxo + az tanh(xzq, + xo) ~/
Yy — —I1 — T2 -+ Ztanh(xl -+ .CIZ‘Q)
1 le N “OI’”
r1 XOR x5
0 L2

Neural Networks: XOR

Neural Networks: XOR

Inot]

the movie was not all that good

XOR

Neural Networks

Y = —22131 — Lo + Qtanh(azl -+ ZEQ)
\
\
$
\
\

Neural Networks

0.5

Neural Networks

Linear model: Yy = W - X + b

Neural Networks

Linear model: Yy = W - X + b

y =g(w-x+0)

y = g(Wx + b)

/

Nonlinear

transformation

Neural Networks

Linear model: Yy = W - X + b

y=9<W~X+b>

g(Wx + b)

7N\

Nonlinear Warp

transformation space

Neural Networks

Linear model: Yy = W - X + b

y=9<W~X+b>

g(Wx + b)

7NN

Nonlinear Warp Shift

transformation space

Neural Networks

Linear model: Yy = W - X + b

yzg(W-X+b>
Wx+b

7NN

Nonlinear Warp Shift
transformation space

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Linear classifier

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Linear classifier Neural network

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

...possible because
Linear classifier Neural network we transformed the

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

y =g(Wz +b)

Adopted from Chris Dyer

Deep Neural Networks

First Second
Layer Layer

42
@
@

y =g(Wz +b)

Adopted from Chris Dyer

Deep Neural Networks

Input First Second

@ Layer Layer y =g(Wz+b)

z = g(Vy + c)

Adopted from Chris Dyer

Deep Neural Networks

Input LZi;Setr Sf:;);d Y= o(Wa+b)
@\ @ z = g(Vy + ¢)
@ D, z=g(Vg(Wx +Db)+c)
e Do NP
KL output of first layer
A

Adopted from Chris Dyer

Deep Neural Networks

Input First Second B
Layer Layer y=9(Wz+b)

@ ® z =g(Vy +c)

@§‘¢@V’/ z =¢9g(Vg(Wx + b) + c)
S XA —~
@’ % ."A’ @ output of first layer

“Feedforward” computation (not

recurrent)

Adopted from Chris Dyer

Deep Neural Networks

Input First

Layer
@1

N\
NS
“0‘ (7
RS
QD=

®/

r W vYy V

Second
Layer

()

A

)

A

y =g9(Wz +b)
z = g(Vy + ¢)

z =g(Vg(Wx +b) + ¢)

W_/

output of first layer

“Feedforward” computation (not

recurrent)

Check: what happens if no nonlinearity?
More powerful than basic linear models?

z = V(Wx

b)

C

Adopted from Chris Dyer

Deep Neural Networks

0.5

0.5

" | s i s " |
0.5 1

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

0.5

0.5

" | s i s " |
0.5 1

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropagation

Logistic Regression with NNs

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability
>, exp(w’ f(x,y))

P(ylx) =

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability
>, exp(w’ f(x,y))

P(y|x) = softmax ([w "' f(x,y)]yey)

P(ylx) =

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability
>, exp(w’ f(x,y))

P(y|x) = softmax ([w' f(x,y)]yey)
exp(p;)

— > exp(pi)

P(ylx) =

softmax(p);

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability

>, exp(w’ f(x,y)) |
» Compute scores for all possible
P(y|x) = softmax ([wa(pg y)]yey) labels at once (returns vector)

P(ylx) =

exp(p;)

D i exp(pir)

softmax(p); =

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability

>, exp(w’ f(x,y)) |
» Compute scores for all possible
P(y|x) = softmax ([wa(pg y)]yey) labels at once (returns vector)

P(ylx) =

exp(p;) - softmax: exps and normalizes a
ny exp(pi’) given vector

softmax(p); =

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability

>, exp(w’ f(x,y)) |
» Compute scores for all possible
P(y|x) = softmax ([wa(pg y)]yey) labels at once (returns vector)

