Lecture 10: Machine Translation I

Alan Ritter

(many slides from Greg Durrett)

This Lecture

- MT and evaluation
- Word alignment
- Language models
- Phrase-based decoders
- Syntax-based decoders (probably next time)

MT Basics

MT Basics

People’s Daily, August 30, 2017

MT Basics

People’s Daily, August 30, 2017

MT Basics

People’s Daily, August 30, 2017
Trump Pope family watch a hundred years a year in the White House balcony

MT Basics

People’s Daily, August 30, 2017
Trump Pope family watch a hundred years a year in the White House balcony

MT Ideally

MT Ideally

- I have a friend => $\exists \mathrm{x}$ friend(x , self)

MT Ideally

- I have a friend $=>\exists \mathrm{x}$ friend $(\mathrm{x}$, self) => J'ai un ami

MT Ideally

- I have a friend $=>\exists \mathrm{x}$ friend $(\mathrm{x}$, self) => J'ai un ami J'ai une amie

MT Ideally

- I have a friend => $\exists \mathrm{x}$ friend $(\mathrm{x}$, self) => J'ai un ami

J'ai une amie

- May need information you didn't think about in your representation

MT Ideally

- I have a friend => ヨx friend (x,self) => J'ai un ami J'ai une amie
- May need information you didn't think about in your representation
- Hard for semantic representations to cover everything

MT Ideally

- I have a friend => ヨx friend (x,self) => J'ai un ami J'ai une amie
- May need information you didn't think about in your representation
- Hard for semantic representations to cover everything
- Everyone has a friend =>

MT Ideally

- I have a friend => ヨx friend (x,self) => J'ai un ami J'ai une amie
- May need information you didn't think about in your representation
- Hard for semantic representations to cover everything
- Everyone has a friend $=>\exists x \forall y$ friend (x, y)

$$
\forall x \exists y \text { friend(x,y) }
$$

MT Ideally

- I have a friend => $\exists \mathrm{x}$ friend $(\mathrm{x}$, self) => J'ai un ami J'ai une amie
- May need information you didn't think about in your representation
- Hard for semantic representations to cover everything
- Everyone has a friend $=>\exists x \forall y$ friend (x, y) g Tous a un ami $\forall x \exists y$ friend (x, y)

MT Ideally

- I have a friend => ヨx friend (x,self) => J'ai un ami J'ai une amie
- May need information you didn't think about in your representation
- Hard for semantic representations to cover everything
- Everyone has a friend $=>\exists x \forall y$ friend (x, y)) Tous a un ami $\forall x \exists y$ friend (x, y)
- Can often get away without doing all disambiguation - same ambiguities may exist in both languages

Levels of Transfer: Vauquois Triangle

- Today: mostly phrase-based, some syntax

Phrase-Based MT

- Key idea: translation works better the bigger chunks you use

Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate

Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext

Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext
- How to stitch together? Language model over target language

Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext
- How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations

Phrase-Based MT

- Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- How to identify phrases? Word alignment over source-target bitext
- How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)

Phrase-Based MT

```
cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
```

Phrase table $P(f \mid e)$

$$
P(e \mid f) \propto P(f \mid e) P(e)
$$

Noisy channel model: combine scores from translation model + language model to translate foreign to

English

Unlabeled English data

"Translate faithfully but make fluent English"

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

hypothesis 1		1-gram	2-gram	3-gram
	I am exhausted	3/3	1/2	0/1
hypothesis 2	Tired is I	1/3	0/2	0/1
hypothesis 3	I I I	1/3	0/2	0/1

reference 1 I am tired
reference 2 I am ready to sleep now and so exhausted

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty
reference 1 I am tired
reference 2 I am ready to sleep now and so exhausted

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) .
$$

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . ~ \bullet \text { Typically } n=4, w_{i}=1 / 4
$$

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\begin{aligned}
& \mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . \\
& \mathrm{BP}=\left\{\begin{array}{ll}
1 & \text { if } c>r \\
e^{(1-r / c)} & \text { if } c \leq r
\end{array} .\right.
\end{aligned}
$$

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\begin{array}{ll}
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . & \text { Typically } n=4, w_{i}=1 / 4 \\
\mathrm{BP}= \begin{cases}1 & \text { if } c>r \\
e^{(1-r / c)} & \text { if } c \leq r\end{cases} & \mathrm{r}=\text { length of reference }
\end{array}
$$

Evaluating MT

- Fluency: does it sound good in the target language?
- Fidelity/adequacy: does it capture the meaning of the original?
- BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty

$$
\begin{array}{ll}
\mathrm{BLEU}=\mathrm{BP} \cdot \exp \left(\sum_{n=1}^{N} w_{n} \log p_{n}\right) . & , \text { Typically } n=4, w_{i}=1 / 4 \\
\mathrm{BP}= \begin{cases}1 & \text { if } c>r \\
e^{(1-r / c)} & \text { if } c \leq r\end{cases} & , \mathrm{r}=\text { length of reference }
\end{array}
$$

- Does this capture fluency and adequacy?

