
Lecture 6: Neural Networks

Alan Ritter
(many slides from Greg Durrett)

This Lecture

‣ Feedforward neural networks + backpropagation

‣ Neural network basics

‣ Applications

‣ Neural network history

‣ Implementing neural networks (if time)

History: NN “dark ages”

History: NN “dark ages”
‣ Convnets: applied to MNIST by LeCun in 1998

History: NN “dark ages”
‣ Convnets: applied to MNIST by LeCun in 1998

‣ LSTMs: Hochreiter and Schmidhuber (1997)

History: NN “dark ages”
‣ Convnets: applied to MNIST by LeCun in 1998

‣ LSTMs: Hochreiter and Schmidhuber (1997)

‣ Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light…

2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

‣ Krizhevskey et al. (2012): AlexNet for vision

2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for
sequential CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments,
claimed SOTA but wasn’t, 2011 version tied SOTA

‣ Socher 2011-2014: tree-structured RNNs working okay

‣ Krizhevskey et al. (2012): AlexNet for vision

2014: Stuff starts working

2014: Stuff starts working
‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment

(convnets work for NLP?)

2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

‣ Chen and Manning transition-based dependency parser (even feedforward
networks work well for NLP?)

2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment
(convnets work for NLP?)

‣ 2015: explosion of neural nets for everything under the sun

‣ Chen and Manning transition-based dependency parser (even feedforward
networks work well for NLP?)

Why didn’t they work before?

Why didn’t they work before?
‣Datasets too small: for MT, not really better until you have 1M+ parallel

sentences (and really need a lot more)

Why didn’t they work before?
‣Datasets too small: for MT, not really better until you have 1M+ parallel

sentences (and really need a lot more)

‣Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

Why didn’t they work before?
‣Datasets too small: for MT, not really better until you have 1M+ parallel

sentences (and really need a lot more)

‣Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regularization: dropout is pretty helpful

Why didn’t they work before?
‣Datasets too small: for MT, not really better until you have 1M+ parallel

sentences (and really need a lot more)

‣Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regularization: dropout is pretty helpful

‣Computers not big enough: can’t run for enough iterations

Why didn’t they work before?
‣Datasets too small: for MT, not really better until you have 1M+ parallel

sentences (and really need a lot more)

‣Optimization not well understood: good initialization, per-feature scaling
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regularization: dropout is pretty helpful

‣Inputs: need word representations to have the right continuous semantics

‣Computers not big enough: can’t run for enough iterations

Neural Net Basics

Neural Networks
argmaxyw

>f(x, y)‣ Linear classification:

Neural Networks

‣ How can we do nonlinear classification? Kernels are too slow…

argmaxyw
>f(x, y)‣ Linear classification:

Neural Networks

‣ How can we do nonlinear classification? Kernels are too slow…

‣ Want to learn intermediate conjunctive features of the input

argmaxyw
>f(x, y)‣ Linear classification:

Neural Networks

‣ How can we do nonlinear classification? Kernels are too slow…

‣ Want to learn intermediate conjunctive features of the input

argmaxyw
>f(x, y)‣ Linear classification:

the movie was not all that good

Neural Networks

‣ How can we do nonlinear classification? Kernels are too slow…

‣ Want to learn intermediate conjunctive features of the input

argmaxyw
>f(x, y)‣ Linear classification:

the movie was not all that good

I[contains not & contains good]

Neural Networks: XOR
‣ Let’s see how we can use neural nets 

to learn a simple nonlinear function

‣ Inputs

‣ Output

Neural Networks: XOR

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn))

‣ Let’s see how we can use neural nets 
to learn a simple nonlinear function

‣ Inputs

‣ Output

Neural Networks: XOR

x1 x2

1 1

1
1
0
0 0

0

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets 
to learn a simple nonlinear function

‣ Inputs

‣ Output

Neural Networks: XOR

x1 x2

1 1
1
11

1
0
0 0

0
0

0

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets 
to learn a simple nonlinear function

‣ Inputs

‣ Output

Neural Networks: XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets 
to learn a simple nonlinear function

‣ Inputs

‣ Output

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2 X

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action
potential in neuron)

Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)

Neural Networks: XOR

Neural Networks: XOR

x1

x2

0

1 -1

0
[not]

[good]

I

I

the movie was not all that good

Neural Networks: XOR

x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the movie was not all that good

Neural Networks

Neural Networks

Linear model: y = w · x+ b

Neural Networks

Nonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Warp
space

Nonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp
space

ShiftNonlinear
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

Neural Networks

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network

Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because
we transformed the
space!