P(ylx) =

exp(pi) » softmax: exps and normalizes a
softmax(p); = |
ny exp(pi’) given vector
P(y|x) = softmax(W f(x)) ~ Weight vector per class;

W is [num classes x num feats]

Logistic Regression with NNs

exp(w ' f(x,y)) ~ Single scalar probability

>, exp(w’ f(x,y)) |
» Compute scores for all possible
P(y|x) = softmax ([wa(pg y)]yey) labels at once (returns vector)

P(ylx) =

exp(pi) » softmax: exps and normalizes a
softmax(p); = |
ny exp(pi’) given vector
P(y|x) = softmax(W f(x)) ~ Weight vector per class;

W is [num classes x num feats]

P(y|x) = softmax(Wg(V f(x))) > Now one hidden layer

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

n features

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

n features

Neural Networks for Classification

P(y|x) = softmax(Wg(V f(x)))

d X N matrix
n features

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

dx n matrix nonlinearity
n features (tanh, relu, ...)

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

d hidden units

gl

d x n matrix nonlmearlty
n features (tanh, relu, .

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

d hidden units

5 HI

d X n matrix nonlmearlty num classes x d
n features (tanh, relu, . matrix

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

d hidden units

H_._m

d X n matrix nonlmearlty num classes x d
n features (tanh, relu, . matrix

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

num classes
d hidden units probs

H_._w

d X n matrix nonlmearlty num classes x d
n features (tanh, relu, . matrix

Training Neural Networks

P(y|x) = softmax (W z) z = g(V f(x))

Training Neural Networks

P(y|x) = softmax (W z) z = g(V f(x))
» Maximize log likelihood of training data

L(x,7") =log P(y = i"|x) = log (softmax(Wz) - e;«)

Training Neural Networks

P(y|x) = softmax(Wz) z = g(V f(x))

. Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - ¢;«)
- I*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

Training Neural Networks

P(y|x) = softmax(Wz) z = g(V f(x))

. Maximize log likelihood of training data

L(x,7") =log P(y = 1"|x) = log (softmax(Wz) - ¢;«)
- I*: index of the gold label

» ei: 1in the ith row, zero elsewhere. Dot by this = select ith index

L(x,7") =Wz-e; — log Z exp(Wz) - e,

J

Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,

J

Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,
J
- Gradient with respect to W

Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,
J
- Gradient with respect to W

a { Zj—P(y:i‘X)Zj |fI=I>I<

L(x,17) =
8Wij () —P(y — Z‘X)Z] otherwise

Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,
]
- Gradient with respect to W W

P { z; — Py =ilx)z; ifi=i* /

L(x,17) =
8Wij () —P(y — Z‘X)Z] otherwise

Computing Gradients

L(x,2") =Wz-e; — log Z exp(Wz) - e,

J
- Gradient with respect to W W
O . zj — Py =i|x)z; ifi=i* i
L(x,1") = .
8Wij —P(y — Z‘X)Z] otherwise

» Looks like logistic regression with z as the features!

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

Neural Networks for Classification

P(y|x) = softmax(Wgqg(V f(x)))

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

Activations at

g hidden layer

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

Activations at

g hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,1*) 0L(x,1") 0z
oV 0z OV

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

Activations at

g hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1") 0Oz
oVi; | 0z |0V

T~

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

Activations at

g hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1") 0Oz
oVi; | 0z |0V

T~

err(root) = e;«» — P(y|x)
dim = num classes

Computing Gradients: Backpropagation

L(x,17)=Wz-e; —log Z exp(Wz)-e; 27 g(V f(x))

; Activations at

» Gradient with respect to V: apply the chain rule

OL(x,1*) |0L(x,1") Oz
oV | 0z |0V
w‘e math...]

err(root) = e;« — P(y|x) OL(x, 7"
dim = num classes

hidden layer

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

err(root)

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

err(z)

- Can forget everything after z, treat AN
it as the output and keep backpropping

Computing Gradients: Backpropagation

,C(X, Z*> — Wz - Cij*x — log Z exp(WZ : 63) 2 g(Vf(X))

Activations at

I=1 hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,1*) 0L(x,1") 0z
ov.. 0z V.