BLEU Score

- Better methods with human-in-the-loop
- HTER: human-assisted translation error rate
- If you're building real MT systems, you do user studies. In academia, you mostly use BLEU

Human Judgments

Word Alignment

Word Alignment

- Input: a bitext, pairs of translated sentences
nous acceptons votre opinion . ||| we accept your view
nous allons changer d'avis ||| we are going to change our minds

Word Alignment

- Input: a bitext, pairs of translated sentences
nous acceptons votre opinion . ||| we accept your view
nous allons changer d'avis ||| we are going to change our minds

Word Alignment

- Input: a bitext, pairs of translated sentences
nous acceptons votre opinion . ||| we accept your view nous allons changer d'avis ||| we are going to change our minds
- Output: alignments between words in each sentence

Word Alignment

- Input: a bitext, pairs of translated sentences
nous acceptons votre opinion . ||| we accept your view nous allons changer d'avis ||| we are going to change our minds
- Output: alignments between words in each sentence

Word Alignment

- Input: a bitext, pairs of translated sentences
nous acceptons votre opinion . ||| we accept your view nous allons changer d'avis ||| we are going to change our minds
- Output: alignments between words in each sentence
- We will see how to turn these into phrases

1-to-Many Alignments

Word Alignment

- Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model

Word Alignment

- Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model
- Latent variable model: $P(\mathbf{f} \mid \mathbf{e})=\sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\sum_{\mathbf{a}} P(\mathbf{f} \mid \mathbf{a}, \mathbf{e}) P(\mathbf{a})$

Word Alignment

- Models P(f|e): probability of "French" sentence being generated from "English" sentence according to a model
- Latent variable model: $P(\mathbf{f} \mid \mathbf{e})=\sum_{\mathbf{a}} P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\sum_{\mathbf{a}} P(\mathbf{f} \mid \mathbf{a}, \mathbf{e}) P(\mathbf{a})$
- Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

- Each French word is aligned to at most one English word

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i}\right)
$$

IBM Model 1

- Each French word is aligned to at most one English word

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i}\right)
$$

e Thank you , I shall do so gladly.

IBM Model 1

- Each French word is aligned to at most one English word

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i}\right)
$$

e Thank you , I shall do so gladly.

IBM Model 1

- Each French word is aligned to at most one English word

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i}\right)
$$

e Thank you , I shall do so gladly.

IBM Model 1

- Each French word is aligned to at most one English word

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i}\right)
$$

e Thank you , I shall do so gladly.

- Set $\mathrm{P}(\mathrm{a})$ uniformly (no prior over good alignments)

IBM Model 1

- Each French word is aligned to at most one English word

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i}\right)
$$

e Thank you , I shall do so gladly.

- Set $\mathrm{P}(\mathrm{a})$ uniformly (no prior over good alignments)
- $P\left(f_{i} \mid e_{a_{i}}\right)$: word translation probability table

HMM for Alignment

- Sequential dependence between a's to capture monotonicity

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i} \mid a_{i-1}\right)
$$

e Thank you , I shall do so gladly.
a

HMM for Alignment

- Sequential dependence between a's to capture monotonicity

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i} \mid a_{i-1}\right)
$$

e Thank you , I shall do so gladly.

- Alignment dist parameterized by jump size:

Brown et al. (1993)

HMM for Alignment

- Sequential dependence between a's to capture monotonicity

$$
P(\mathbf{f}, \mathbf{a} \mid \mathbf{e})=\prod_{i=1}^{n} P\left(f_{i} \mid e_{a_{i}}\right) P\left(a_{i} \mid a_{i-1}\right)
$$

e Thank you , I shall do so gladly.

- Alignment dist parameterized by jump size:

[^0]
HMM Model

- Which direction is this?