Deep Neural Networks

Adopted from Chris Dyer

Deep Neural Networks

Adopted from Chris Dyer

Input Second 
Layer

First

Layer

Deep Neural Networks

Adopted from Chris Dyer

z = g(Vy + c)

Input Second 
Layer

First

Layer

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First

Layer

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First

Layer

“Feedforward” computation (not
recurrent)

Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First

Layer

“Feedforward” computation (not
recurrent)

z = V(Wx+ b) + c

Check: what happens if no nonlinearity?
More powerful than basic linear models?

Deep Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks,
Backpropagation

Logistic Regression with NNs

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

�

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

�

softmax(p)i =
exp(pi)P
i0 exp(pi0)

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible 
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible 
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ softmax: exps and normalizes a
given vector

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible 
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ softmax: exps and normalizes a
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class; 
W is [num classes x num feats]

Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible 
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ softmax: exps and normalizes a
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class; 
W is [num classes x num feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now one hidden layer

Neural Networks for Classification

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

n features

f
(x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V

n features

f
(x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V

n features
d x n matrix

f
(x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V

n features
d x n matrix

f
(x
)

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V

n features

d hidden units

d x n matrix

f
(x
)

z

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V

n features

d hidden units

d x n matrix num_classes x d
matrix

Wf
(x
)

z

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V

n features

d hidden units

d x n matrix num_classes x d
matrix

softmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V

n features

d hidden units

d x n matrix num_classes x d
matrix

softmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes

probs

Training Neural Networks

z = g(V f(x))P (y|x) = softmax(Wz)

Training Neural Networks

‣ Maximize log likelihood of training data

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Training Neural Networks

‣ Maximize log likelihood of training data

‣ i*: index of the gold label

‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Training Neural Networks

‣ Maximize log likelihood of training data

‣ i*: index of the gold label

‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)

Computing Gradients

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Computing Gradients

‣ Gradient with respect to W

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Computing Gradients

‣ Gradient with respect to W

if i = i*@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Computing Gradients

‣ Gradient with respect to W

if i = i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W

Computing Gradients

‣ Gradient with respect to W

if i = i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks like logistic regression with z as the features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W

Neural Networks for Classification

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

Neural Networks for Classification

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

Computing Gradients: Backpropagation
z = g(V f(x))

Activations at
hidden layer

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

Computing Gradients: Backpropagation
z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Computing Gradients: Backpropagation
z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Computing Gradients: Backpropagation
z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Computing Gradients: Backpropagation
z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes dim = d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

[some math…]

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

Backpropagation: Picture

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz

Backpropagation: Picture

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

Backpropagation: Picture

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

Backpropagation: Picture

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can forget everything after z, treat 
it as the output and keep backpropping

z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear activation function at a (depends on
current value)

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear activation function at a (depends on
current value)

‣ Second term: gradient of linear function

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

z = g(V f(x))

Activations at
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear activation function at a (depends on
current value)

‣ Second term: gradient of linear function

‣ Straightforward computation once we have err(z)

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)

Backpropagation: Picture

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

Backpropagation: Picture

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

Backpropagation

P (y|x) = softmax(Wg(V f(x)))

Backpropagation

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

P (y|x) = softmax(Wg(V f(x)))

(vector)

Backpropagation

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute derivatives of W using err(root)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(matrix)

Backpropagation

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute derivatives of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

Backpropagation

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute derivatives of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute derivatives of V using err(z)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)

Backpropagation

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute derivatives of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute derivatives of V using err(z)

‣ Step 5+: continue backpropagation (compute err(f(x)) if necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)

Backpropagation: Takeaways

Backpropagation: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

Backpropagation: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

‣ Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

Backpropagation: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

‣ Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

‣ Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

Backpropagation: Takeaways

‣ Gradients of output weights W are easy to compute — looks like
logistic regression with hidden layer z as feature vector

‣ Can compute derivative of loss with respect to z to form an “error
signal” for backpropagation

‣ Easy to update parameters based on “error signal” from next layer,
keep pushing error signal back as backpropagation

‣ Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

Botha et al. (2017)

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

Fed raises interest rates in order to …

??
‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

Fed raises interest rates in order to …

??
‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

Fed raises interest rates in order to …

??