Computing Gradients: Backpropagation

,C(X, Z*> — Wz - Cij*x — log Z exp(WZ : 63) 2 g(Vf(X))

Activations at

I=1 hidden layer

» Gradient with respect to V: apply the chain rule
0L(x,1") B 0L(x,1") 0z

OV 0z |Vi;
~_

Computing Gradients: Backpropagation

) o Waen —log S o) =9I
L(x,i") =Wz e;» —log J_Zl exp(Wz - ¢;) Activations at

| | | hidden layer
» Gradient with respect to V: apply the chain rule
OL(x,i*) OL(x,i*) 0z 0z Jdg(a) Oa o=V F(x)
OV, 0z Vi Vij oa a‘/;j

~_

Computing Gradients: Backpropagation

Tr
L(x,17)=Wz-e; —log Z exp(Wz-e;)
7=1
» Gradient with respect to V: apply the chain rule

OL(x,*) O0L(x,1")

z = g(Vf(x))
Activations at
hidden layer

oV . 0z

Computing Gradients: Backpropagation

,C(X, Z*> — Wz - Cij*x — log Z exp(WZ : 63) 2 g(Vf(X))

Activations at

I=1 hidden layer

» Gradient with respect to V: apply the chain rule

OL(x,*) O0L(x,1")
ov.. 0z

> First term: gradient of nonlinear activation function at a (depends on
current value)

Computing Gradients: Backpropagation

,C(X, Z*) — Wz - Cij*x — log Z exp(WZ : 63) 2 g(Vf(X))

Activations at

I=1 hidden layer

» Gradient with respect to V: apply the chain rule

0z Ogla)j da | V£ (x)
V;'j oa 6’1/;3

> First term: gradient of nonlinear activation function at a (depends on
current value)

OL(x,*) O0L(x,1")
ov.. 0z

» Second term: gradient of linear function

Computing Gradients: Backpropagation

,C(X, Z*) — Wz - Cij*x — log Z exp(WZ : 63) 2 g(Vf(X))

Activations at

I=1 hidden layer

» Gradient with respect to V: apply the chain rule

0z Ogla)j da | V£ (x)
V;'j oa 6’1/;3

> First term: gradient of nonlinear activation function at a (depends on
current value)

OL(x,*) O0L(x,1")
ov.. 0z

» Second term: gradient of linear function

» Straightforward computation once we have err(z)

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

err(root)

Backpropagation: Picture

P(y|x) = softmax(Wgqg(V f(x)))

err(root)

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

- Step 1: compute err(root) = e;« — P(y|x) (vector)

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

- Step 1: compute err(root) = e;« — P(y|x) (vector)

- Step 2: compute derivatives of W using err(root) (matrix)

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

- Step 1: compute err(root) = e;« — P(y|x) (vector)

- Step 2: compute derivatives of W using err(root) (matrix)

- Step 3: compute 9L(x,i")

5 = err(z) = W 'err(root) (vector)

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

- Step 1: compute err(root) = e;« — P(y|x) (vector)

- Step 2: compute derivatives of W using err(root) (matrix)

. - OL(x,1"
Step 3: compute ((’)}ZZ) — err(z) = W
- Step 4: compute derivatives of V using err(z) (matrix)

err(root) (vector)

Backpropagation

P(y|x) = softmax(Wgqg(V f(x)))

- Step 1: compute err(root) = e;« — P(y|x) (vector)

- Step 2: compute derivatives of W using err(root) (matrix)

- Step 3: compute 5’£(§<,Z) _ err(z) = W
Z
- Step 4: compute derivatives of V using err(z) (matrix)

err(root) (vector)

- Step 5+: continue backpropagation (compute err(f(x)) if necessary...)