[^1]
HMM Model

- Which direction is this?
- Alignments are generally monotonic (along diagonal)

HMM Model

- Which direction is this?
- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (garbage collection)

Evaluating Word Alignment

- "Alignment error rate": use labeled alignments on small corpus

Model	AER	Run Model 1 in both directions and intersect "intelligently"
Model 1 INT	19.5	
HMM E \rightarrow F	11.4	
HMM F \rightarrow E	10.8	
HMM AND	7.1	Run HMM model in both directions and intersect "intelligently"
HMM INT	4.7	
GIZA M4 AND	6.9	

Phrase Extraction

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words

Phrase Extraction

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
d'assister à la reunion et \||| to attend the meeting and

Phrase Extraction

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
d'assister à la reunion et \|\| to attend the meeting and assister à la reunion ||| attend the meeting

Phrase Extraction

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
d'assister à la reunion et \|\| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and

Phrase Extraction

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
d'assister à la reunion et \|| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we

Phrase Extraction

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
d'assister à la reunion et \|| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we

Phrase Extraction

- Find contiguous sets of aligned words in the two languages that don't have alignments to other words
d'assister à la reunion et \|\| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we
- Lots of phrases possible, count across all sentences and score by frequency

Language Modeling

Phrase-Based MT

```
cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
```

Phrase table $P(f \mid e)$

$$
P(e \mid f) \propto P(f \mid e) P(e)
$$

Noisy channel model: combine scores from translation model + language model to translate foreign to

English
"Translate faithfully but make fluent English"

N-gram Language Models

I visited San \qquad put a distribution over the next word

N-gram Language Models

I visited San \qquad put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words

N-gram Language Models

I visited San \qquad put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\text { visited } \operatorname{San}, x)}{\operatorname{count}(\text { visited San })}
$$

N-gram Language Models

I visited San \qquad put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\operatorname{visited} \operatorname{San}, x)}{\operatorname{count}(\text { visited San })}
$$

Maximum likelihood estimate of this probability from a corpus

N-gram Language Models

I visited San \qquad put a distribution over the next word

- Simple generative model: distribution of next word is a multinomial distribution conditioned on previous $\mathrm{n}-1$ words

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\operatorname{visited} \operatorname{San}, x)}{\operatorname{count}(\text { visited San })}
$$

Maximum likelihood estimate of this probability from a corpus

- Just relies on counts, even in 2008 could scale up to 1.3 M word types, 4B n-grams (all 5-grams occurring >40 times on the Web)

Smoothing N-gram Language Models

I visited San \qquad put a distribution over the next word!

Smoothing N-gram Language Models

I visited San \qquad put a distribution over the next word!

- Smoothing is very important, particularly when using 4+ gram models

Smoothing N-gram Language Models

I visited San \qquad put a distribution over the next word!

- Smoothing is very important, particularly when using 4+ gram models

$$
P(x \mid \text { visited San })=(1-\lambda) \frac{\operatorname{count}(\text { visited San, } x)}{\operatorname{count}(\text { visited San })}+\lambda \frac{\operatorname{count}(\text { San }, x)}{\operatorname{count}(\text { San })}
$$

Smoothing N-gram Language Models

I visited San \qquad put a distribution over the next word!

- Smoothing is very important, particularly when using 4+ gram models

$$
P(x \mid \text { visited San })=(1-\lambda) \frac{\operatorname{count}(\text { visited San } x)}{\operatorname{count}(\text { visited San })}+\lambda \frac{\operatorname{count}(\operatorname{San}, x)}{\operatorname{count}(\operatorname{San})} / \begin{aligned}
& \text { smooth } \\
& \text { this } \\
& \text { too! }
\end{aligned}
$$

Smoothing N-gram Language Models

I visited San \qquad put a distribution over the next word!

- Smoothing is very important, particularly when using 4+ gram models

$$
P(x \mid \text { visited San })=(1-\lambda) \frac{\operatorname{count}(\text { visited San }, x)}{\operatorname{count}(\text { visited San })}+\lambda \frac{\operatorname{count}(\operatorname{San}, x)}{\operatorname{count}(\operatorname{San})}<\text { smooth } \text { this }
$$

- One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize ($k=1$ is like leave-one-out)

Smoothing N-gram Language Models

I visited San \qquad put a distribution over the next word!