‣ Word embeddings for each word form input

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input em
b(interest)

em
b(rates)

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector
than in sparse models, but every feature fires on
every example

em
b(interest)

em
b(rates)

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector
than in sparse models, but every feature fires on
every example

em
b(interest)

em
b(rates)‣ Weight matrix learns position-dependent

processing of the words

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs

NLP with Feedforward Networks

‣ Hidden layer mixes these
different signals and learns
feature conjunctions

Botha et al. (2017)

NLP with Feedforward Networks
‣ Multilingual tagging results:

Botha et al. (2017)

‣ Gillick used LSTMs; this is smaller, faster, and better

Sentiment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of

word embeddings from input

Iyyer et al. (2015)

Sentiment Analysis

{

{
Bag-of-words

Tree RNNs /
CNNS / LSTMS

Wang and
Manning (2012)

Kim (2014)

Iyyer et al. (2015)

Coreference Resolution
‣ Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

Coreference Resolution
‣ Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

President Obama signed…

He later gave a speech…

?

Coreference Resolution
‣ Feedforward networks identify coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

President Obama signed…

He later gave a speech…

?

Implementation Details

Computation Graphs

‣ Computing gradients is hard!

Computation Graphs

‣ Computing gradients is hard!

‣ Automatic differentiation: instrument code to keep track of derivatives

Computation Graphs

‣ Computing gradients is hard!

‣ Automatic differentiation: instrument code to keep track of derivatives

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

Computation Graphs

‣ Computing gradients is hard!

‣ Automatic differentiation: instrument code to keep track of derivatives

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computation is now something we need to reason about symbolically

Computation Graphs

‣ Computing gradients is hard!

‣ Automatic differentiation: instrument code to keep track of derivatives

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computation is now something we need to reason about symbolically

‣ Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
 def __init__(self, inp, hid, out):
 super(FFNN, self).__init__()
 self.V = nn.Linear(inp, hid)
 self.g = nn.Tanh()
 self.W = nn.Linear(hid, out)
 self.softmax = nn.Softmax(dim=0)

 def forward(self, x):
 return self.softmax(self.W(self.g(self.V(x))))

‣ Define forward pass for

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()
def make_update(input, gold_label):

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()
def make_update(input, gold_label):

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()
def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

probs = ffnn.forward(input)

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])

Training a Model

Training a Model
Define a computation graph

Training a Model
Define a computation graph

For each epoch:

Training a Model
Define a computation graph

For each epoch:

For each batch of data:

Training a Model
Define a computation graph

For each epoch:

Compute loss on batch

For each batch of data:

Training a Model
Define a computation graph

For each epoch:

Compute loss on batch

For each batch of data:

Autograd to compute gradients and take step

Training a Model
Define a computation graph

For each epoch:

Compute loss on batch

For each batch of data:

Decode test set

Autograd to compute gradients and take step

Batching

‣ Batching data gives speedups due to more efficient matrix operations

Batching

‣ Batching data gives speedups due to more efficient matrix operations

‣ Need to make the computation graph process a batch at the same time

Batching

‣ Batching data gives speedups due to more efficient matrix operations

‣ Need to make the computation graph process a batch at the same time

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

Batching

‣ Batching data gives speedups due to more efficient matrix operations

‣ Need to make the computation graph process a batch at the same time

probs = ffnn.forward(input) # [batch_size, num_classes]

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Batching

‣ Batching data gives speedups due to more efficient matrix operations

‣ Need to make the computation graph process a batch at the same time

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

Batching

‣ Batching data gives speedups due to more efficient matrix operations

‣ Need to make the computation graph process a batch at the same time

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch sizes from 1-100 often work well

def make_update(input, gold_label)

input is [batch_size, num_feats]  
gold_label is [batch_size, num_classes]

...

