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Encoder-Decoder MT

Sutskever et al. (2014)‣ SOTA = 37.0 — not all that competitive…

‣ Sutskever seq2seq paper: first major application of LSTMs to NLP

‣ Basic encoder-decoder with beam search



Encoder-Decoder MT
‣ Better model from seq2seq lectures: encoder-decoder with attention 

and copying for rare words

the  movie  was   great

h1 h2 h3 h4
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distribution over vocab + copying

…
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Classic phrase-based system: ~33 BLEU, uses additional target-language data

Rerank with LSTMs: 36.5 BLEU (long line of work here; Devlin+ 2014)

Sutskever+ (2014) seq2seq single: 30.6 BLEU

Sutskever+ (2014) seq2seq ensemble: 34.8 BLEU

‣ But English-French is a really easy language pair and there’s tons of data 
for it! Does this approach work for anything harder?

Luong+ (2015) seq2seq ensemble with attention and rare word handling: 
37.5 BLEU

‣ 12M sentence pairs
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Results: WMT English-German

‣ Not nearly as good in absolute BLEU, but not really comparable across 
languages

Classic phrase-based system: 20.7 BLEU

Luong+ (2014) seq2seq: 14 BLEU

‣ French, Spanish = easiest 
German, Czech = harder 
Japanese, Russian = hard (grammatically different, lots of morphology…)

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU

‣ 4.5M sentence pairs



MT Examples

Luong et al. (2015)

‣ NMT systems can hallucinate words, especially when not using attention 
— phrase-based doesn’t do this

‣ best = with attention, base = no attention
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‣ best = with attention, base = no attention
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Backtranslation
‣ Classical MT methods used a bilingual corpus of sentences B = (S, T) and 

a large monolingual corpus T’ to train a language model. Can neural MT 
do the same?

Sennrich et al. (2015)

s1, t1

[null], t’1

[null], t’2

s2, t2
…

…

‣ Approach 1: force the system to 
generate T’ as targets from null 
inputs

‣ Approach 2: generate synthetic 
sources with a T->S machine 
translation system (backtranslation)

s1, t1

MT(t’1), t’1

s2, t2
…

…
MT(t’2), t’2



Backtranslation

Sennrich et al. (2015)

‣ parallelsynth: backtranslate training data; makes additional noisy 
source sentences which could be useful

‣ Gigaword: large monolingual English corpus
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Tokeniza>on
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Handling	Rare	Words

‣Words	are	a	difficult	unit	to	work	with:	copying	can	be	cumbersome,	
word	vocabularies	get	very	large

Sennrich	et	al.	(2016)

‣ Character-level	models	don’t	work	well

Input:	_the	_eco	tax	_port	i	co	_in			_Po	nt	-	de	-	Bu	is	…

Output:	_le	_port	ique	_éco	taxe	_de	_Pont	-	de	-	Bui	s

‣ Compromise	solu>on:	use	thousands	of	“word	pieces”	(which	may	be	
full	words	but	may	also	be	parts	of	words)

‣ Can	achieve	translitera>on	with	this,	subword	structure	makes	some	
transla>ons	easier	to	achieve
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Byte	Pair	Encoding	(BPE)

‣ Vocabulary	stats	are	weighted	over	a	large	corpus

‣ Start	with	every	individual	byte	(basically	character)	as	its	own	symbol

Sennrich	et	al.	(2016)

‣ Count	bigram	character	
cooccurrences	in	dic>onary

‣Merge	the	most	frequent	pair	of	
adjacent	characters

‣ Doing	30k	merges	=>	vocabulary	of	around	30,000	word	pieces.	Includes	
many	whole	words

and	there	were	no	re_	fueling	sta2ons	anywhere
one	of	the	city	’s	more	un_	princi_	pled	real	estate	agents
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Word	Pieces

‣ SentencePiece	library	from	Google:	unigram	LM

Schuster	and	Nakajima	(2012),	Wu	et	al.	(2016),	Kudo	and	Richardson	(2018)

Build	a	language	model	over	your	corpus

Merge	pieces	that	lead	to	highest	improvement	in	language	model	
perplexity

‣ Issues:	what	LM	to	use?	How	to	make	this	tractable?

while	voc	size	<	target	voc	size:

‣ Result:	way	of	segmen>ng	input	appropriate	for	transla>on

‣ Alterna>ve	to	BPE
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Comparison

Bostrom	and	DurreP	(2020)

‣ BPE	produces	less	linguis>cally	plausible	units	than	word	pieces	
(unigram	LM)

‣ Some	evidence	that	unigram	LM	works	be8er	in	pre-trained	
transformer	models
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Subword	Regulariza>on

Kudo	(2018)

‣ Change	subword	sampling	on-the-
fly	during	training

‣ Subword	regulariza>on	(SR)	improves	
results	over	a	sta>c	scheme	(BPE)
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Google	NMT



Google’s NMT System

Wu et al. (2016)
‣ 8-layer LSTM encoder-decoder with attention, word piece vocabulary of 