Backpropagation: Takeaways

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

> Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

Backpropagation: Takeaways

» Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

» Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

> Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

> Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs

Botha et al. (2017)

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs
PP

Fed raises interest rates in order to ...

Botha et al. (2017)

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs

Botha et al. (2017)

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs

> Word embeddings for each word form input

Botha et al. (2017)

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs
f(x)

Fed raises interest rates in order to .. previous word

> Word embeddings for each word form input

curr word

(D
3
2
3
2
xS
gV
2
(D
3
2
S.
e~
M
S
M
n
=

next word

other words, feats, etc.
Botha et al. (2017)

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs
f(x)

Fed raises interest rates in order to .. previous word

> Word embeddings for each word form input

(sasipJ)quia

» ~¥1000 features here — smaller feature vector curr word
than in sparse models, but every feature fires on

every example
next word

™
=
=
S.
~-
®
P
)
n
=
™
=
=
P
Q
~
M)
2

other words, feats, etc.L_
Botha et al. (2017)

NLP with Feedforward Networks

» Part-of-speech tagging with FFNNs
f(x)

Fed raises interest rates in order to .. previous word

> Word embeddings for each word form input

(sasipJ)quia

» ~¥1000 features here — smaller feature vector curr word
than in sparse models, but every feature fires on

every example
next word

™
=
=
S.
~-
®
P
)
n
=
™
=
=
P
Q
~
M)
2

» Weight matrix learns position-dependent

processing of the words other words, feats, etc. L~
Botha et al. (2017)

NLP with Feedforward Networks

COe00 Py

QOO0 OOOOO0Q) hi

R E L Ao -

D D
! |

T s
- L -

V| —ma;

eu I

Ebl:l

igrams

at E trigrams

no queue at

» Hidden layer mixes these
different signals and learns
feature conjunctions

Botha et al. (2017)

NLP with Feedforward Networks

~ Multilingual tagging results:

Model Acc. Wts. MB Ops.
Gillick et al. (2016) | 95.06 900k - 6.63m
Small FF 9476 241k 0.6 0.27m
+Clusters 95.56 261k 1.0 0.31m

2 Dim. 95.39 143k 0.7 0.18m

> Gillick used LSTMs: this is smaller, faster, and better

Botha et al. (2017)

Sentiment Analysis

- Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

[[] //I\ -

Predator 1S a masterpiece

C1 C2 C3 C4 lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
fine bin (S)
DAN-ROOT — 46.9 85.7 — 31
DAN-RAND 773 454 83.2 88.8 136
DAN 80.3 47.7 863 894 136| lyyer et al. (2015)
NBOW-RAND 76.2 423 814 88.9 01
Bao-of-words NBOW 790 436 836 8.0 91
5 BiNB — 419 83.1 — — Wang and
NBSVM-b1 79.4 — — 01.2 — :
Manning (2012)
RecNN™ 7177 432 824 — —
RecNTN™ — 457 854 — —
Tree RNNs / DRecNN — 498 86.6 — 431
TreeLSTM — 50.6 86.9 — —
CNNS / LSTMS DCNN* _ 485 869 894 —
PVEC™ — 48.77 &7.8 92.6 — :
CNN-MC 811 474 881 — 245 Kim (2014)

WRRBM* — — — 89.2 —

Coreference Resolution

» Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolution

» Feedforward networks identify coreference arcs
President Obama signed...

/?

He later gave a speech...

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolution

» Feedforward networks identify coreference arcs

Mention-Pair Representation 7,

President Obama signed... [OOOOOOOOOOOOOOO]
Hidden Layer h, TRGLU(Wth + bs)
5 (cle]ele]ele]olo]olololo]0l0)e)
| Hidden Layer h; TRGLU(thl + by)
He later gave a speech... [OOOOOOOOOOOOQOOJ
Input Layer hg ReLU(Wlho + b)
|OO - 00|00 |OO - 00|00 (O O]
Candidate Candidate Mention Mention Pair and
Antecedent Antecedent Embeddings Features Document
Embeddings Features Features

Clark and Manning (2015), Wiseman et al. (2015)

Implementation Details

Computation Graphs

» Computing gradients is hard!