- Smoothing is very important, particularly when using 4+ gram models

$$
P(x \mid \text { visited San })=(1-\lambda) \frac{\operatorname{count}(\text { visited San }, x)}{\operatorname{count}(\text { visited San })}+\lambda \frac{\operatorname{count}(\operatorname{San}, x)}{\operatorname{count}(\operatorname{San})}<\text { smooth } \text { this }
$$

- One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize ($k=1$ is like leave-one-out)

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\operatorname{visited} \operatorname{San}, x)-k}{\operatorname{count}(\text { visited San })}+\lambda \frac{\operatorname{count}(\operatorname{San}, x)}{\operatorname{count}(\operatorname{San})}
$$

Smoothing N-gram Language Models

I visited San \qquad put a distribution over the next word!

- Smoothing is very important, particularly when using 4+ gram models

$$
P(x \mid \text { visited San })=(1-\lambda) \frac{\operatorname{count}(\text { visited San }, x)}{\operatorname{count}(\text { visited San })}+\lambda \frac{\operatorname{count}(\operatorname{San}, x)}{\operatorname{count}(\operatorname{San})} \text { this } \begin{aligned}
& \text { smooth } \\
& \text { too! }
\end{aligned}
$$

- One technique is "absolute discounting:" subtract off constant k from numerator, set lambda to make this normalize ($k=1$ is like leave-one-out)

$$
P(x \mid \text { visited San })=\frac{\operatorname{count}(\text { visited San }, x)-k}{\operatorname{count}(\text { visited San })}+\lambda \frac{\operatorname{count}(\operatorname{San}, x)}{\operatorname{count}(\operatorname{San})}
$$

- Kneser-Ney smoothing: this trick, plus low-order distributions modified to capture fertilities (how many distinct words appear in a context)

Engineering N-gram Models

- For 5+-gram models, need to store between 100M and 10B context-word-count triples
(a) Context-Encoding

w	c	val
1933	15176585	3
1933	15176587	2
1933	15176593	1
1933	15176613	8
1933	15179801	1
1935	15176585	298
1935	15176589	1

(b) Context Deltas

Δw	Δc	val
1933	15176585	3
+0	+2	1
+0	+5	1
+0	+40	8
+0	+188	1
+2	15176585	298
+0	+4	1

(c) Bits Required

$\|\Delta w\|$	$\|\Delta c\|$	$\|v a l\|$
24	40	3
2	3	3
2	3	3
2	9	6
2	12	3
4	36	15
2	6	3

- Make it fit in memory by delta encoding scheme: store deltas instead of values and use variable-length encoding

Neural Language Models

- Early work: feedforward neural networks looking at context

Neural Language Models

- Early work: feedforward neural networks looking at context

Neural Language Models

- Early work: feedforward neural networks looking at context

Neural Language Models

- Early work: feedforward neural networks looking at context
- Variable length context with RNNs:

$$
P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)
$$

I visited New \qquad

I visited New

- Works like a decoder with no encoder

Neural Language Models

- Early work: feedforward neural networks looking at context

- Slow to train over lots of data!

Evaluation

Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

- Perplexity: $\quad 2^{-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)}$

Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

- Perplexity: $2^{-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)}$
- NLL (base 2) averaged over the sentence, exponentiated

Evaluation

-(One sentence) negative log likelihood: $\sum_{i=1}^{n} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$

- Perplexity: $2^{-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)}$
- NLL (base 2) averaged over the sentence, exponentiated
- NLL = -2 -> on average, correct thing has prob $1 / 4$-> PPL $=4$. PPL is sort of like branching factor

Results

Merity et al. (2017), Melis et al. (2017)

Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark

Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7

Merity et al. (2017), Melis et al. (2017)

Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL ~ 60-80 (depending on how much you optimize it)

Results

- Evaluate on Penn Treebank: small dataset (1M words) compared to what's used in MT, but common benchmark
- Kneser-Ney 5-gram model with cache: PPL = 125.7
- LSTM: PPL ~ 60-80 (depending on how much you optimize it)
- Melis et al.: many neural LM improvements from 2014-2017 are subsumed by just using the right regularization (right dropout settings). So LSTMs are pretty good

Phrase-Based MT

```
cat ||| chat ||| 0.9
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8
house ||| maison ||| 0.6
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9
```

Phrase table $P(f \mid e)$

$$
P(e \mid f) \propto P(f \mid e) P(e)
$$

Noisy channel model: combine scores from translation model + language model to translate foreign to

English
"Translate faithfully but make fluent English"