8k-32k 
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Google’s NMT System

Wu et al. (2016)

Luong+ (2015) seq2seq ensemble with rare word handling: 37.5 BLEU
Google’s 32k word pieces: 38.95 BLEU

Google’s phrase-based system: 37.0 BLEU
English-French:

Luong+ (2015) seq2seq ensemble with rare word handling: 23.0 BLEU
Google’s 32k word pieces: 24.2 BLEU

Google’s phrase-based system: 20.7 BLEU
English-German:



Human Evaluation (En-Es)

Wu et al. (2016)

‣ Similar to human-level 
performance on 
English-Spanish
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Google’s NMT System

Wu et al. (2016)

Gender is correct in GNMT 
but not in PBMT

“sled”
“walker”
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Fron>ers	in	MT:	Small	Data

Sennrich	and	Zhang	(2019)
‣ Synthe>c	small	data	sexng:	German	->	English
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Fron>ers	in	MT:	Low-Resource

Aji	et	al.	(2020)

‣ Par>cular	interest	in	deploying	MT	systems	for	languages	with	li8le	or	no	
parallel	data

Burmese,	Indonesian,	Turkish

‣ BPE	allows	us	to	transfer	
models	even	without	
training	on	a	specific	
language

‣ Pre-trained	models	can	
help	further



Transformers for MT
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Mul>-Head	Self	A8en>on

Vaswani	et	al.	(2017)

‣Mul>ple	“heads”	analogous	to	different	convolu>onal	filters

‣ Let	X	=	[sent	len,	embedding	dim]	be	the	input	sentence

‣ Query	Q	=	WQX:	these	are	like	the	decoder	hidden	state	in	a8en>on

‣ Keys	K	=	WKX:	these	control	what	gets	a8ended	to,	along	with	the	query

‣ Values	V	=	WVX:	these	vectors	get	summed	up	to	form	the	output

dim	of	keys
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Mul>-Head	Self	A8en>on
Alammar,	The	Illustrated	Transformer
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Mul>-Head	Self	A8en>on
Alammar,	The	Illustrated	Transformer

sent	len	x	hidden	dim
Z	is	a	weighted	combina>on	of	V	rows

sent	len	x	sent	len	(a8n	for	
each	word	to	each	other)
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Proper>es	of	Self-A8en>on

Vaswani	et	al.	(2017)

‣Quadra=c	complexity,	but	O(1)	sequen>al	opera>ons	(not	linear	like	
in	RNNs)	and	O(1)	“path”	for	words	to	inform	each	other

‣ n	=	sentence	length,	d	=	hidden	dim,	k	=	kernel	size,	r	=	restricted	
neighborhood	size
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Transformers

Vaswani	et	al.	(2017)

‣ Alternate	mul>-head	self-a8en>on	layers	and	
feedforward	layers

‣ Residual	connec>ons	let	the	model	“skip”	each	layer	
—	these	are	par>cularly	useful	for	training	deep	
networks
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Transformers:	Posi>on	Sensi>vity

Vaswani	et	al.	(2017)

The	ballerina	is	very	excited	that	she	will	dance	in	the	show.

‣ If	this	is	in	a	longer	context,	we	want	words	to	a8end	locally

‣ But	transformers	have	no	no2on	of	posi2on	by	default
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Transformers:	Posi>on	Sensi>vity

Vaswani	et	al.	(2017)

the		movie		was			great

‣ Augment	word	embedding	with	posi>on	embeddings,	
each	dim	is	a	sine/cosine	wave	of	a	different	
frequency.	Closer	points	=	higher	dot	products

‣Works	essen>ally	as	well	as	just	encoding	posi>on	as	
a	one-hot	vector

the		movie		was			great

em
b(
1)

em
b(
2)

em
b(
3)

em
b(
4)
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Transformers
Alammar,	The	Illustrated	Transformer

W
or
ds

Embedding	dim
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Transformers:	Complete	Model

Vaswani	et	al.	(2017)

‣ Encoder	and	decoder	are	both	transformers

‣ Decoder	consumes	the	previous	generated	
tokens	but	has	no	recurrent	state

‣ Decoder	alternates	a8en>on	over	the	output	
and	a8en>on	over	the	input	as	well



Transformers

Vaswani	et	al.	(2017)

‣ Big	=	6	layers,	1000	dim	for	each	token,	16	heads,	
base	=	6	layers	+	other	params	halved
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Vaswani	et	al.	(2017)



Transformer Implementation
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http://nlp.seas.harvard.edu/annotated-transformer/



No Language Left Behind

39



Takeaways

‣ Can	build	MT	systems	with	LSTM	encoder-decoders,	CNNs,	or	
transformers

‣Word	piece	/	byte	pair	models	are	really	effec=ve	and	easy	to	use

‣ State	of	the	art	systems	are	ge|ng	pre8y	good,	but	lots	of	challenges	
remain,	especially	for	low-resource	se|ngs

‣ Next	=me:	pre-trained	transformer	models	(BERT),	applied	to	other	tasks