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

y =X *x =% (y,dy) = (X * X, 2 * x * dX)
codegen

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

y =X *x =% (y,dy) = (X * X, 2 * x * dX)
codegen

» Computation is now something we need to reason about symbolically

Computation Graphs

» Computing gradients is hard!

» Automatic differentiation: instrument code to keep track of derivatives

y =X *x =% (y,dy) = (X * X, 2 * x * dX)
codegen

» Computation is now something we need to reason about symbolically

~ Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

» Define forward pass for P(y|X) — SoftmaX(Wg(Vf(X)))

class FFNN(nn.Module):
def 1nit (self, inp, hid, out):
super (FFNN, self). 1init ()
self.V = nn.Linear(inp, hid)
self.g = nn.Tanh()
self .W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

def forward(self, x):
return self.softmax(self.W(self.g(self.V(x))))

Computation Graphs in Pytorch

P(y|x) = softmax(Wgqg(V f(x)))

Computation Graphs in Pytorch
P(y|x) = softmax(Wgqg(V f(x)))

ffnn = FFNN()

Computation Graphs in Pytorch
P(y|x) = softmax(Wgqg(V f(x)))

ffnn = FFNN()
def make update(input, gold label):

Computation Graphs in Pytorch

el*: one-hot vector

P(Y|X) — Softmax(Wg(Vf(x))) of the label
(e.g., [0, 1, 07])

ffnn = FFNN() ,//

def make update(input, gold label):

Computation Graphs in Pytorch

el*: one-hot vector

P(Y|X) — Softmax(Wg(Vf(x))) of the label
(e.g., [0, 1, 07])

ffnn = FFNN() ,//

def make update(input, gold label):

ffnn.zero grad() # clear gradient variables

Computation Graphs in Pytorch

el*: one-hot vector

P(Y|X) — Softmax(Wg(Vf(x))) of the label
(e.g., [0, 1, 07])

ffnn = FFNN() ,//

def make update(input, gold label):

ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)

Computation Graphs in Pytorch

el*: one-hot vector

P(y|X) — SOftmaX(Wg(Vf(X))) of the label
(e.g., [0, 1, 0])
ffnn = FFNN() ,//
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

Computation Graphs in Pytorch

el*: one-hot vector

P(y|X) — SOftmaX(Wg(Vf(X))) of the label
(e.g., [0, 1, 0])
ffnn = FFNN() ,//
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

loss.backward ()

Computation Graphs in Pytorch

el*: one-hot vector

P(y|X) — SOftmaX(Wg(Vf(X))) of the label
(e.g., [0, 1, 0])
ffnn = FFNN() ,//
def make update(input, gold label):
ffnn.zero grad() # clear gradient variables

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

loss.backward ()

optimizer.step()

Training a Model

Training a Model

Define a computation graph

Training a Model

Define a computation graph

For each epoch:

Training a Model

Define a computation graph

For each epoch:

For each batch of data:

Training a Model

Define a computation graph

For each epoch:
For each batch of data:

Compute loss on batch

Training a Model

Define a computation graph
For each epoch:
For each batch of data:

Compute loss on batch

Autograd to compute gradients and take step

Training a Model

Define a computation graph

For each epoch:
For each batch of data:

Compute loss on batch

Autograd to compute gradients and take step

Decode test set

Batching

» Batching data gives speedups due to more efficient matrix operations

Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]

Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

Batching

» Batching data gives speedups due to more efficient matrix operations

» Need to make the computation graph process a batch at the same time

input is [batch size, num feats]
gold label is [batch size, num classes]

def make update(input, gold label)

probs = ffnn.forward(input) # [batch size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