Decoding

Phrase-Based Decoding

- Inputs:
- Language model that scores $P\left(e_{i} \mid e_{1}, \ldots, e_{i-1}\right) \approx P\left(e_{i} \mid e_{i-n-1}, \ldots, e_{i-1}\right)$
- Phrase table: set of phrase pairs (\mathbf{e}, \mathbf{f}) with probabilities $\mathrm{P}(\mathbf{f} \mid \mathbf{e})$

Phrase-Based Decoding

- Inputs:
- Language model that scores $P\left(e_{i} \mid e_{1}, \ldots, e_{i-1}\right) \approx P\left(e_{i} \mid e_{i-n-1}, \ldots, e_{i-1}\right)$
- Phrase table: set of phrase pairs (\mathbf{e}, \mathbf{f}) with probabilities $\mathrm{P}(\mathbf{f} \mid \mathbf{e})$
- What we want to find: e produced by a series of phrase-by-phrase translations from an input f, possibly with reordering:

Phrase-Based Decoding

- Inputs:
- Language model that scores $P\left(e_{i} \mid e_{1}, \ldots, e_{i-1}\right) \approx P\left(e_{i} \mid e_{i-n-1}, \ldots, e_{i-1}\right)$
- Phrase table: set of phrase pairs (\mathbf{e}, \mathbf{f}) with probabilities $\mathrm{P}(\mathbf{f} \mid \mathbf{e})$
- What we want to find: e produced by a series of phrase-by-phrase translations from an input f, possibly with reordering:

Phrase lattices are big！

ذ	$7 \Leftrightarrow$	円句 平手	米 ${ }^{\prime}$	法 玉	木口	任号罗其厅	白	导我几	ワ	－
the	7 people	including	by some		and	the russian	the	the astronauts		，
it	7 people included		by france		and the	the russian		international astronautical	of rapporteur ．	
this	7 out	including the	from	the french	and the russian		the fifth		．	
these	7 among	including from		the french and		of the russian	of	space	members	－
that	7 persons	including from the		of france	and to	russian	of the	aerospace	members ．	
	7 include		from france			russian		astronauts		．the
	7 numbers include				and russian		of astronauts who			＂
	7 populations include		those from france		and russian			astronauts ．		
	7 deportees included		come from	france	and russia		in	astronautical	personnel	，
	7 philtrum	including those from		france and		russia	a space		member	
		including representatives from		france and the		russia		astronaut		
		include	came from	france and russia			by cosmonauts			
		include representatives from		french	and russia			cosmonauts		
		include	came from france		and russia＇s			cosmonauts ．		
		includes	coming from	french and		russia＇s		cosmonaut		
				french and russian			＇s	astronavigation	member ．	
				french	and russia		astronauts			
					and russia＇s				special rapporteur	
					，and	russia			rapporteur	
					，and russia				rapporteur ．	
					，and russia					
					or	russia＇s				

Phrase-Based Decoding

- Input
- Translations
lo haré\|rápidamente\|. tries different segmentations,
I'll do it quickly |. translates phrase by phrase, quickly | I'll do it |. and considers reorderings.

$$
\arg \max _{\mathbf{e}}[P(\mathbf{f} \mid \mathbf{e}) \cdot P(\mathbf{e})]
$$

- Decoding objective (for 3-gram LM)
$\arg \max _{\mathbf{e}}\left[\prod_{\langle\bar{e}, \bar{f}\rangle} P(\bar{f} \mid \bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P\left(e_{i} \mid e_{i-1}, e_{i-2}\right)\right]$
Slide credit: Dan Klein

Monotonic Translation

$$
\arg \max _{\mathbf{e}}\left[\prod_{\langle\bar{e}, \tilde{f}\rangle} P(\bar{f} \mid \bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P\left(e_{i} \mid e_{i-1}, e_{i-2}\right)\right]
$$

Monotonic Translation

- If we translate with beam search, what state do we need to keep in the beam?

$$
\arg \max _{\mathbf{e}}\left[\prod_{\langle\bar{e}, \bar{f}\rangle} P(\bar{f} \mid \bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P\left(e_{i} \mid e_{i-1}, e_{i-2}\right)\right]
$$

Monotonic Translation

- If we translate with beam search, what state do we need to keep in the beam?
- What have we translated so far?

$$
\arg \max _{\mathrm{e}}\left[\prod_{\langle\bar{e}, \tilde{f}\rangle} P(\bar{f} \mid \bar{e}) \cdot \prod_{i=1}^{|\mathrm{e}|} P\left(e_{i} \mid e_{i-1}, e_{i-2}\right)\right]
$$

Monotonic Translation

- If we translate with beam search, what state do we need to keep in the beam?
- What have we translated so far?
- What words have we produced so far?

