
Lecture 6: Neural Networks

Alan Ritter
(many slides from Greg Durrett)



This Lecture

‣ Feedforward neural networks + backpropagation

‣ Neural network basics

‣ Applications

‣ Neural network history

‣ Implementing neural networks (if time)
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‣ Convnets: applied to MNIST by LeCun in 1998

‣ LSTMs: Hochreiter and Schmidhuber (1997)

‣ Henderson (2003): neural shift-reduce parser, not SOTA
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‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for 
sequential CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments, 
claimed SOTA but wasn’t, 2011 version tied SOTA

‣ Socher 2011-2014: tree-structured RNNs working okay

‣ Krizhevskey et al. (2012): AlexNet for vision
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2014: Stuff starts working

‣ Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work 
for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment 
(convnets work for NLP?)

‣ 2015: explosion of neural nets for everything under the sun

‣ Chen and Manning transition-based dependency parser (even feedforward 
networks work well for NLP?)
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Why didn’t they work before?
‣Datasets too small: for MT, not really better until you have 1M+ parallel 

sentences (and really need a lot more)

‣Optimization not well understood: good initialization, per-feature scaling 
+ momentum (Adagrad / Adadelta / Adam) work best out-of-the-box

‣Regularization: dropout is pretty helpful

‣Inputs: need word representations to have the right continuous semantics

‣Computers not big enough: can’t run for enough iterations
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Neural Networks

‣ How can we do nonlinear classification? Kernels are too slow…

‣ Want to learn intermediate conjunctive features of the input

argmaxyw
>f(x, y)‣ Linear classification:

the movie was not all that good

I[contains not & contains good]
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x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the movie was not all that good
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Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because 
we transformed the 
space!



Deep Neural Networks

Adopted from Chris Dyer



Deep Neural Networks

Adopted from Chris Dyer

Input Second 
Layer

First

Layer



Deep Neural Networks

Adopted from Chris Dyer

z = g(Vy + c)

Input Second 
Layer

First

Layer



Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First

Layer



Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First

Layer

“Feedforward” computation (not 
recurrent)



Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First

Layer

“Feedforward” computation (not 
recurrent)

z = V(Wx+ b) + c

Check: what happens if no nonlinearity? 
More powerful than basic linear models?
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Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Feedforward Networks, 
Backpropagation
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Logistic Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible 
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ softmax: exps and normalizes a 
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class; 
W is [num classes x num feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now one hidden layer
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V

n features

d hidden units

d x n matrix num_classes x d 
matrix

softmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes 

probs
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‣ Gradient with respect to W

if i = i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks like logistic regression with z as the features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W
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Computing Gradients: Backpropagation
z = g(V f(x))

Activations at 
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes dim = d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

[some math…]
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Backpropagation: Picture

V softmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can forget everything after z, treat 
it as the output and keep backpropping
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‣ Gradient with respect to V: apply the chain rule

Computing Gradients: Backpropagation

@L(x, i⇤)
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Activations at 
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

Computing Gradients: Backpropagation

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a
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‣ Gradient with respect to V: apply the chain rule

a = V f(x)
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z = g(V f(x))

Activations at 
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear activation function at a (depends on 
current value)

‣ Second term: gradient of linear function

‣ Straightforward computation once we have err(z)

Computing Gradients: Backpropagation
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Backpropagation

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute derivatives of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute derivatives of V using err(z)

‣ Step 5+: continue backpropagation (compute err(f(x)) if necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)
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Backpropagation: Takeaways

‣ Gradients of output weights W are easy to compute — looks like 
logistic regression with hidden layer z as feature vector

‣ Can compute derivative of loss with respect to z to form an “error 
signal” for backpropagation

‣ Easy to update parameters based on “error signal” from next layer, 
keep pushing error signal back as backpropagation

‣ Need to remember the values from the forward computation
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NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector 
than in sparse models, but every feature fires on 
every example

em
b(interest)

em
b(rates)‣ Weight matrix learns position-dependent 

processing of the words

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs
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‣ Hidden layer mixes these 
different signals and learns 
feature conjunctions

Botha et al. (2017)



NLP with Feedforward Networks
‣ Multilingual tagging results:

Botha et al. (2017)

‣ Gillick used LSTMs; this is smaller, faster, and better



Sentiment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of 

word embeddings from input

Iyyer et al. (2015)



Sentiment Analysis

{

{
Bag-of-words

Tree RNNs / 
CNNS / LSTMS

Wang and 
Manning (2012)

Kim (2014)

Iyyer et al. (2015)
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Computation Graphs

‣ Computing gradients is hard!

‣ Automatic differentiation: instrument code to keep track of derivatives

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computation is now something we need to reason about symbolically

‣ Use a library like Pytorch or Tensorflow. This class: Pytorch



Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))

‣ Define forward pass for
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Computation Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])
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Training a Model
Define a computation graph

For each epoch:

Compute loss on batch

For each batch of data:

Decode test set

Autograd to compute gradients and take step
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Batching

‣ Batching data gives speedups due to more efficient matrix operations

‣ Need to make the computation graph process a batch at the same time

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch sizes from 1-100 often work well

def make_update(input, gold_label)

# input is [batch_size, num_feats]  
# gold_label is [batch_size, num_classes]

...