Monotonic Translation

- If we translate with beam search, what state do we need to keep in the beam?
- What have we translated so far?
- What words have we produced so far?
- When using a 3-gram LM, only need to remember the last 2 words!

Monotonic Translation

Non-Monotonic Translation

- Non-monotonic translation: can visit source sentence "out of order"

Non-Monotonic Translation

Maria	no	dio	una	bofetada	a	la	bruja

- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't

Non-Monotonic Translation

Maria	no	dio	una	bofetada	a	la	bruja

- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't

Non-Monotonic Translation

Maria	no	dio	una	bofetada	a	la	bruja

- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't

Non-Monotonic Translation

Maria	no	dio	una	bofetada	a	la	bruja

- Non-monotonic translation: can visit source sentence "out of order"
- State needs to describe which words have been translated and which haven't
- Big enough phrases already capture lots of reorderings, so this isn't as important as you think
 una, bofetada

Training Decoders

score $=\alpha \log P(L M)+\beta \log P(T M)$
...and TM is broken down into several features

Training Decoders

score $=\alpha \log P(L M)+\beta \log P(T M)$
...and TM is broken down into several feature

Training Decoders

score $=\alpha \log P(L M)+\beta \log P(T M)$
...and TM is broken down into several feature

- Usually 5-20 feature weights to set, want to optimize for BLEU score which is not differentiable
- MERT (Och 2003): decode to get 1000best translations for each sentence in a small training set (<1000 sentences), do line search on parameters to directly optimize for BLEU

Moses

- Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
- Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis

Moses

- Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
- Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
- Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2013

Moses

- Toolkit for machine translation due to Philipp Koehn + Hieu Hoang
- Pharaoh (Koehn, 2004) is the decoder from Koehn's thesis
- Moses implements word alignment, language models, and this decoder, plus *a ton* more stuff
- Highly optimized and heavily engineered, could more or less build SOTA translation systems with this from 2007-2013
- Next time: results on these and comparisons to neural methods

Syntax

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} J_{2} N N_{3} ; D T_{1} N N_{3} J_{2}\right]$

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$
DT \rightarrow [the, la]

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
$\mathrm{JJ} \rightarrow$ [yellow, jaune]

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
JJ \rightarrow [yellow, jaune]

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
$\mathrm{JJ} \rightarrow$ [yellow, jaune]

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
JJ \rightarrow [yellow, jaune]

the yellow car
la voiture jaune

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
$\mathrm{JJ} \rightarrow$ [yellow, jaune]

the yellow car
la voiture jaune

- Translation = parse the input with "half" of the grammar, read off the other half

Syntactic MT

- Rather than use phrases, use a synchronous context-free grammar $N P \rightarrow\left[D T_{1} \mathrm{JJ}_{2} \mathrm{NN}_{3} ; \mathrm{DT}_{1} \mathrm{NN}_{3} \mathrm{JJ}_{2}\right]$

DT \rightarrow [the, la]
DT \rightarrow [the, le]
NN \rightarrow [car, voiture]
JJ \rightarrow [yellow, jaune]

the yellow car
la voiture jaune

- Translation = parse the input with "half" of the grammar, read off the other half
- Assumes parallel syntax up to reordering

Syntactic MT

Output

－Use lexicalized rules，look

Grammar

 like＂syntactic phrases＂$$
\begin{aligned}
& s \rightarrow\langle V P . ; 1 V P .\rangle \text { OR } s \rightarrow\langle V P . ; \text { you VP .〉 } \\
& \mathrm{VP} \rightarrow \text { 〈 lo haré ADV ; will do it ADV 〉 } \\
& s \rightarrow \text { 〈lo haré ADV . ; I will do it ADV .〉 } \\
& \text { ADV } \rightarrow \text { 〈 de muy buen grado ; gladly }\rangle \\
& \text { Slide credit: Dan Klein }
\end{aligned}
$$

Takeaways

- Phrase-based systems consist of 3 pieces: aligner, language model, decoder
- HMMs work well for alignment
- N-gram language models are scalable and historically worked well
- Decoder requires searching through a complex state space
- Lots of system variants incorporating syntax
- Next time: neural MT

[^0]: - $P\left(f_{i} \mid e_{a_{i}}\right)$: same as before

 Brown et al. (1993)

[^1]:

